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Abstract: The next generation Global Positioning System (GPS) will have 
many new features. Also the infrastructure will be noticeably enhanced. This 
has directed us to consider a new dynamic memory management strategy for 
the next generation GPS. The distinctiveness of the suggested infrastructure is 
shifting elements of the GPS applications to the operating system with the 
objective of managing application data more efficiently. A key component of 
any GPS application is caching its data with the intention of preventing 
excessive memory accesses and allocations. The suggested infrastructure called 
‘Cache Based Dynamic Memory Management’ – CBDMM – aims at moving 
the caching component from the GPS application to the embedded operating 
system of the GPS. The paper introduces CBDMM design, discusses its 
advantages and shows several encouraging benchmarking results. 
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1 Introduction 

The use of Global Positioning System (GPS) turns out to be the standard of rent-a-car 
companies, taxis and actually it grows to be the standard of many conventional cars. The 
adoption of all-purpose Operating Systems like Linux for GPS devices is an up-and-
coming field (Hongyan et al., 2010). A GPS is an embedded and real-time device; 
therefore the management of its resource is done differently (Chadil et al., 2008). 
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Manufacturing of an intelligent vehicle with embedded computer systems can be very 
beneficial (Yong et al., 2008; Feng et al., 2009); however, an embedded/real-time 
environment adds additional constraints on the Operating System (OS), such as a lack of  
resources (memory, storage) and performance concerns. Most of the embedded devices 
do not have a permanent storage device like a hard disc. The reason is the high cost of the 
storage device or the necessary size that prevents the manufacturer from including the 
device in relatively small embedded systems. CPU that is used by an embedded device is 
usually much cheaper and as a result much slower than a regular PC CPU. In addition, 
there are predefined restrictions imposed on Real-Time Operating Systems (RTOS) such 
as a deterministic time response in most of RTOS possible service requests. In this 
environment memory management is always tensed between two main constraints: a lack 
of memory for dynamic allocations and a deterministic time response for a memory 
allocation request. The survey below shows that RTOSes are divided into two main 
categories: 

 RTOSes preferring deterministic memory allocations over a possible fragmentation. 

 RTOSes preferring a minimal fragmentation over deterministic memory allocations. 

Another important issue is the performance – allocation policy producing a minimal 
fragmentation can consume too much resources and CPU cycles. 

2 Related works 

The design and implementation of memory for GPS systems have been widely 
researched. Wang et al. (2009) suggest a built-in self-test technology that is used for 
embedded memory in GPS. van Eijk and Roeloffs (2010) used a Linux distribution for 
storing information that can be used to link time and position on any non-volatile media 
in navigation systems; however the caching scheme is not commonly studied and we 
would like to suggest a new scheme for the GPS caching system. 

The caching system is based on dynamic memory allocation. The following survey 
reviews the basic dynamic memory allocation methods of the most common RTOSes. 

 VxWorks (Laszlo, 2005): The memory management of VxWorks RTOS was 
replaced several times. The early versions of VxWorks implemented the first-fit 
allocation policy. Later versions of VxWorks implemented the best-fit allocation 
policy that according to some benchmarking causes less memory fragmentation and 
a better time response. 

 μC/OS-II (Labrosse, 2002): Each task creates a pool of memory partitions. Each 
partition is planned for block allocations of a specific size. When a task requests to 
allocate a specific size of blocks the allocation should be done from the planned 
partition. This fixed block size allocation scheme helps to avoid fragmentation, 
because available memory is typically small in embedded applications. Allocations 
and deallocations of these fixed-sized memory blocks are done in a constant time 
and thus deterministic. 

 Nucleus (Nucleus, 1999): The dynamic allocation is made out of the memory pool 
that is defined by the application. The dynamic allocation policy is a standard linear 
‘first-fit’. A block split mechanism will be applied if the first-fitted block is  



   

 

   

   
 

   

   

 

   

   60 D. Livshits and Y. Wiseman    
 

    
 
 

   

   
 

   

   

 

   

       
 

significantly larger than the requested size. An application can allocate any number 
of pools. Due to a possible external fragmentation, the first-fit-based block allocation 
process is not deterministic, but the deallocation is deterministic. 

 FreeRTOS (http://www.freertos.org): The memory allocation algorithm simply 
subdivides a single array into smaller blocks as a dynamic memory allocator does 
and uses the best-fit allocation policy. An allocation of a block is always 
deterministic, i.e. it always takes the same time to allocate a block). 

 RT-Linux (Yodaiken and Barabanov, 1997): The original version of RT-Linux did 
not provide any mechanism for dynamic memory allocation, because RT-Linux is 
non-deterministic, but later versions of RT-Linux 2.2 have some dynamic memory 
allocation facilities, which are based on predefined pools of blocks with fixed size 
(the size is configurable). The RT-Linux memory allocator searches for the most 
appropriate preallocated block with a size that is not bigger than twice of the 
requested size. If all the preallocated blocks are bigger than twice of the requested 
size, the big block splits into pieces sized as the requested block and the first piece is 
returned for this request. This approach is pretty fast and reliable but is not 
deterministic. Also this approach is not suitable for the stack (Wiseman et al. 2008). 
There was another try to implement dynamic memory management in RT-Linux 
based on the TLSF algorithm with worst case allocation complexity of O(1)  
(Wang et al., 2006).  

All the above methods have no cache mechanism for freed blocks. 

3 CBDMM 

It can be concluded from the above survey that usually RTOSes almost do not use virtual 
memory mechanism because its resource consumption is quite high and it requires a 
storage device that in most of the systems does not exist, and as a result there is no 
memory caching on memory management level. 

Even operating systems that implement a virtual memory approach have an internal 
cache logic that works on the memory pages level and manages application pages but 
does not involve in the application logic. The common concept is that the application 
logic is out of scope of OSes and particularly RTOSes. Figure 1 demonstrates the 
separation of application and RTOS. When an application reads data from any 
asynchronous read only source (IP, DVB Broadcast, DSM-CC carousels, etc.) dynamic 
memory allocation may be required. The application requires the data using a Data 
Acquisition Manager (DAM). In some system, the data cycle time is too long, so when 
some data is received, the application will try to save the currently unnecessary portions 
of data in the memory (if possible) for a later use, because most embedded systems do 
not have any storage device as mentioned before or the storage device is too slow and the 
overlapping suggested by Wiseman and Feitelson (2003) will not be suitable. When there 
is no more room in the RAM for additional allocations, the application will free the data, 
i.e. it is removed from memory until the next application access. It means that always  
when a new dynamic memory allocation fails, the application should release a data block 
which is part of some unused blocks list that the application needs to manage, and try to 
do the new allocation again. 
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Figure 1 Separation of applications and RTOS 

 

Another problem is that the data download manager is not aware of the application logic, 
so when an application requests some data, the application should translate its request 
into the download manager language that works on packets/module level. So even if  
the dynamic memory manager is able to cache the unnecessary application, the data 
download manager must be aware of this caching so it will not reread the data from the 
source. 

The main idea of the paper is adapting application logic to the dynamic memory 
management. Thus, application can choose/provide an allocation policy for its dynamic 
memory allocation and also choose/provide the caching mechanism for caching/releasing 
allocated memory blocks. The new proposed dynamic memory management preferably 
should be the part of the RTOS and not a part of the application. Besides, the proposed 
scheme suggests making use of some kind of data acquisition layers that will manage 
cached memory blocks upon an application data request. The acquisition manager is only 
a sample of how the proposed system can work. It shows in the best way the advantages 
of the new approach and can be either a part of the application or fully integrated entity 
in the OS. 

The following new components are defined: 
Data Acquisition Manager – is a client of the CBDMM and also an application client, 

the responsibilities of DAM are: 

 Receiving data requests from an application and translating it into download 
manager requests. 

 Managing application data requests with its statuses. When application decides to 
release the requested data it is done also using the DAM. In this case DAM marks 
the released data as cached and keeps it till the next allocation request. 

 DAM is responsible for the dynamic memory allocations required for the data 
download, here DAM interacts with CBDMM. 

 DAM serves as repository for all downloaded data. 
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Cache-Based Dynamic Memory Manager (CBDMM) – At each memory allocation 
request the CBDMM receives from DAM several figures: the list of required allocations, 
allocation policy, application callback, cache block list and cache policy application 
callback. After allocation transaction is succeeded, CBDMM will return to DAM the 
status of the cache list. Allocations and cache policies are managed by the application. 

Figure 1 demonstrates this model. 
How does it actually work? 

 The Application requires the data from DAM using a predefined protocol or a wild 
card/regular expression mechanism. For example download file with name 
‘account_info.xml’ from the remote server using tcp/ip protocol. 

 If the data is already loaded (in cache), DAM takes it from the cache and returns the 
requested data immediately (in synchronous way), otherwise builds new download 
request. Sequence diagrams in Figures 2–4 describe these cases. 

 New download request contains the following steps:  

o Allocation of the new memory blocks for the request – Here DAM is 
responsible to notify CBDMM about all unused (cached) by application memory 
blocks that CBDMM can free in case of need, so during the dynamic memory 
allocation request DAM passes the list of all cached memory blocks to the 
CBDMM and waits for result. 

o After memory allocation transaction is succeeded DAM updates its cache list 
(some of the cached modules could be freed during new allocation request) and 
sends request to the download manager to download requested content into 
preallocated memory. 

 DAM waits until all data’s modules/parts are loaded and notifies the application that 
download transactions are done. 

 If the application frees the data, DAM will keep it in the cache. Figure 4 shows the 
sequence diagram for this use case. 

The CBDMM system includes two sub-systems: 

 MM – Subsystem for memory allocation. Implements a number of allocation 
policies that application can choose from and/or uses allocation policies provided by 
an application. 

 MC – Subsystem for caching the memory blocks. The cache policy is implemented 
by CBDMM client (DAM, Application) and can be chosen by an application  

Both subsystems, together with the API user system, provide the following functionality: 

 Efficient memory allocation – reducing the likelihood of memory fragmentation, by 
increasing the number of modules resident in the memory (MM). 

 Efficient module acquisition – reducing the time required to fetch a module by 
caching redundant modules in memory when possible (MC). 

Both MM and MC should reduce the module request time by reusing the cached 
modules. MC is effective only when the CBDMM user is aware of the need to release 
unused modules as soon as possible. If the allocation function cannot allocate the 
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memory that is required, it will begin to release cached modules. In order to prevent an 
arbitrary release of cache modules (or when there is a higher probability that certain 
cached modules will be in use in the future than others), each cached module contains 
special cache data that defines the rank of the module with regard to release. Modules 
will be released according to their rank, in low to high order. 

Figure 2 The data request in case the data is not cache 

 

Figure 3 The data request in case the data is in cache 
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Figure 4 The way application frees downloaded document. DAM continues to keep it in the 
RAM just marked it as cache 

 

In order to determine which module has the lowest rank, the CBDMM queries the cache 
policy and, according to the module’s rank, releases the module. If releasing some non-
required modules does not assist in providing the required space for the new module 
allocation, the release process will continue until all cache modules are released.  
If sufficient space is not freed the allocation transaction will roll back (i.e. will be 
cancelled). If sufficient space is freed, the module will be allocated and the next 
allocation transaction begins. Figure 5 demonstrates this flow.  

Figure 5 Block diagram for allocation transaction 
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4 Benefits 

The benefits of the proposed model are obvious: applications have accessibility to their 
data in a maximal optimised way, because all the allocation policies and the cache 
policies are provided/can be choosen by the application that can predict the memory  
map better. This way the application can optimise the data accessibility. It should be 
noted that this approach can be combined with predictive cache mechanism, but  
this is out of scope of this proposal. Both DAM and CBDMM can be either a part  
of RTOS/Middleware (Wiseman et al., 2004) (preferable) or fully integrated into the 
application. 

The survey above shows that nowadays there is no RTOS that has a cache 
mechanism for the dynamically allocated block scheme. In addition, the allocation 
policies that are used by RTOSes are not changeable or configurable by the application. 
So applications cannot be tuned to produce the minimal external fragmentation. In our 
suggested system if an application runs on different platforms, the tuning process can be 
done only once.  

Some other interesting approaches have been developed during the years (e.g. Meier, 
2000; Cyll, 2004), where a particular cache mechanism is applied to the memory block 
size level, without any relation to the data that the memory block contains. These 
approaches try to use some heuristics to find which block size is more frequently used. 
The disadvantage of these approaches versus CBDMM proposal is that the cached data of 
the cache blocks is usually irrelevant for further allocation requests and as a result new 
download request is required even in case the returned cached block already contains the 
requested data. In this case, only time for memory allocation is saved and not time for 
downloading the data. 

5 Possible disadvantages 

The main disadvantage of this proposal is the overhead. According to this proposal the 
application can manage the memory allocation policy, so if the policy is not implemented 
by the RTOS, it should be implemented by the application itself. It can be less reliable 
than an OS implementation and may not meet performance requirements. The same 
relates to the cache policy which is also might be implemented either by an application or 
by DAM, but managing the cache block list still remains in DAM that can be part of an 
OS like (Itshak and Wiseman, 2009) that handles page lists in the OS. 

Another issue is the concept of application and OS logic separation. CBDMM breaks 
the border between the OS and the application and passes some OS logic to the 
application. Hopefully this feature will not place problems like an application which tries 
to handle some OS functionality that actually cannot be passed to the application even 
theoretically. 

6 Evaluation 

The benchmarking of system is based on some web browser like applications that have 
multiple presentation pages and links. Each page requires downloading a data. Page 
presentation (on the screen) time will be a benchmarking parameter. The benchmarking 
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has been made on a GPS, but even a PC simulation could be enough. The simulation 
compares application performance based on the original RTOS and the RTOS with the 
described DAM/CBDMM model. 

Some servers broadcast the data using IP multicast. Data is broadcast with some 
predefined cycle time (depends on type of data and target application). There are handy 
embedded devices that receive data using a WIFI receiver and process it by certain 
applications. This function is fully portable (Geva and Wiseman, 2007; Grinberg and 
Wiseman, 2007). The device does not have any internal storage unit and a browser 
application can consume only 512 k RAM for its internal needs. 

On the device site there is a browser using ‘Weather forecast’ application which has 
to present four different screens with the forecast information. Each screen will be 
presented when the application enters a proper state. There are four equivalent states for 
four screens. Figure 6 shows the acceptable state switch. 

Figure 6 Application status 

 

Each state requires a data for presentation. Table 1 shows the dependency between state 
and data modules. 

Table 1 Dependency between state and data modules 

State Data modules 

1 resources.mod presentation_1.mod text.mod ads.mod 

2 resources.mod presentation_2.mod metadata_2.mod text.mod 

3 resources.mod presentation_3.mod metadata_2.mod text.mod presentation_2.mod 

4 resources.mod presentation_3.mod metadata_2.mod text.mod presentation_2.mod ads.mod 

Table 2 defines data modules cycle time. 
Application Test Plan (ATP) is a document that provides QC team the rules for 

testing the application. There is a test from the ‘Weather Forecast Application’. The ATP 
that has been used for benchmarking is ‘Weather Forecast Application’ PC simulator 
based on CBDMM. 
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Table 2 Data modules cycle time 

Module name Cycle Time (ms) Size (bytes) 

resources.mod 1000 128,000 

presentation_1.mod 1000 128,000 

text.mod 1000 25,000 

ads.mod 1000 35,000 

presentation_2.mod 1000 130,000 

metadata_2.mod 1000 100,000 

presentation_3.mod 1000 30,000 

The first test uses CBDMM approach and an OS simulator which implements the test. 
The OS has been configured to use WorstFit allocation policy and LRF cache policy. 
When a new screen is requested all previous screen modules are moved to the cache list 
automatically and released (if required) using LRF policy. The data is requested 
correspondently to the specific state. 

The results of the first test are shown in Tables 3 and 4. The cache hit ratio for all the 
test steps is 420/428 = 0.981. 

Table 3 Performance results of the first test 

# Test description Time (ms) 

1 Launch the Weather application 4087 

2 Using the yellow button navigate to screen 2 2168 

3 Using the arrows navigate to screen 3 1154 

4 Using the arrows navigate to screen 4 2184 

5 Using the arrows navigate to screen 3 47 

6 Using the arrows navigate to screen 2 31 

7 Using the arrows navigate to screen 3 31 

8 Using the arrows navigate to screen 4 47 

Table 4 Cache hit ratio of the first test 

# Test description Number of Requests Cache hit count 

1 Launch the Weather application 4 0 

2 Using the yellow button navigate to screen 2 4 2 

3 Using the arrows navigate to screen3 5 4 

4 Using the arrows navigate to screen 4 6 5 

5 Using the arrows navigate to screen 3 5 5 

6 Using the arrows navigate to screen 2 4 4 

7 Perform steps 3,4,5,6 20 times 400 400 

The second test uses only the operating system dynamic memory management system 
calls. When a new screen is requested all previous screen data will be deleted using  
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system free and a new memory space will be allocated with malloc(BestFit). The data  
is requested correspondently to the state. The results of the second test are shown in 
Tables 5 and 6. The cache hit ratio of all the test steps is 0/428 = 0. 

Table 5 Performance results of the second test 

# Test description Time (ms) 

1 Launch the Weather application 4134 

2 Using the yellow button navigate to screen 2 4134 

3 Using the arrows navigate to screen 3 5132 

4 Using the arrows navigate to screen 4 7191 

5 Using the arrows navigate to screen 3 5148 

6 Using the arrows navigate to screen 2 4119 

7 Using the arrows navigate to screen 3 5132 

8 Using the arrows navigate to screen 4 7191 

Table 6 Cache hit ratio of the first test 

# Test description Number of Requests Cache hit count 

1 Launch the Weather application 4 0 

2 Using the yellow button navigate to screen 2 4 0 

3 Using the arrows navigate to screen 3 5 0 

4 Using the arrows navigate to screen 4 6 0 

5 Using the arrows navigate to screen 3 5 0 

6 Using the arrows navigate to screen 2 4 0 

7 Perform steps 3,4,5,6 20 times 400 0 

Figure 7 compares cache hit ratio results for general OS memory management and 
CBDMM. Certainly, a high-cache hit ratio affects the data request’s performance.  
Figure 8 compares performance results in milliseconds for general OS data requests and 
CBDMM. 

Figure 7 Cache hit ratio graph (see online version for colours) 
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Figure 8 Performance graph (see online version for colours) 

 

7 Conclusion 

Memory management of navigation systems is typically done in the application level 
(Crowley et al., 2000; Courbon et al., 2008). In this paper, we showed that moving 
components of the memory management to the operating system can enhance the 
performance of a conventional GPS. Particularly, as we showed the caching management 
mechanism should be an element of the GPS’RTOS and not an element of the GPS 
application. Benchmarking tests (Figures 7 and 8) explicitly demonstrate that the 
CBDMM infrastructure obtains a higher cache hit ratio and as a result a significant 
increase of data request’s performance. In addition, the manipulation of allocation 
policies generates a better fragmentation of the heap. This flexibility will not be available 
when using standard operating system memory management and data acquisition 
mechanisms which are completely separated in an all-purpose operating system. In the 
future, we consider adapting parallel approaches (Klein and Wiseman, 2003; Klein and 
Wiseman, 2005) so as to make the suggested infrastructure suitable for parallel 
processing. 
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