

AMSQM: Adaptive Multiple Super-Page Queue Management

Moshe Itshak
Computer Science Department

Bar-Ilan University
Israel

izmo@cs.biu.ac.il

Yair Wiseman
Computer Science Department

The Open University
Israel

wiseman@cs.huji.ac.il

Abstract

Super-Pages have been wandering around for more

than a decade. There are some particular operating
systems that support Super-Paging and there are some
recent research papers that show interesting ideas how to
intelligently integrate them; however, nowadays
Operating System's page replacement mechanism still
uses the old Clock algorithm which gives the same
priority to small and large pages. In this paper we show a
technique that enhances the page replacement mechanism
to an algorithm based on more parameters and is suitable
for a Super-Paging environment.

1. Introduction

Super-Pages are an enhancement for the well-known
paging concept. Super-Pages are larger pages that are
pointed to by the TLB [1]. The internal memory of
modern computers has been significantly increased during
the last decades. However, the TLB coverage (i.e. the size
of the memory that can be pointed to directly by the TLB)
has been increased by a much lower factor during the
same period [2]. Therefore, several new architectures like
Itanium, MIPS R4x00, Alpha, SPARC and HP PA RISC
support multiple page size of the frames pointed to by the
TLB. In that way the memory size pointed to directly by
the TLB is higher and the overhead of the page table
access time is reduced. There are also some particular
operating systems that support Super-Paging e.g. [3,4].

Multimedia applications typically have large portions
of memory that are clustered in few areas. Such
applications can benefit Super-Paging enormously [5].
Also, nowadays computers usually have large memories
[6,7]; hence, larger pages can be used; however using
larger pages can apparently cause a higher page fault rate.
This is a well-known flaw of the Super-Paging

The authors would like to thank SUN Microsystems
for their donation.

mechanism; however the algorithm suggested in this
paper does not suffer from this flaw and even utilizes the
usual behavior of the paging mechanism to reduce the
page fault rate. The algorithm actually makes use of the
locality principle to pre-fetch base-pages that are a part of
heavy used Super-pages and the results show that this
pre-fetching makes the memory hit percents better.

We also aim at developing a good technique that finds
the best page to be taken out when the page fault
mechanism requires this in a Super-Paging environment
based on all the available parameters. Here again the
locality principle that the Super-paging environment
induces helps us to select the victim page better, because
if page's neighbors have been accessed, it can imply that
the page itself might be accessed as well and it may not
be a good choice to swap the page out as the common
base-page algorithms would have done.

The dilemma of which page should be taken out also
occurs in higher levels as well i.e. What should be in the
cache and what should be pointed to by the TLB. Our
algorithm can be also a good alternative for Clock in
these decisions.

2. Page Replacement Algorithms

Over the years many replacement algorithms have
been published e.g. [8,9,10,11,12,13,14]; however over
the last decades, CLOCK [15] has been dominated page
replacement algorithms.

2.1. CLOCK

The CLOCK algorithm looks at the memory pages as
a circular linked list and moves around the pages like a
clock hand. Each page is associated with a reference bit.
This bit is set to 1 when the page is referenced. When a
page fault occurs, the page which is pointed to by the
hand is checked. If its reference bit is unset it will be
swap out; otherwise its reference bit is unset, and the
hand moves to the subsequent page. Research and
experiences have shown that CLOCK is a close
approximation of LRU, thus suffers from the same
problems of LRU. Nevertheless, CLOCK is still

dominating the vast majority of OS including UNIX,
Linux and Windows [16].

Some variant of CLOCK have been suggested over
the years. GCLOCK [16] was published at 1992 as an
expansion to CLOCK. This algorithm contains a counter
to each page (instead of a reference bit), which is
increased in each reference. The clock’s hand checks the
pages and decrements their counter value, until it finds a
page with a zero value. This page is swapped out. Unlike
CLOCK, GCLOCK is taking into account the frequency,
thus achieves better performance.

CLOCK-Pro [17] counts for each page the number of
other distinct pages accesses since its last access. This
number is called "reuse distance" and a page with a larger
"reuse distance" will be considered as a colder page and
will be swap out before a page with a smaller "reuse
distance".

2.2. ARC

We focused in the above section at CLOCK, because
CLOCK dominates the Operating Systems market;
however some other methods seem to suffer from two
acute problems:

(i) The need for parameters tuning (e.g 2Q [9] and
LRFU [10]) and/or

(ii) Non-constant complexity (e.g. LRU-K [8],
LRFU [10] ,CLOCK and GCLOCK [16]).

CLOCK also has a Non-constant complexity, so we
prefer to adapt more modern algorithm to the Super-
Paging environment. Recently, N. Megiddo and S. Modha
proposed a new “online” tunable algorithm called ARC
(Stands for Adaptive Replacement Cache) [18,19,20].
The unique capability of this algorithm is its ability to
adapt itself “online” according to the systems properties
e.g. from the Stack Depth Distribution (SDD) model to
the Independence Reference Model (IRM) and vice versa.

The main concept of ARC is having two lists of active
pages (one for the frequently used pages and one for the
most recent pages) and to endow the list that is
performing the best with a larger memory space. The two
lists that ARC maintains are variably-sized lists called L1
and L2. L1 contains the pages that have been accessed
only once and L2 contains the pages that have been
accessed twice or more. The algorithm always holds that
0≤L1+L2≤2C, where C is the number of pages in the
memory. L1 consists of two buffers - T1 which consists of
the most recent pages in the memory and B1 which
consists of the history of the most recent pages that were
in the memory. Similarly L2 is partitioned into T2 and B2.
In addition p which always holds p≤c, is the automatic
adaptive parameter of the algorithm which sets the target
size for T1.

The algorithm in a simplify version is for any page
request:

• If the requested page is in T1 or in T2:

o Move the page to the MRU of T2.
• If the requested page is in B1:

o If |B1|≥|B2|
 δ1=1

o Else
 δ1=|B2|/|B1|

o P=Min(P+δ1,C)
o Move the page from B1 to be the LRU

of T2 (swap out page according to P).
• If the requested page is in B2:

o If |B2|≥|B1|
 δ2=1

o Else
 δ2=|B1|/|B2|

o P=Max(P-δ2,0)
o Move the page from B2 to be the LRU

of T2 (swap out page according to P).
• If the requested page is not in T1∪T2∪B1∪B2 :

o Move the new page to be the MRU of
T1 (swap out page according to P).

As we mentioned above, CLOCK can move its clock
hand over many pages, until a page with an unset bit is
found. Unlike CLOCK, ARC has a constant complexity -
O(1). In addition, ARC is tunable i.e. ARC can adapt
itself according to the characteristics of the data that the
processes use. These are the reasons why we chose to
adapt ARC to the Super-Paging mechanism.

3. AMSQM

We used ARC to develop a new algorithm - Adaptive
Multiple Super-Pages Queues Management (AMSQM)
which is an expansion of the ARC algorithm that supports
Super-Paging. AMSQM algorithm has two levels - the
high level manages the different Super-Page queues (sizes
and allocations); whereas the low level is the internal
management of each Super-Page’s queue. In addition,
there is a special buffer for each Super-Page size that
collects fractions of bigger Super-Pages. The purpose of
these buffers is giving the demoted Super-Pages a chance
to get a better priority if they are hot pages.

The suggested algorithm uses a reservation-based
scheme, in which region is reserved for a super-page at
the page fault time and the promotion is done when the
number of the super-page's populated base pages gets to a
promotion threshold. Since we would like a partially
populated super-page to have the opportunity of being
promoted, the decision for preempting reservation of a
super-page candidate or swapping out its base-pages is
taken based on the super-page "recency" in the page lists
and not based on the number of currently resident base-
pages that the super-page consists of.

Hardware maintains only a single reference bit; thus it
is difficult to decide whether all (or at least most) of the
base-pages that the super-page consists of are actually in
use. Sometimes, only a small percentage of the base pages

should be in the memory. Therefore, AMSQM manages
several queues for each super-page size, preventing from
cold super-pages to be retained in the cache occupying
the space of some potential hotter smaller super-pages or
base pages.

Finally, in order to wisely balance the different queues
length, the algorithm counts the number of times that each
page has been referenced and checks the relative
"recency" of each super-page's queue.

Now we will write down the AMSQM algorithm in
pseudo-code:

Let us define:
C- The memory size.
ci - Physical size of the super (and base) pages buffers.
Σ ci≤ C.
si - Target size of each buffer.
Qi- Queue (FCFS) that saves demoted Super-Pages (or
base-pages), which are a fraction of bigger Super-pages.
Ti

1 - The most recent pages in the memory of every Super
(or base) page, which were accessed only once.
Bi

1 - The most recent pages in the history of every Super
(or base) page, which were accessed only once.
Ti

2 - The most recent pages in the memory of every Super
(or base) page, which were accessed more than once.
Bi

2 - The most recent pages in the history of every Super
(or base page), which were accessed more than once.
Pi - Tunable parameter - the recommended size of Ti

1.
sizei - Super-Page size in base pages.
boundi=β·sizei/size1
count(x) - The number of times that Super-Page x was
referenced.
ranki - Determines which queue removes an entry.
ranki=α⋅difi+(1-α)⋅reci, where difi is the difference
between si and ci; i. e. max(0, sizei·(ci-si)) and reci is the
relative recency of the LRU of Super-Page i among the
LRU of the other Super-Pages.
threshold - threshold for promoting a partially occupied
(candidate) super-page to a fully occupied super-page.
SP(xj) - The superpage which the base page xj belongs to.
xj =SP(xj) iff xj does not belong to any super-page (a
solitary base page).
ω(x) - The number of occupied base pages in super-page
x.
α,β,γ - Parameters that should be set according to the data
characteristic; where 0≤α≤1, β≥1 and 0≤γ≤½.

The algorithm AMSQM is:
AMSQM(c, Stream of base pages requests: x1,x2,..,xn)

• c1=c2=...=ck=0
• For each xj

o Call HandleSuperPage(xj,| SP(xj)|)
o If ω(SP(xj))≥ threshold·size|SP(xj)|

 Promote SP(xj)

• if the access type is "write" ,recursively demote
SP(xj) to clean base/super pages and move them
to the suitable Q lists.

HandleSuperPage(xj,i)
• If SP(xj) is in Ti

1,
o If xj is valid

 Move SP(xj) to be the MRU of
Ti

2
o Else

 Fetch xj to the cache.
 Move SP(xj) to be the MRU of

Ti
1

o If (count(SP(xj))= boundi)
 count(SP(xj))=γ· boundi

o Else
 count(SP(xj))= count(SP(xj))+1

• If SP(xj) is in Ti
2 or Qi

o If xj is invalid
 Fetch xj to the cache.

o Move SP(xj) to be the MRU of Ti
2

o count(SP(xj))= count(SP(xj))+1
• If SP(xj) is in Bi

1
o If the size of Bi1 is at least the size of

Bi2
 δ=1

o Else
 δ=|Bi2|/|Bi1|

o Pi=min(Pi +δ, ci)
o Call Release (xj,i)
o Fetch xj to the cache.
o Move SP(xj) to be the MRU of Ti

2
o count(SP(xj))= count(SP(xj))+1

• If SP(xj) is in Bi
2

o If the size of Bi2 is at least the size of
Bi1

 δ=1
o Else

 δ=|Bi1|/|Bi2|
o Pi=max(Pi -δ,0)
o If count(SP(xj))≤2·γ·boundi

 Call Release (xj,i)
 Fetch xj to the cache.
 Move SP(xj) to be the MRU of

Ti
2

o If count(SP(xj))>2·γ·boundi
 If 0≤C-∑ci<sizei

• Call IncreaseBuffer (xj,i)
• If we couldn’t allocate a

continuous of isize
• Call Release (xj,i)

 Else
• Call Allocate (xj,i)

 Count(xj)=γ⋅boundi

 si=si+1
• If SP(xj) is not in Ti

1, Ti
2, Bi

1 or Bi
2

o If (i>1) and (SP(xj) has ever been in
lists Bi

1 or Bi
2)

 Call Demote (xj,i)
o Else

 If 0≤C-∑ci<sizei
• If (|Qi|+|Ti

1|+|Bi
1|=ci)

o If (|Qi|+|Ti
1|<ci)

 Remove the LRU of
Bi

1
 Call Release (xj,i)

o Else
 Remove the LRU

among Qi and Ti
1.

• Else
o If (|Qi|+|Ti

1|+|Bi
1|+|Ti

2|
+|Bi

2|>ci)
 If (|Qi|+|Ti

1|+|Bi
1|+|Ti

2|
+|Bi

2|=2⋅ci)
 Remove the LRU

of Bi
2

 Call Release (xj,i)
• Fetch xj to the cache.
• Move SP(xj) to be the

MRU of Ti
1

 Else
• Call Allocate (xj,i)

IncreaseBuffer (xj,i)
• Do until sizei base-pages are released:

o r=max ranki
o Remove LRU among Tr

1, Tr
2 and Qr

o cr=cr-1
o If (cr< sr)

 sr= sr-1
• Call Allocate (xj,i)

Release (xj,i)
• If ((|Ti

1|>Pi) or (|Ti
1|=Pi and xj is in Bi

2)
o Take the LRU page between the LRU

of Ti
1 and the LRU of Qi and put it as

the MRU of Bi
1.

• Else
o Take the LRU page between the LRU

of Ti
2 and the LRU of Qi and put it as

the MRU of Bi
2.

Allocate (xn,i)
• If there is a contiguous empty space of sizei in

the cache
o Fetch xj to the cache.
o Move SP(xj) to be the MRU of Ti

2
o ci=ci+1

Demote (xn,i)
• Cancel SP(xj)
• If(i>1)

o Dsize=sizei-1
• Else

o Dsize=1
• free=The biggest available continuous empty

space of maximum Dsize.
• if (free>0)

o Create superpage x'j of size free
which must contain xj

o Move x'j to the MRU of Qfree.
• Else

• Call Release(xj,1).
• Fetch xj to the cache.
• move xj to the MRU of Q1.

4. Results

We implemented the standard CLOCK algorithm, the
ARC algorithm and the AMSQM algorithm. We used
Valgrind [21] to capture the pages that were used by
some of the SPEC – cpu2000 [22]. The SPEC manual
explicitly notes that attempting to run the suite with less
than 256Mbytes of memory will cause a measuring of the
paging system speed instead of the CPU speed. This suits
us well, because our aim is precisely to measure the
paging system speed; hence, we simulated a machine with
just 128MB of RAM, although it is obviously a very
small memory.

The sizes of the Super-pages that we used were 8 KB,
16 KB, 32 KB, 64 KB, 128 KB and 256 KB. We assumed
a tagged TLB of 32 entries for instructions and 64 entries
for data.

According to experiments that we do not have enough
space to detail in this paper, we found that AMSQM gives
the best results if its parameters are set to the following
values:

• α=0.5
• β=4
• γ=0.25
• threshold=0.5

Both AMSQM and ARC outperform CLOCK by all
the parameters in our simulation, so we found no point in
presenting the results of CLOCK; therefore, the results
presented here are only the ratio between strict ARC and
AMSQM.

Let us define:
n - Number of memory requests by the benchmark.
p - Number of pages that the benchmark accesses.
tmARC - Number of TLB misses when ARC is the

replacement algorithm.
tmAMSQM - Number of TLB misses when AMSQM is

the replacement algorithm.
pfARC - Number of the benchmark's page faults when

ARC is the replacement algorithm.
pfAMSQM - Number of the benchmark's page faults

when AMSQM is the replacement algorithm.

tm_ratio=1-((tmAMSQM-p)/(tmARC-p))
pf_ratio=1-((pfAMSQM-p)/(pfARC-p))
The TLB misses are shown as the ratio between the

TLB misses that AMSQM produces and the TLB misses
that ARC produces.When a page is accessed at the first
time, any algorithm will have to induce a TLB miss and
obviously there is no way to eliminate this TLB miss, so
we calculated only the TLB misses of the pages just from
the second time they are accessed. The page faults are
shown also as the ratio between the page faults that
AMSQM produces and the page faults that ARC
produces counting for each page only the second and
further accesses.

tm_ratio and pf_ratio are the values that represent the
calculation of the TLB miss ratio and the page fault ratio
respectively.

 TLB misses Excess of ARC vs. AMSQM

0%

10%

20%

30%

40%

50%

60%

ap
si art

bzip
2

gzip

bzip
2+

gzip
cra

fty mcf

pars
er

Figure 1. The TLB miss reduction of AMSQM

 page faults Excess of ARC vs. AMSQM

-2%

0%

2%

4%

6%

ap
si art

bzip
2

gzip

bzip
2+

gzip
cra

fty mcf

pars
er

Figure 2. The page fault reduction of AMSQM

Figure 1 shows the tm_ratio of several selected

SPEC2000 benchmarks whereas Figure 2 shows the
pf_ratio of the same SPEC2000 benchmarks. It can be
clearly seen in Figure 1 that AMSQM achieves a higher
TLB ratio, because of the super-pages usage.

 Furthermore, AMSQM memory hit ratio is also
higher than ARC memory hit ratio in most of the
benchmarks as can be noticed in Figure 2. The
improvement of the memory hit ratio is because AMSQM
takes advantage of the locality principle as is mentioned
above in the introduction section. The other SPEC
benchmarks show similar results, so we do not include
these benchmarks in this paper.

We also tested the running of both of the algorithms
using the subroutine "clock()" in "time.h" of GNU C
compiler. We found the results quite similar, so we do not
include these results in this paper as well.

5. Conclusions and Future Work

The new adaptive super-page replacement algorithm
AMSQM has been presented. We have shown that
AMSQM usually achieves a higher TLB coverage than
ARC and also a better page fault ratio in most of the
benchmarks we have used.

This paper shows another important aspect of the
Super-Paging environment. We believe operating systems
have an improper attitude toward the Super-Page
replacement algorithm selection. They usually just copy
the old algorithms of the traditional paging mechanism
with no attention to the new Super-Paging environment.
This brings about an improvement of the hardware
support for a smaller TLB miss ratio, but the software
support for a smaller TLB miss ratio is considerably
poorer.

 We show a way to adapt one of the most recent
algorithms to the Super-Paging environment with the aim
of obtaining a better TLB hit ratio.

In the future we would like to find ways to set the
AMSQM parameters (α,β,γ) dynamically. In our
experiments we have found that the values we used for
these parameters are the best for most of benchmarks;
however, there is a minority of benchmarks that have a
preference of other values and there are also few
benchmarks that will have a preference of adaptively
modified values. Therefore, we believe that adaptively
modified values can improve the performance of several
benchmarks.

In addition, we would like to find a pattern for super-
pages reoccurrence. Such a pattern can improve the
efficiency of the super-page promotion decisions. The
traditional threshold parameter seems to be not enough
for taking the most beneficial decision.

We would like also to integrate the suggested patch
into the Linux kernel. The current results are encouraging
and they support our belief that the new replacement
algorithm can significantly enhance the memory
management mechanism in the two above mentioned
manners: better TLB hit ratio and fewer page faults.

6. References

[1] Y. A. Khalidi, M. Talluri, M. N. Nelson and D.
Williams. Virtual memory support for multiple page
sizes. In Proceedings of the Fourth IEEE Workshop on
Workstation Operating Systems, Napa, California,
October 1993.
[2] J. Navarro. Transparent operating system support for
superpages, Ph.D. Thesis, Department of Computer
Science, Rice University, April 2004.
[3] N. Ganapathy and C. Schimmel. General purpose
operating system support for multiple page sizes.
Proceedings of the USENIX Annual Technical
Conference, New Orleans, 1998.
[4] Subramanian, C. Mather, K. Peterson, and B.
Raghunath. Implementation of multiple pagesize support
in HP-UX. Proceedings of the USENIX Annual
Technical Conference, New Orleans, 1998.
[5] Abouaissa H., Delpeyroux E., Wack M. and
Deschizeaux P., "Modelling and integration of resource
communication in multimedia applications with high
constraints using hierarchical Petri nets", Proceedings of
IEEE International Conference on Systems, Man, and
Cybernetics (SMC-99), pp. 220-225, vol. 5, Tokyo,
Japan, 1999.
[6] R. F. Wallace, R. D. Norman and E. Harari,
"Computer memory cards using flash EEPROM
integrated circuit chips and memory-controller systems",
US Patent no. 7106609, 2006.
[7] Geppert L., "The New Indelible Memories", IEEE
SPECTRUM, Vol. 40, Part 3, pp. 48-54, 2003.
[8] E. O'Neil, P. O'Neil and G. Weikum, The LRU-K
Page Replacement Algorithm for Database Disk
Buffering, Proceedings of SIGMOD `93, Washington,
DC, May 1993.
[9] T. Johnson and D. Shasha, 2Q: a low overhead high
performance buffer management replacement algorithm,
Proceedings of the Twentieth International Conference on
Very Large Databases, VLDB' 94, Santiago, Chile, pp.
439-450, September 1994.
[10] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. S. Kim, LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used
policies, IEEE Trans. Computers, vol. 50, no. 12, pp.
1352-1360, 2001.

[11] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and
C. Kim, A Low-Overhead, High-Performance Unified
Buffer Management Scheme that Exploits Sequential and
Looping References, 4th Symposium on Operating
System Design and Implementation, San Diego,
California, pp. 119-134, October 23-25, 2000.
[12] S. Jiang and X. Zhang, LIRS: An Efficient Low
Inter-reference Recency Set Replacement Policy to
Improve Buffer Cache Performance, In Proceeding of
2002 ACM SIGMETRICS, Marina Del Rey, California,
pp. 31-42, June 15-19, 2002.
[13] Y. Smaragdakis, S. Kaplan, and P. Wilson, The
EELRU adaptive replacement algorithm, Performance
Evaluation (Elsevier), Vol. 53 , No. 2, pp. 93-123, July
2003.
[14] Y. Zhou, Z. Chen and K. Li. "Second-Level Buffer
Cache Management", IEEE Transaction on Parallel and
Distributed Systems (TPDS), Vol. 15, No. 7, pp. 505-519,
2004.
[15] F. J. Corbato, .A Paging Experiment with the
Multics System.,MIT Project MAC Report, MAC-M-384,
May 1968.
[16] M. B. Friedman, Windows NT Page Replacement
Policies, Proceedings of 25th International Computer
Measurement Group Conference, pp. 234-244, December
1999.
[17] S. Jiang, F. Chen and X. Zhang, CLOCK-Pro: an
Effective Improvement of the CLOCK Replacement,
Proceedings of 2005 USENIX Annual Technical
Conference, pp. 323-336, Anaheim, California, April
2005.
[18] N. Megiddo and D. S. Modha, "ARC: A Self-
Tuning, Low Overhead Replacement Cache," Proc. of the
2nd USENIX Conference on File and Storage
Technologies (FAST'2003), San Francisco, pp. 115-130,
March 31 - April 2, 2003.
[19] N. Megiddo and D. S. Modha, "One Up on LRU"
;login: - The Magazine of the USENIX Association, vol.
28, no. 4, pp. 7-11, August 2003.
[20] N. Megiddo and D. S. Modha, "Outperforming LRU
with an Adaptive Replacement Cache Algorithm," IEEE
Computer, pp. 4-11, April 2004.
[21] N. Nethercote and J. Seward, "Valgrind: A
Framework for Heavyweight Dynamic Binary
Instrumentation", Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and
Implementation (PLDI 2007), San Diego, California,
USA, June 2007.
[22] SPEC (2000) CPU-2000. Standard Performance
Evaluation Corporation, Warrenton, Virginia,
http://www.spec.org/.

