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Abstract 

 
Super-Pages have been wandering around for more 

than a decade. There are some particular operating 
systems that support Super-Paging and there are some 
recent research papers that show interesting ideas how to 
intelligently integrate them; however, nowadays 
Operating System's page replacement mechanism still 
uses the old Clock algorithm which gives the same 
priority to small and large pages. In this paper we show a 
technique that enhances the page replacement mechanism 
to an algorithm based on more parameters and is suitable 
for a Super-Paging environment.   

  
 
1. Introduction 

Super-Pages are an enhancement for the well-known 
paging concept. Super-Pages are larger pages that are 
pointed to by the TLB [1]. The internal memory of 
modern computers has been significantly increased during 
the last decades. However, the TLB coverage (i.e. the size 
of the memory that can be pointed to directly by the TLB) 
has been increased by a much lower factor during the 
same period [2]. Therefore, several new architectures like 
Itanium, MIPS R4x00, Alpha, SPARC and HP PA RISC 
support multiple page size of the frames pointed to by the 
TLB. In that way the memory size pointed to directly by 
the TLB is higher and the overhead of the page table 
access time is reduced. There are also some particular 
operating systems that support Super-Paging e.g. [3,4]. 

Multimedia applications typically have large portions 
of memory that are clustered in few areas.  Such 
applications can benefit Super-Paging enormously [5]. 
Also, nowadays computers usually have large memories 
[6,7]; hence, larger pages can be used; however using 
larger pages can apparently cause a higher page fault rate. 
This is a well-known flaw of the Super-Paging 
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mechanism; however the algorithm suggested in this 
paper does not suffer from this flaw and even utilizes the 
usual behavior of the paging mechanism to reduce the 
page fault rate. The algorithm actually makes use of the 
locality principle to pre-fetch base-pages that are a part of 
heavy used Super-pages and the results show that this 
pre-fetching makes the memory hit percents better.  

We also aim at developing a good technique that finds 
the best page to be taken out when the page fault 
mechanism requires this in a Super-Paging environment 
based on all the available parameters. Here again the 
locality principle that the Super-paging environment 
induces helps us to select the victim page better, because 
if page's neighbors have been accessed, it can imply that 
the page itself might be accessed as well and it may not 
be a good choice to swap the page out as the common 
base-page algorithms would have done. 

The dilemma of which page should be taken out also 
occurs in higher levels as well i.e. What should be in the 
cache and what should be pointed to by the TLB. Our 
algorithm can be also a good alternative for Clock in 
these decisions. 

 
2. Page Replacement Algorithms 

Over the years many replacement algorithms have 
been published e.g. [8,9,10,11,12,13,14]; however over 
the last decades, CLOCK [15] has been dominated page 
replacement algorithms. 

 
2.1. CLOCK 

The CLOCK algorithm looks at the memory pages as 
a circular linked list and moves around the pages like a 
clock hand. Each page is associated with a reference bit. 
This bit is set to 1 when the page is referenced. When a 
page fault occurs, the page which is pointed to by the 
hand is checked. If its reference bit is unset it will be 
swap out; otherwise its reference bit is unset, and the 
hand moves to the subsequent page. Research and 
experiences have shown that CLOCK is a close 
approximation of LRU, thus suffers from the same 
problems of LRU. Nevertheless, CLOCK is still 



dominating the vast majority of OS including UNIX, 
Linux and Windows [16]. 

Some variant of CLOCK have been suggested over 
the years. GCLOCK [16] was published at 1992 as an 
expansion to CLOCK. This algorithm contains a counter 
to each page (instead of a reference bit), which is 
increased in each reference. The clock’s hand checks the 
pages and decrements their counter value, until it finds a 
page with a zero value. This page is swapped out. Unlike 
CLOCK, GCLOCK is taking into account the frequency, 
thus achieves better performance. 

CLOCK-Pro [17] counts for each page the number of 
other distinct pages accesses since its last access. This 
number is called "reuse distance" and a page with a larger 
"reuse distance" will be considered as a colder page and 
will be swap out before a page with a smaller "reuse 
distance".  

 
2.2. ARC 

We focused in the above section at CLOCK, because 
CLOCK dominates the Operating Systems market; 
however some other methods seem to suffer from two 
acute problems: 

(i) The need for parameters tuning (e.g 2Q [9] and 
LRFU [10]) and/or  

(ii) Non-constant complexity (e.g. LRU-K [8],  
LRFU [10] ,CLOCK and GCLOCK [16]). 

CLOCK also has a Non-constant complexity, so we 
prefer to adapt more modern algorithm to the Super-
Paging environment. Recently, N. Megiddo and S. Modha 
proposed a new “online” tunable algorithm called ARC 
(Stands for Adaptive Replacement Cache) [18,19,20]. 
The unique capability of this algorithm is its ability to 
adapt itself “online” according to the systems properties 
e.g. from the Stack Depth Distribution (SDD) model to 
the Independence Reference Model (IRM) and vice versa.  

The main concept of ARC is having two lists of active 
pages (one for the frequently used pages and one for the 
most recent pages) and to endow the list that is 
performing the best with a larger memory space. The two 
lists that ARC maintains are variably-sized lists called L1 
and L2. L1 contains the pages that have been accessed 
only once and L2 contains the pages that have been 
accessed twice or more. The algorithm always holds that 
0≤L1+L2≤2C, where C is the number of pages in the 
memory. L1 consists of two buffers - T1 which consists of 
the most recent pages in the memory and B1 which 
consists of the history of the most recent pages that were 
in the memory. Similarly L2 is partitioned into T2 and B2. 
In addition p which always holds p≤c, is the automatic 
adaptive parameter of the algorithm which sets the target 
size for T1. 

The algorithm in a simplify version is for any page 
request: 

• If the requested page is in T1 or in T2: 

o Move the page to the MRU of T2. 
• If the requested page is in B1: 

o If |B1|≥|B2| 
 δ1=1 

o Else 
 δ1=|B2|/|B1| 

o P=Min(P+δ1,C) 
o Move the page from B1 to be the LRU 

of T2 (swap out page according to P). 
• If the requested page is in B2: 

o If |B2|≥|B1| 
 δ2=1 

o Else 
 δ2=|B1|/|B2| 

o P=Max(P-δ2,0) 
o Move the page from B2 to be the LRU 

of T2 (swap out page according to P). 
• If the requested page is not in T1∪T2∪B1∪B2  : 

o Move the new page to be the MRU of 
T1 (swap out page according to P). 

As we mentioned above, CLOCK can move its clock 
hand over many pages, until a page with an unset bit is 
found. Unlike CLOCK, ARC has a constant complexity - 
O(1). In addition, ARC is tunable i.e. ARC can adapt 
itself according to the characteristics of the data that the 
processes use. These are the reasons why we chose to 
adapt ARC to the Super-Paging mechanism. 

 
3. AMSQM 

We used ARC to develop a new algorithm - Adaptive 
Multiple Super-Pages Queues Management (AMSQM) 
which is an expansion of the ARC algorithm that supports 
Super-Paging. AMSQM algorithm has two levels - the 
high level manages the different Super-Page queues (sizes 
and allocations); whereas the low level is the internal 
management of each Super-Page’s queue. In addition, 
there is a special buffer for each Super-Page size that 
collects fractions of bigger Super-Pages. The purpose of 
these buffers is giving the demoted Super-Pages a chance 
to get a better priority if they are hot pages. 

The suggested algorithm uses a reservation-based 
scheme, in which region is reserved for a super-page at 
the page fault time and the promotion is done when the 
number of the super-page's populated base pages gets to a 
promotion threshold. Since we would like a partially 
populated super-page to have the opportunity of being 
promoted, the decision for preempting reservation of a 
super-page candidate or swapping out its base-pages is 
taken based on the super-page "recency" in the page lists 
and not based on the number of currently resident base-
pages that the super-page consists of. 

Hardware maintains only a single reference bit; thus it 
is difficult to decide whether all (or at least most) of the 
base-pages that the super-page consists of are actually in 
use. Sometimes, only a small percentage of the base pages 



should be in the memory. Therefore, AMSQM manages 
several queues for each super-page size, preventing from 
cold super-pages to be retained in the cache occupying 
the space of some potential hotter smaller super-pages or 
base pages. 

Finally, in order to wisely balance the different queues 
length, the algorithm counts the number of times that each 
page has been referenced and checks the relative 
"recency" of each super-page's queue. 

Now we will write down the AMSQM algorithm in 
pseudo-code: 

Let us define: 
C- The memory size. 
ci - Physical size of the super (and base) pages buffers.     
Σ ci≤ C. 
si - Target size of each buffer. 
Qi- Queue (FCFS) that saves demoted Super-Pages (or 
base-pages), which are a fraction of bigger Super-pages. 
Ti

1 - The most recent pages in the memory of every Super 
(or base) page, which were accessed only once.  
Bi

1 - The most recent pages in the history of every Super 
(or base) page, which were accessed only once.  
Ti

2 - The most recent pages in the memory of every Super 
(or base) page, which were accessed more than once. 
Bi

2 - The most recent pages in the history of every Super 
(or base page), which were accessed more than once. 
Pi - Tunable parameter - the recommended size of Ti

1. 
sizei - Super-Page size in base pages.  
boundi=β·sizei/size1 
count(x) - The number of times that Super-Page x was 
referenced. 
ranki - Determines which queue removes an entry. 
ranki=α⋅difi+(1-α)⋅reci, where difi is the difference 
between si and ci; i. e. max(0, sizei·(ci-si)) and reci is the 
relative recency of the LRU of Super-Page i among the 
LRU of the other Super-Pages. 
threshold - threshold for promoting a partially occupied 
(candidate) super-page  to  a fully occupied super-page. 
SP(xj) - The superpage which the base page xj belongs to. 
xj =SP(xj) iff xj does not belong to any super-page (a 
solitary base page). 
ω(x) - The number of occupied base pages in super-page 
x. 
α,β,γ - Parameters that should be set according to the data 
characteristic; where 0≤α≤1, β≥1 and 0≤γ≤½. 

The algorithm AMSQM is: 
AMSQM(c, Stream of base pages requests: x1,x2,..,xn) 

• c1=c2=...=ck=0 
• For each xj  

o Call HandleSuperPage(xj,| SP(xj)|) 
o If ω(SP(xj))≥ threshold·size|SP(xj)| 

 Promote SP(xj)   

• if the access type is "write" ,recursively demote 
SP(xj)  to clean base/super pages and move them 
to the suitable Q lists. 

HandleSuperPage(xj,i) 
• If SP(xj)  is in Ti

1, 
o If xj is valid  

 Move SP(xj) to be the MRU of  
Ti

2 
o Else 

 Fetch xj to the cache. 
 Move SP(xj) to be the MRU of  

Ti
1 

o If (count(SP(xj))= boundi) 
 count(SP(xj))=γ· boundi 

o Else 
 count(SP(xj))= count(SP(xj))+1 

• If SP(xj) is in Ti
2 or Qi 

o If xj is invalid  
 Fetch xj to the cache. 

o Move SP(xj) to be the MRU of  Ti
2 

o count(SP(xj))= count(SP(xj))+1 
• If SP(xj) is in Bi

1 
o If the size of Bi1 is at least the size of 

Bi2 
 δ=1  

o Else 
 δ=|Bi2|/|Bi1| 

o Pi=min(Pi +δ, ci) 
o Call Release (xj,i) 
o Fetch xj to the cache. 
o Move SP(xj) to be the MRU of  Ti

2 
o count(SP(xj))= count(SP(xj))+1 

• If SP(xj) is in Bi
2  

o If the size of Bi2 is at least the size of 
Bi1 

 δ=1  
o Else 

 δ=|Bi1|/|Bi2| 
o Pi=max(Pi -δ,0) 
o If count(SP(xj))≤2·γ·boundi 

 Call Release (xj,i) 
 Fetch xj to the cache. 
 Move SP(xj) to be the MRU of  

Ti
2 

o If count(SP(xj))>2·γ·boundi  
 If 0≤C-∑ci<sizei 

• Call IncreaseBuffer (xj,i) 
• If  we couldn’t allocate a 

continuous of isize  
• Call Release (xj,i) 

 Else  
• Call Allocate (xj,i) 

 Count(xj)=γ⋅boundi 



 si=si+1 
• If SP(xj) is not in Ti

1, Ti
2, Bi

1 or Bi
2 

o If (i>1) and (SP(xj) has ever been in 
lists Bi

1 or Bi
2) 

 Call Demote (xj,i) 
o Else 

 If 0≤C-∑ci<sizei 
• If (|Qi|+|Ti

1|+|Bi
1|=ci) 

o If (|Qi|+|Ti
1|<ci) 

 Remove the LRU of 
Bi

1 
 Call Release (xj,i) 

o Else 
 Remove the LRU 

among Qi and Ti
1. 

• Else 
o If (|Qi|+|Ti

1|+|Bi
1|+|Ti

2| 
+|Bi

2|>ci) 
 If (|Qi|+|Ti

1|+|Bi
1|+|Ti

2| 
+|Bi

2|=2⋅ci) 
 Remove the LRU 

of Bi
2 

 Call Release (xj,i) 
• Fetch xj to the cache. 
• Move SP(xj) to be the 

MRU of  Ti
1 

 Else 
• Call Allocate (xj,i)                

IncreaseBuffer (xj,i) 
• Do until sizei base-pages are released: 

o r=max ranki 
o Remove LRU among Tr

1, Tr
2 and Qr 

o cr=cr-1 
o If (cr< sr) 

 sr= sr-1 
• Call Allocate (xj,i) 

Release (xj,i) 
• If ((|Ti

1|>Pi) or (|Ti
1|=Pi and xj is in Bi

2) 
o Take the LRU page between the LRU 

of Ti
1 and the LRU of Qi and put it as 

the MRU of Bi
1. 

• Else 
o Take the LRU page between the LRU 

of Ti
2 and the LRU of Qi and put it as 

the MRU of Bi
2. 

Allocate (xn,i) 
• If there is a contiguous empty space of sizei in 

the cache 
o Fetch xj to the cache. 
o Move SP(xj) to be the MRU of Ti

2 
o ci=ci+1 

Demote (xn,i) 
• Cancel SP(xj) 
• If(i>1) 

o Dsize=sizei-1 
• Else 

o Dsize=1 
• free=The biggest available continuous empty 

space of maximum Dsize. 
• if (free>0) 

o Create superpage x'j of size free   
which must contain xj 

o Move x'j to the MRU of Qfree. 
• Else 

• Call Release(xj,1). 
• Fetch xj to the cache. 
• move xj to the MRU of Q1.        

 
4. Results 

We implemented the standard CLOCK algorithm, the 
ARC algorithm and the AMSQM algorithm. We used 
Valgrind [21] to capture the pages that were used by 
some of the SPEC – cpu2000 [22].  The SPEC manual 
explicitly notes that attempting to run the suite with less 
than 256Mbytes of memory will cause a measuring of the 
paging system speed instead of the CPU speed. This suits 
us well, because our aim is precisely to measure the 
paging system speed; hence, we simulated a machine with 
just 128MB of RAM, although it is obviously a very 
small memory. 

The sizes of the Super-pages that we used were 8 KB, 
16 KB, 32 KB, 64 KB, 128 KB and 256 KB. We assumed 
a tagged TLB of 32 entries for instructions and 64 entries 
for data.  

According to experiments that we do not have enough 
space to detail in this paper, we found that AMSQM gives 
the best results if its parameters are set to the following 
values: 

• α=0.5 
• β=4 
• γ=0.25 
• threshold=0.5 

Both AMSQM and ARC outperform CLOCK by all 
the parameters in our simulation, so we found no point in 
presenting the results of CLOCK; therefore, the results 
presented here are only the ratio between strict ARC and 
AMSQM. 

Let us define: 
n - Number of memory requests by the benchmark. 
p - Number of pages that the benchmark accesses. 
tmARC - Number of TLB misses when ARC is the 

replacement algorithm. 
tmAMSQM - Number of TLB misses when AMSQM is 

the replacement algorithm. 
pfARC - Number of the benchmark's page faults when 

ARC is the replacement algorithm. 
pfAMSQM - Number of the benchmark's page faults 

when AMSQM is the replacement algorithm. 



tm_ratio=1-((tmAMSQM-p)/(tmARC-p)) 
pf_ratio=1-((pfAMSQM-p)/(pfARC-p)) 
The TLB misses are shown as the ratio between the 

TLB misses that AMSQM produces and the TLB misses 
that ARC produces.When a page is accessed at the first 
time, any algorithm will have to induce a TLB miss and 
obviously there is no way to eliminate this TLB miss, so 
we calculated only the TLB misses of the pages just from 
the second time they are accessed. The page faults are 
shown also as the ratio between the page faults that 
AMSQM produces and the page faults that ARC 
produces counting for each page only the second and 
further accesses. 

tm_ratio and pf_ratio are the values that represent the 
calculation of the TLB miss ratio and the page fault ratio 
respectively.  
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Figure 1. The TLB miss reduction of AMSQM 
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Figure 2. The page fault reduction of AMSQM 
 
 

 
Figure 1 shows the tm_ratio of several selected 

SPEC2000 benchmarks whereas Figure 2 shows the 
pf_ratio of the same SPEC2000 benchmarks. It can be 
clearly seen in Figure 1 that AMSQM achieves a higher 
TLB ratio, because of the super-pages usage. 

 Furthermore, AMSQM memory hit ratio is also 
higher than ARC memory hit ratio in most of the 
benchmarks as can be noticed in Figure 2. The 
improvement of the memory hit ratio is because AMSQM 
takes advantage of the locality principle as is mentioned 
above in the introduction section. The other SPEC 
benchmarks show similar results, so we do not include 
these benchmarks in this paper. 

We also tested the running of both of the algorithms 
using the subroutine "clock()" in "time.h" of GNU C 
compiler. We found the results quite similar, so we do not 
include these results in this paper as well. 
 
5. Conclusions and Future Work 

The new adaptive super-page replacement algorithm 
AMSQM has been presented. We have shown that 
AMSQM usually achieves a higher TLB coverage than 
ARC and also a better page fault ratio in most of the 
benchmarks we have used. 

This paper shows another important aspect of the 
Super-Paging environment. We believe operating systems 
have an improper attitude toward the Super-Page 
replacement algorithm selection. They usually just copy 
the old algorithms of the traditional paging mechanism 
with no attention to the new Super-Paging environment. 
This brings about an improvement of the hardware 
support for a smaller TLB miss ratio, but the software 
support for a smaller TLB miss ratio is considerably 
poorer.  

 We show a way to adapt one of the most recent 
algorithms to the Super-Paging environment with the aim 
of obtaining a better TLB hit ratio.   

In the future we would like to find ways to set the 
AMSQM parameters (α,β,γ) dynamically. In our 
experiments we have found that the values we used for 
these parameters are the best for most of benchmarks; 
however, there is a minority of benchmarks that have a 
preference of other values and there are also few 
benchmarks that will have a preference of adaptively 
modified values. Therefore, we believe that adaptively 
modified values can improve the performance of several 
benchmarks. 

In addition, we would like to find a pattern for super-
pages reoccurrence. Such a pattern can improve the 
efficiency of the super-page promotion decisions. The 
traditional threshold parameter seems to be not enough 
for taking the most beneficial decision. 



We would like also to integrate the suggested patch 
into the Linux kernel. The current results are encouraging 
and they support our belief that the new replacement 
algorithm can significantly enhance the memory 
management mechanism in the two above mentioned 
manners: better TLB hit ratio and fewer page faults. 
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