

 58 Int. J. Vehicle Information and Communication Systems, Vol. 3, No. 1, 2013

 Copyright © 2013 Inderscience Enterprises Ltd.

The next generation GPS memory management

David Livshits and Yair Wiseman*
Computer Science Department,
Holon Institute of Technology,
52 Golomb St, Holon, Israel
Email: david.livshits@gmail.com
Email: yairw@hit.ac.il
*Corresponding author

Abstract: The next generation Global Positioning System (GPS) will have
many new features. Also the infrastructure will be noticeably enhanced. This
has directed us to consider a new dynamic memory management strategy for
the next generation GPS. The distinctiveness of the suggested infrastructure is
shifting elements of the GPS applications to the operating system with the
objective of managing application data more efficiently. A key component of
any GPS application is caching its data with the intention of preventing
excessive memory accesses and allocations. The suggested infrastructure called
‘Cache Based Dynamic Memory Management’ – CBDMM – aims at moving
the caching component from the GPS application to the embedded operating
system of the GPS. The paper introduces CBDMM design, discusses its
advantages and shows several encouraging benchmarking results.

Keywords: GPS; embedded computer systems; memory management.

Reference to this paper should be made as follows: Livshits, D. and Wiseman, Y.
(2013) ‘The next generation GPS memory management’, Int. J. Vehicle
Information and Communication Systems, Vol. 3, No. 1, pp.58–70.

Biographical notes: David Livshits is currently a DRM Client Architect at
CISCO. Before joining CISCO, he was a real-time embedded systems
developer at NDS. He has 13 years of experience in embedded systems,
software engineering, application development and product management.

Yair Wiseman got his PhD from Bar-Ilan University and completed two Post-
Doc – one at the Hebrew University of Jerusalem and one in Georgia Institute
of Technology. His research interests include avionics, vehicular systems,
intelligent transportation systems, process scheduling, hardware-software
co-design, memory management, real-time operating systems.

1 Introduction

The use of Global Positioning System (GPS) turns out to be the standard of rent-a-car
companies, taxis and actually it grows to be the standard of many conventional cars. The
adoption of all-purpose Operating Systems like Linux for GPS devices is an up-and-
coming field (Hongyan et al., 2010). A GPS is an embedded and real-time device;
therefore the management of its resource is done differently (Chadil et al., 2008).

 The next generation GPS memory management 59

Manufacturing of an intelligent vehicle with embedded computer systems can be very
beneficial (Yong et al., 2008; Feng et al., 2009); however, an embedded/real-time
environment adds additional constraints on the Operating System (OS), such as a lack of
resources (memory, storage) and performance concerns. Most of the embedded devices
do not have a permanent storage device like a hard disc. The reason is the high cost of the
storage device or the necessary size that prevents the manufacturer from including the
device in relatively small embedded systems. CPU that is used by an embedded device is
usually much cheaper and as a result much slower than a regular PC CPU. In addition,
there are predefined restrictions imposed on Real-Time Operating Systems (RTOS) such
as a deterministic time response in most of RTOS possible service requests. In this
environment memory management is always tensed between two main constraints: a lack
of memory for dynamic allocations and a deterministic time response for a memory
allocation request. The survey below shows that RTOSes are divided into two main
categories:

 RTOSes preferring deterministic memory allocations over a possible fragmentation.

 RTOSes preferring a minimal fragmentation over deterministic memory allocations.

Another important issue is the performance – allocation policy producing a minimal
fragmentation can consume too much resources and CPU cycles.

2 Related works

The design and implementation of memory for GPS systems have been widely
researched. Wang et al. (2009) suggest a built-in self-test technology that is used for
embedded memory in GPS. van Eijk and Roeloffs (2010) used a Linux distribution for
storing information that can be used to link time and position on any non-volatile media
in navigation systems; however the caching scheme is not commonly studied and we
would like to suggest a new scheme for the GPS caching system.

The caching system is based on dynamic memory allocation. The following survey
reviews the basic dynamic memory allocation methods of the most common RTOSes.

 VxWorks (Laszlo, 2005): The memory management of VxWorks RTOS was
replaced several times. The early versions of VxWorks implemented the first-fit
allocation policy. Later versions of VxWorks implemented the best-fit allocation
policy that according to some benchmarking causes less memory fragmentation and
a better time response.

 μC/OS-II (Labrosse, 2002): Each task creates a pool of memory partitions. Each
partition is planned for block allocations of a specific size. When a task requests to
allocate a specific size of blocks the allocation should be done from the planned
partition. This fixed block size allocation scheme helps to avoid fragmentation,
because available memory is typically small in embedded applications. Allocations
and deallocations of these fixed-sized memory blocks are done in a constant time
and thus deterministic.

 Nucleus (Nucleus, 1999): The dynamic allocation is made out of the memory pool
that is defined by the application. The dynamic allocation policy is a standard linear
‘first-fit’. A block split mechanism will be applied if the first-fitted block is

 60 D. Livshits and Y. Wiseman

significantly larger than the requested size. An application can allocate any number
of pools. Due to a possible external fragmentation, the first-fit-based block allocation
process is not deterministic, but the deallocation is deterministic.

 FreeRTOS (http://www.freertos.org): The memory allocation algorithm simply
subdivides a single array into smaller blocks as a dynamic memory allocator does
and uses the best-fit allocation policy. An allocation of a block is always
deterministic, i.e. it always takes the same time to allocate a block).

 RT-Linux (Yodaiken and Barabanov, 1997): The original version of RT-Linux did
not provide any mechanism for dynamic memory allocation, because RT-Linux is
non-deterministic, but later versions of RT-Linux 2.2 have some dynamic memory
allocation facilities, which are based on predefined pools of blocks with fixed size
(the size is configurable). The RT-Linux memory allocator searches for the most
appropriate preallocated block with a size that is not bigger than twice of the
requested size. If all the preallocated blocks are bigger than twice of the requested
size, the big block splits into pieces sized as the requested block and the first piece is
returned for this request. This approach is pretty fast and reliable but is not
deterministic. Also this approach is not suitable for the stack (Wiseman et al. 2008).
There was another try to implement dynamic memory management in RT-Linux
based on the TLSF algorithm with worst case allocation complexity of O(1)
(Wang et al., 2006).

All the above methods have no cache mechanism for freed blocks.

3 CBDMM

It can be concluded from the above survey that usually RTOSes almost do not use virtual
memory mechanism because its resource consumption is quite high and it requires a
storage device that in most of the systems does not exist, and as a result there is no
memory caching on memory management level.

Even operating systems that implement a virtual memory approach have an internal
cache logic that works on the memory pages level and manages application pages but
does not involve in the application logic. The common concept is that the application
logic is out of scope of OSes and particularly RTOSes. Figure 1 demonstrates the
separation of application and RTOS. When an application reads data from any
asynchronous read only source (IP, DVB Broadcast, DSM-CC carousels, etc.) dynamic
memory allocation may be required. The application requires the data using a Data
Acquisition Manager (DAM). In some system, the data cycle time is too long, so when
some data is received, the application will try to save the currently unnecessary portions
of data in the memory (if possible) for a later use, because most embedded systems do
not have any storage device as mentioned before or the storage device is too slow and the
overlapping suggested by Wiseman and Feitelson (2003) will not be suitable. When there
is no more room in the RAM for additional allocations, the application will free the data,
i.e. it is removed from memory until the next application access. It means that always
when a new dynamic memory allocation fails, the application should release a data block
which is part of some unused blocks list that the application needs to manage, and try to
do the new allocation again.

 The next generation GPS memory management 61

Figure 1 Separation of applications and RTOS

Another problem is that the data download manager is not aware of the application logic,
so when an application requests some data, the application should translate its request
into the download manager language that works on packets/module level. So even if
the dynamic memory manager is able to cache the unnecessary application, the data
download manager must be aware of this caching so it will not reread the data from the
source.

The main idea of the paper is adapting application logic to the dynamic memory
management. Thus, application can choose/provide an allocation policy for its dynamic
memory allocation and also choose/provide the caching mechanism for caching/releasing
allocated memory blocks. The new proposed dynamic memory management preferably
should be the part of the RTOS and not a part of the application. Besides, the proposed
scheme suggests making use of some kind of data acquisition layers that will manage
cached memory blocks upon an application data request. The acquisition manager is only
a sample of how the proposed system can work. It shows in the best way the advantages
of the new approach and can be either a part of the application or fully integrated entity
in the OS.

The following new components are defined:
Data Acquisition Manager – is a client of the CBDMM and also an application client,

the responsibilities of DAM are:

 Receiving data requests from an application and translating it into download
manager requests.

 Managing application data requests with its statuses. When application decides to
release the requested data it is done also using the DAM. In this case DAM marks
the released data as cached and keeps it till the next allocation request.

 DAM is responsible for the dynamic memory allocations required for the data
download, here DAM interacts with CBDMM.

 DAM serves as repository for all downloaded data.

 62 D. Livshits and Y. Wiseman

Cache-Based Dynamic Memory Manager (CBDMM) – At each memory allocation
request the CBDMM receives from DAM several figures: the list of required allocations,
allocation policy, application callback, cache block list and cache policy application
callback. After allocation transaction is succeeded, CBDMM will return to DAM the
status of the cache list. Allocations and cache policies are managed by the application.

Figure 1 demonstrates this model.
How does it actually work?

 The Application requires the data from DAM using a predefined protocol or a wild
card/regular expression mechanism. For example download file with name
‘account_info.xml’ from the remote server using tcp/ip protocol.

 If the data is already loaded (in cache), DAM takes it from the cache and returns the
requested data immediately (in synchronous way), otherwise builds new download
request. Sequence diagrams in Figures 2–4 describe these cases.

 New download request contains the following steps:

o Allocation of the new memory blocks for the request – Here DAM is
responsible to notify CBDMM about all unused (cached) by application memory
blocks that CBDMM can free in case of need, so during the dynamic memory
allocation request DAM passes the list of all cached memory blocks to the
CBDMM and waits for result.

o After memory allocation transaction is succeeded DAM updates its cache list
(some of the cached modules could be freed during new allocation request) and
sends request to the download manager to download requested content into
preallocated memory.

 DAM waits until all data’s modules/parts are loaded and notifies the application that
download transactions are done.

 If the application frees the data, DAM will keep it in the cache. Figure 4 shows the
sequence diagram for this use case.

The CBDMM system includes two sub-systems:

 MM – Subsystem for memory allocation. Implements a number of allocation
policies that application can choose from and/or uses allocation policies provided by
an application.

 MC – Subsystem for caching the memory blocks. The cache policy is implemented
by CBDMM client (DAM, Application) and can be chosen by an application

Both subsystems, together with the API user system, provide the following functionality:

 Efficient memory allocation – reducing the likelihood of memory fragmentation, by
increasing the number of modules resident in the memory (MM).

 Efficient module acquisition – reducing the time required to fetch a module by
caching redundant modules in memory when possible (MC).

Both MM and MC should reduce the module request time by reusing the cached
modules. MC is effective only when the CBDMM user is aware of the need to release
unused modules as soon as possible. If the allocation function cannot allocate the

 The next generation GPS memory management 63

memory that is required, it will begin to release cached modules. In order to prevent an
arbitrary release of cache modules (or when there is a higher probability that certain
cached modules will be in use in the future than others), each cached module contains
special cache data that defines the rank of the module with regard to release. Modules
will be released according to their rank, in low to high order.

Figure 2 The data request in case the data is not cache

Figure 3 The data request in case the data is in cache

 64 D. Livshits and Y. Wiseman

Figure 4 The way application frees downloaded document. DAM continues to keep it in the
RAM just marked it as cache

In order to determine which module has the lowest rank, the CBDMM queries the cache
policy and, according to the module’s rank, releases the module. If releasing some non-
required modules does not assist in providing the required space for the new module
allocation, the release process will continue until all cache modules are released.
If sufficient space is not freed the allocation transaction will roll back (i.e. will be
cancelled). If sufficient space is freed, the module will be allocated and the next
allocation transaction begins. Figure 5 demonstrates this flow.

Figure 5 Block diagram for allocation transaction

 The next generation GPS memory management 65

4 Benefits

The benefits of the proposed model are obvious: applications have accessibility to their
data in a maximal optimised way, because all the allocation policies and the cache
policies are provided/can be choosen by the application that can predict the memory
map better. This way the application can optimise the data accessibility. It should be
noted that this approach can be combined with predictive cache mechanism, but
this is out of scope of this proposal. Both DAM and CBDMM can be either a part
of RTOS/Middleware (Wiseman et al., 2004) (preferable) or fully integrated into the
application.

The survey above shows that nowadays there is no RTOS that has a cache
mechanism for the dynamically allocated block scheme. In addition, the allocation
policies that are used by RTOSes are not changeable or configurable by the application.
So applications cannot be tuned to produce the minimal external fragmentation. In our
suggested system if an application runs on different platforms, the tuning process can be
done only once.

Some other interesting approaches have been developed during the years (e.g. Meier,
2000; Cyll, 2004), where a particular cache mechanism is applied to the memory block
size level, without any relation to the data that the memory block contains. These
approaches try to use some heuristics to find which block size is more frequently used.
The disadvantage of these approaches versus CBDMM proposal is that the cached data of
the cache blocks is usually irrelevant for further allocation requests and as a result new
download request is required even in case the returned cached block already contains the
requested data. In this case, only time for memory allocation is saved and not time for
downloading the data.

5 Possible disadvantages

The main disadvantage of this proposal is the overhead. According to this proposal the
application can manage the memory allocation policy, so if the policy is not implemented
by the RTOS, it should be implemented by the application itself. It can be less reliable
than an OS implementation and may not meet performance requirements. The same
relates to the cache policy which is also might be implemented either by an application or
by DAM, but managing the cache block list still remains in DAM that can be part of an
OS like (Itshak and Wiseman, 2009) that handles page lists in the OS.

Another issue is the concept of application and OS logic separation. CBDMM breaks
the border between the OS and the application and passes some OS logic to the
application. Hopefully this feature will not place problems like an application which tries
to handle some OS functionality that actually cannot be passed to the application even
theoretically.

6 Evaluation

The benchmarking of system is based on some web browser like applications that have
multiple presentation pages and links. Each page requires downloading a data. Page
presentation (on the screen) time will be a benchmarking parameter. The benchmarking

 66 D. Livshits and Y. Wiseman

has been made on a GPS, but even a PC simulation could be enough. The simulation
compares application performance based on the original RTOS and the RTOS with the
described DAM/CBDMM model.

Some servers broadcast the data using IP multicast. Data is broadcast with some
predefined cycle time (depends on type of data and target application). There are handy
embedded devices that receive data using a WIFI receiver and process it by certain
applications. This function is fully portable (Geva and Wiseman, 2007; Grinberg and
Wiseman, 2007). The device does not have any internal storage unit and a browser
application can consume only 512 k RAM for its internal needs.

On the device site there is a browser using ‘Weather forecast’ application which has
to present four different screens with the forecast information. Each screen will be
presented when the application enters a proper state. There are four equivalent states for
four screens. Figure 6 shows the acceptable state switch.

Figure 6 Application status

Each state requires a data for presentation. Table 1 shows the dependency between state
and data modules.

Table 1 Dependency between state and data modules

State Data modules

1 resources.mod presentation_1.mod text.mod ads.mod

2 resources.mod presentation_2.mod metadata_2.mod text.mod

3 resources.mod presentation_3.mod metadata_2.mod text.mod presentation_2.mod

4 resources.mod presentation_3.mod metadata_2.mod text.mod presentation_2.mod ads.mod

Table 2 defines data modules cycle time.
Application Test Plan (ATP) is a document that provides QC team the rules for

testing the application. There is a test from the ‘Weather Forecast Application’. The ATP
that has been used for benchmarking is ‘Weather Forecast Application’ PC simulator
based on CBDMM.

 The next generation GPS memory management 67

Table 2 Data modules cycle time

Module name Cycle Time (ms) Size (bytes)

resources.mod 1000 128,000

presentation_1.mod 1000 128,000

text.mod 1000 25,000

ads.mod 1000 35,000

presentation_2.mod 1000 130,000

metadata_2.mod 1000 100,000

presentation_3.mod 1000 30,000

The first test uses CBDMM approach and an OS simulator which implements the test.
The OS has been configured to use WorstFit allocation policy and LRF cache policy.
When a new screen is requested all previous screen modules are moved to the cache list
automatically and released (if required) using LRF policy. The data is requested
correspondently to the specific state.

The results of the first test are shown in Tables 3 and 4. The cache hit ratio for all the
test steps is 420/428 = 0.981.

Table 3 Performance results of the first test

Test description Time (ms)

1 Launch the Weather application 4087

2 Using the yellow button navigate to screen 2 2168

3 Using the arrows navigate to screen 3 1154

4 Using the arrows navigate to screen 4 2184

5 Using the arrows navigate to screen 3 47

6 Using the arrows navigate to screen 2 31

7 Using the arrows navigate to screen 3 31

8 Using the arrows navigate to screen 4 47

Table 4 Cache hit ratio of the first test

Test description Number of Requests Cache hit count

1 Launch the Weather application 4 0

2 Using the yellow button navigate to screen 2 4 2

3 Using the arrows navigate to screen3 5 4

4 Using the arrows navigate to screen 4 6 5

5 Using the arrows navigate to screen 3 5 5

6 Using the arrows navigate to screen 2 4 4

7 Perform steps 3,4,5,6 20 times 400 400

The second test uses only the operating system dynamic memory management system
calls. When a new screen is requested all previous screen data will be deleted using

 68 D. Livshits and Y. Wiseman

system free and a new memory space will be allocated with malloc(BestFit). The data
is requested correspondently to the state. The results of the second test are shown in
Tables 5 and 6. The cache hit ratio of all the test steps is 0/428 = 0.

Table 5 Performance results of the second test

Test description Time (ms)

1 Launch the Weather application 4134

2 Using the yellow button navigate to screen 2 4134

3 Using the arrows navigate to screen 3 5132

4 Using the arrows navigate to screen 4 7191

5 Using the arrows navigate to screen 3 5148

6 Using the arrows navigate to screen 2 4119

7 Using the arrows navigate to screen 3 5132

8 Using the arrows navigate to screen 4 7191

Table 6 Cache hit ratio of the first test

Test description Number of Requests Cache hit count

1 Launch the Weather application 4 0

2 Using the yellow button navigate to screen 2 4 0

3 Using the arrows navigate to screen 3 5 0

4 Using the arrows navigate to screen 4 6 0

5 Using the arrows navigate to screen 3 5 0

6 Using the arrows navigate to screen 2 4 0

7 Perform steps 3,4,5,6 20 times 400 0

Figure 7 compares cache hit ratio results for general OS memory management and
CBDMM. Certainly, a high-cache hit ratio affects the data request’s performance.
Figure 8 compares performance results in milliseconds for general OS data requests and
CBDMM.

Figure 7 Cache hit ratio graph (see online version for colours)

 The next generation GPS memory management 69

Figure 8 Performance graph (see online version for colours)

7 Conclusion

Memory management of navigation systems is typically done in the application level
(Crowley et al., 2000; Courbon et al., 2008). In this paper, we showed that moving
components of the memory management to the operating system can enhance the
performance of a conventional GPS. Particularly, as we showed the caching management
mechanism should be an element of the GPS’RTOS and not an element of the GPS
application. Benchmarking tests (Figures 7 and 8) explicitly demonstrate that the
CBDMM infrastructure obtains a higher cache hit ratio and as a result a significant
increase of data request’s performance. In addition, the manipulation of allocation
policies generates a better fragmentation of the heap. This flexibility will not be available
when using standard operating system memory management and data acquisition
mechanisms which are completely separated in an all-purpose operating system. In the
future, we consider adapting parallel approaches (Klein and Wiseman, 2003; Klein and
Wiseman, 2005) so as to make the suggested infrastructure suitable for parallel
processing.

References

Chadil, N., Russameesawang, A. and Keeratiwintakorn, P. (2008) ‘Real-time tracking management
system using GPS, GPRS and Google earth’, 5th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology,
pp.393–396.

Courbon, J., Mezouar, Y., Lequievre, L. and Eck, L. (2008) ‘Navigation of urban vehicle: an
efficient visual memory management for large scale environments’, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2008), Nice, France, pp.1817–1822.

Crowley, P., Jaugilas, J., Nash, A., Natesan, S. and Lampert, D.S. (2000) Memory Management for
Navigation System, US Patent 6,073,076.

Cyll, C. (2004) Cache Conscious Dynamic Memory Allocation, Consortium for Computing
Sciences in Colleges, pp.1–2.

Feng, L., Chu, L. and Zechang, S. (2009) ‘Intelligent vehicle simulation and debugging
environment based on physics engine’, Proceedings of International Asia Conference on
Informatics in Control, Automation and Robotics, CAR’09, Bangkok, pp.329–333.

Geva, M. and Wiseman, Y. (2007) ‘Distributed shared memory integration’, Proceedings IEEE
Conference on Information Reuse and Integration (IEEE IRI-2007), Las Vegas, Nevada,
pp.146–151.

 70 D. Livshits and Y. Wiseman

Grinberg, I. and Wiseman, Y. (2007) ‘Scalable parallel collision detection simulation’,
Proceedings Signal and Image Processing (SIP-2007), Honolulu, Hawaii, pp.380–385.

Hongyan, P., Hong, H. and Hengtian, J. (2010) ‘Drive design for ship GPS navigation equipment
based on Linux operating system’, International Conference on Educational and Network
Technology (ICENT), 25-27 June, pp.384–388.

Itshak, M. and Wiseman, Y. (2009) ‘AMSQM: adaptive multiple superpage queue management’,
International Journal of Information and Decision Sciences, Vol. 1, No. 3, pp.323–341.

Klein, S.T. and Wiseman, Y. (2003) ‘Parallel Huffman decoding with applications to JPEG files’,
The Computer Journal, Vol. 46, No. 5, pp.487–497.

Klein, S.T. and Wiseman, Y. (2005) ‘Parallel Lempel Ziv coding’, Journal of Discrete Applied
Mathematics, Vol. 146, No. 2, pp.180–191.

Labrosse, J.J. (2002) μC/OS-II: the Real-Time Kernel, CMP Books, London.

Laszlo, Z. (2005) ‘Memory allocation in VxWorks 6.0’, Wind River Systems, pp.2–3.

Meier, S.G. (2000) Dynamic Memory Allocation Suitable for Stride-based Prefetching, Advanced
Micro Devices, US Patent 6,295,594.

Nucleus (1999) Nucleus PLUS Reference Manual, Accelerated Technology, Inc., pp.39–52.

van Eijk, O. and Roeloffs, M. (2010) ‘Forensic acquisition and analysis of the random access
memory of TomTom GPS navigation systems’, Digital Investigation, Vol. 6, Nos. 3/4,
pp.179–188.

Wang, H-M., Gao, Y. and Yang, Y. (2009) ‘Design for testability of memory in gps baseband
chip’, Chinese Journal of Electron Devices, Vol. 2.

Wang, L., Yang, C. and Wang, X. (2006) ‘RTL-IO: an extension of RTLinux I/O’, 8th Real-Time
Linux Workshop, Lanzhou, Gansu, China.

Wiseman, Y. and Feitelson, D.G. (2003) ‘Paired gang scheduling’, IEEE Transactions on Parallel
and Distributed Systems, Vol. 14, No. 6, pp.581–592.

Wiseman, Y., Isaacson, J. and Lubovsky, E. (2008) ‘Eliminating the threat of kernel
stack overflows’, Proceedings IEEE Conference on Information Reuse and Integration
(IEEE IRI-2008), Las Vegas, Nevada, pp.116–121.

Wiseman, Y., Schwan, K. and Widener, P. (2004) ‘Efficient end to end data exchange using
configurable compression’, Proceedings of the 24th IEEE Conference on Distributed
Computing Systems (ICDCS 2004), Tokyo, Japan, pp.228–235.

Yodaiken, V. and Barabanov, M. (1997) ‘A real-time Linux’, Proceedings of the Linux
Applications Development and Deployment Conference, Anaheim, California.

Yong, W., Jing, Z. and Ping-bo, W. (2008) ‘Dynamics simulation model of double united
articulated container flat vehicle’, Journal of Traffic and Transportation Engineering, Vol. 1,
No. 3, pp.1–4.

