

 Int. J. Information and Decision Sciences, Vol. 1, No. 3, 2009 323

 Copyright © 2009 Inderscience Enterprises Ltd.

AMSQM: adaptive multiple super-page queue
management

Moshe Itshak and Yair Wiseman*
Department of Computer Science,
Bar-Ilan University,
Ramat Gan 52900, Israel
E-mail: izmo@cs.biu.ac.il
E-mail: wiseman@cs.huji.ac.il
*Corresponding author

Abstract: Super-pages have been wandering around for more than a decade.
There are some particular operating systems that support super-paging and
there are some recent research papers that show interesting ideas about how to
intelligently integrate them. However, nowadays operating system’s page
replacement mechanism still uses the old CLOCK algorithm which gives the
same priority to small and large pages. In this paper, we show a technique that
enhances the page replacement mechanism to an algorithm based on more
parameters and is suitable for a super-paging environment.

Keywords: virtual memory; super-paging; page replacement algorithms; page
fault ratio.

Reference to this paper should be made as follows: Itshak, M. and
Wiseman, Y. (2009) ‘AMSQM: adaptive multiple super-page queue
management’, Int. J. Information and Decision Sciences, Vol. 1, No. 3,
pp.323–341.

Biographical notes: Moshe Itshak got his MSc from Bar-Ilan University. He is
a Memory Management Expert. Currently, he is with Radware.

Yair Wiseman got his PhD from Bar-Ilan University and did two Post-Doc –
one at the Hebrew University of Jerusalem and one in Georgia Institute of
Technology. Currently, he is with the Computer Science Department of Bar-
Ilan University. His research interests are process scheduling, hardware-
software codesign, memory management, asymmetric operating systems and
computer clusters.

1 Introduction

Super-pages are an enhancement for the well-known paging concept. Super-pages are
larger pages that are pointed to by the TLB (Khalidi et al., 1993). The internal memory of
modern computers has been significantly increased during the last decades. However, the
TLB coverage (i.e. the size of the memory that can be pointed to directly by the TLB) has
been increased by a much lower factor during the same period (Navarro, 2004).
Therefore, several new architectures like Itanium, MIPS R4x00, Alpha, SPARC and HP
PA RISC support multiple page size of the frames pointed to by the TLB. In that way the

 324 M. Itshak and Y. Wiseman

memory size pointed to directly by the TLB is higher and the overhead of the page table
access time is reduced. There are also some particular operating systems that support
super-paging, for example, Ganapathy and Schimmel (1998) and Subramanian et al.
(1998).

Multimedia applications typically have large portions of memory that are clustered in
few areas. Such applications can benefit super-paging enormously (Abouaissa et al.,
1999). Also, nowadays computers usually have large memories (Geppert, 2003; Wallace
et al., 2006); hence, larger pages can be used; however using larger pages can apparently
cause a higher page fault rate. This is a well-known flaw of the super-paging mechanism;
however the algorithm suggested in this paper does not suffer from this flaw and even
utilises the usual behaviour of the paging mechanism to reduce the page fault rate. The
algorithm actually makes use of the locality principle to pre-fetch base-pages that are a
part of heavy used super-pages and the results show that this pre-fetching makes the
memory hit percents better.

We also aim at developing a good technique that finds the best page to be taken out
when the page fault mechanism requires this in a super-paging environment based on all
the available parameters. The locality principle that the Super-paging environment
induces will help the operating system to select the “victim” page better. This selection
will be better because if page’s neighbors are accessed, this can imply that the page itself
might be accessed as well and it may not be a good choice to swap the page out as the
common base-page algorithms would have done.

The dilemma of which page should be taken out also occurs in higher levels as well,
that is, What should be in the cache and what should be pointed by the TLB. Our
algorithm can also be a good alternative for CLOCK in these decisions.

2 Page replacement algorithms

Over the years many replacement algorithms have been published, for example, O'Neil
et al. (1993), Johnson and Shasha (1994), Lee et al. (2001), Kim et al. (2000), Jiang and
Zhang (2002), Smaragdakis et al. (2003), Zhou et al. (2004) and Wiseman (2005);
however, over the last decades, CLOCK (Corbato, 1968) has been dominated by page
replacement algorithms.

2.1 CLOCK

The CLOCK algorithm looks at the memory pages as a circular linked list and moves
around the pages like a clock hand. Each page is associated with a reference bit. This bit
is set to 1 when the page is referenced. When a page fault occurs, the page which is
pointed by the hand is checked. If its reference bit is unset, it will be swap out; otherwise,
its reference bit is unset and the hand moves to the subsequent page. Research and
experiences have shown that CLOCK is a close approximation of LRU and thus suffers
from the same problems of LRU. Nevertheless, CLOCK is still dominating the vast
majority of OS including UNIX, Linux and Windows (Friedman, 1999).

Some variant of CLOCK have been suggested over the years. GCLOCK (Corbato,
1968) was published at 1992 as an expansion to CLOCK. This algorithm contains a
counter to each page (instead of a reference bit), which is increased in each reference.
The clock’s hand checks the pages and decrements their counter value, until it finds a

 AMSQM: adaptive multiple super-page queue management 325

page with a zero value. This page is swapped out. Unlike CLOCK, GCLOCK is taking
into account the frequency, thus achieves better performance.

CLOCK-Pro (Jiang et al., 2005) counts for each page the number of other distinct
pages accesses since its last access. This number is called ‘reuse distance’ and a page
with a larger ‘reuse distance’ will be considered as a colder page and will be swap out
before a page with a smaller ‘reuse distance’.

2.2 ARC

In the above section, we focused on the CLOCK, because CLOCK dominates the
operating systems market; however, some other methods seem to suffer from two acute
problems:

1 the need for parameters tuning (e.g. 2Q (Johnson and Shasha, 1994) and LRFU
(Lee et al., 2001))

2 non-constant complexity (e.g. LRU-K (O'Neil et al., 1993), LRFU (Lee et al., 2001),
CLOCK and GCLOCK (Corbato, 1968)).

CLOCK also has a non-constant complexity, so we prefer to adapt more modern
algorithm to the super-paging environment. Recently, Megiddo and Modha proposed a
new ‘online’ tunable algorithm called adaptive replacement cache (ARC) (Megiddo and
Modha, 2003a,b, 2004). The unique capability of this algorithm is its ability to adapt
itself ‘online’ according to the systems properties, for example, from the stack depth
distribution (SDD) model to the independence reference model (IRM) and vice versa.

The main concept of ARC is having two lists of active pages (one for the frequently
used pages and other one for the most recent pages) and to endow the list that is
performing the best with a larger memory space. The two lists that ARC maintains are
variably sized lists called L1 and L2. L1 contains the pages that have been accessed only
once and L2 contains the pages that have been accessed twice or more. The algorithm
always holds that 0 L1 + L2 2C, where C is the number of pages in the memory. L1
consists of two buffers – T1 which consists of the most recent pages in the memory and
B1 which consists of the history of the most recent pages that were in the memory.
Similarly, L2 is partitioned into T2 and B2. In addition p which always holds p c, is the
automatic adaptive parameter of the algorithm which sets the target size for T1.

The algorithm in a simplify version is for any page request:

If the requested page is in T1 or in T2:

o Move the page to the MRU of T2.

If the requested page is in B1:

o If |B1| |B2|

1 = 1

o Else

1 = |B2| / |B1|

o P = Min(P + 1, C)

o Move the page from B1 to be the LRU of T2 (swap out page according to P).

 326 M. Itshak and Y. Wiseman

If the requested page is in B2:

o If |B2| |B1|

2 = 1

o Else

2 = |B1| / |B2|

o P = Max(P 2, 0)

Move the page from B2 to be the LRU of T2 (swap out page according to P).

If the requested page is not in T1 T2 B1 B2:

o Move the new page to be the MRU of T1 (swap out page according to P).

As we mentioned above, CLOCK can move its clock hand over many pages, until a page
with an unset bit is found. Unlike CLOCK, ARC has a constant complexity – O(1). In
addition, ARC is tunable, that is, ARC can adapt itself according to the characteristics of
the data that the processes use. These are reasons why we chose to adapt ARC to the
super-paging mechanism.

3 AMSQM

We used ARC to develop a new algorithm – adaptive multiple super-pages queues
management (AMSQM) (Itshak and Wiseman, 2008) which is an expansion of the ARC
algorithm that supports super-paging. AMSQM algorithm has two levels – the high level
manages the different super-page queues (sizes and allocations); whereas the low level is
the internal management of each super-page’s queue. In addition, there is a special buffer
for each super-page size that collects fractions of bigger super-pages. The purpose of
these buffers is giving the demoted super-pages a chance to get a better priority if they
are hot pages.

The suggested algorithm uses a reservation-based scheme, in which region is reserved
for a super-page at the page fault time and the promotion is done when the number of the
super-page’s populated base-pages gets to a promotion threshold. Since we would like a
partially populated super-page to have the opportunity of being promoted, the decision
for pre-empting reservation of a super-page candidate or swapping out its base-pages is
taken based on the super-page ‘recency’ in the page lists and not based on the number of
currently resident base-pages that the super-page consists of. Actually, this is a known
technique of information filtering in order to achieve a better decision (Wang, 2008).

Hardware maintains only a single reference bit; thus it is difficult to decide whether
all (or at least most) of the base-pages that the super-page consists of are actually in use.
Sometimes, only a small percentage of the base-pages should be in the memory.
Therefore, AMSQM manages several queues for each super-page size, preventing from
cold super-pages to be retained in the cache occupying the space of some potential hotter
smaller super-pages or base-pages.

 AMSQM: adaptive multiple super-page queue management 327

Finally, in order to wisely balance the different queues length, the algorithm counts
the number of times that each page has been referenced and checks the relative ‘recency’
of each super-page’s queue.

Similarly to ARC, AMSQM has B and T lists, but AMSQM has T and B list for each
super-page size that is denoted as 1

i
T , 2

iT , 1
iB and 2

iB where i is the super-page size.
Therefore, the pseudo-code should be briefly:

find the super-page that contains the requested page

if the page is in 1
iT or 2

iT , the size of lists is good and no need to change it

if the page is in 1
iB , the size of 1

iL should be increased

if the page is in 2,iB the size of 2
iL should be increased

if the page is not in the memory, the size of lists is good and no need to change it.

The detailed AMSQM algorithm in pseudo-code is written herein below:
Let us define:

C: the memory size

ci: physical size of the super (and base) pages buffers. c i C

si: target size of each buffer

Qi: queue (FCFS) that saves demoted super-pages (or base-pages), which are a fraction of
bigger super-pages

1
iT : the most recent pages in the memory of every super (or base) page, which were

accessed only once.

1
iB : the most recent pages in the history of every super (or base) page, which were

accessed only once.

2
iT : the most recent pages in the memory of every super (or base) page, which were

accessed more than once.

2
iB : the most recent pages in the history of every super (or base-page), which were

accessed more than once.

Pi: tunable parameter – the recommended size of 1 .iT

sizei: super-page size in base-pages.

boundi = ·sizei / size1

count(x): the number of times that super-page x was referenced.

ranki: determines which queue removes an entry. ranki = difi + (1) reci, where difi is
the difference between si and ci; that is, max(0, sizei·(ci si)) and reci is the relative
recency of the LRU of super-page i among the LRU of the other super-pages.

 328 M. Itshak and Y. Wiseman

threshold: threshold for promoting a partially occupied (candidate) super-page to a fully
occupied super-page.

SP(xj): the super-page which the base-page xj belongs to. xj = SP(xj) iff xj does not belong
to any super-page (a solitary base-page).

(x): the number of occupied base-pages in super-page x.

, , : parameters that should be set according to the data characteristic; where 0 1,
 1 and 0 ½.
The algorithm AMSQM is:

AMSQM(c, stream of base-pages requests: x1,x2, , xn)

c1 = c2 = = ck = 0

For each xj

o Call HandleSuperPage(xj, |SP(xj)|)

o If (SP(xj)) threshold·size|SP(xj)|

Promote SP(xj)

If the access type is ‘write’, recursively demote SP(xj) to clean base/super-pages
and move them to the suitable Q lists.

HandleSuperPage(xj,i)

If SP(xj) is in 1 ,iT

o If xj is valid

Move SP(xj) to be the MRU of 2
iT

o Else

Fetch xj to the cache

Move SP(xj) to be the MRU of 1
iT

o If (count(SP(xj)) = boundi)

count(SP(xj)) = · boundi

o Else

count(SP(xj)) = count(SP(xj)) + 1

If SP(xj) is in 2
iT or Qi

o If xj is invalid

Fetch xj to the cache.

o Move SP(xj) to be the MRU of 2
iT

o count(SP(xj)) = count(SP(xj)) + 1

 AMSQM: adaptive multiple super-page queue management 329

If SP(xj) is in 1
iB

o If the size of 1
iB is at least the size of 2

iB

 = 1

o Else

 = | 2
iB | / | 1

iB |

o Pi = min(Pi + , ci)

o Call Release (xj, i)

o Fetch xj to the cache

o Move SP(xj) to be the MRU of 2
iT

o count(SP(xj)) = count(SP(xj)) + 1

If SP(xj) is in 2
iB

o If the size of 2
iB is at least the size of 1

iB

 = 1

o Else

 = | 1
iB | / | 2

iB |

o Pi = max(Pi ,0)

o If count(SP(xj)) 2· ·boundi

Call Release (xj,i)

Fetch xj to the cache.

Move SP(xj) to be the MRU of 2
iT

o If count(SP(xj)) > 2· ·boundi

If 0 C ci < sizei

Call IncreaseBuffer (xj,i)

If we could not allocate a continuous space of sizei

Call Release (xj,i)

Else

Call Allocate (xj,i)

 330 M. Itshak and Y. Wiseman

Count(xj) = boundi

si = si + 1

If SP(xj) is not in 1 ,iT 2 ,iT 1
iB or 2

iB

o If (i > 1) and (SP(xj) has ever been in lists 1
iB or 2

iB)

Call Demote (xj,i)

o Else

If 0 C ci < sizei

If (|Qi| + | 1
iT | + | 1

iB | = ci)

o If (|Qi| + | 1
iT | < ci)

Remove the LRU of 1
iB

Call Release (xj,i)

o Else

Remove the LRU among Qi and 1 .iT

Else

o If (|Qi| + | 1
iT | + | 1

iB | + | 2
iT | + | 2

iB | > ci)

If (|Qi| + | 1
iT | + | 1

iB | + | 2
iT | + | 2

iB | = 2 ci)

Remove the LRU of 2
iB

Call Release (xj, i)

Fetch xj to the cache.

Move SP(xj) to be the MRU of 1
iT

Else

Call Allocate (xj, i)

IncreaseBuffer (xj, i)

Do until sizei base-pages are released:

o r = max ranki

o Remove LRU among 1 ,rT 2
rT and Qr

o cr = cr 1

o If (cr < sr)

sr = sr 1

Call Allocate (xj, i)

 AMSQM: adaptive multiple super-page queue management 331

Release (xj, i)

If ((| 1
iT | > Pi) or (| 1

iT | = Pi and xj is in 2
iB)

o Take the LRU page between the LRU of 1
iT and the LRU of Qi and put it as

the MRU of 1
iB

Else

o Take the LRU page between the LRU of 2
iT and the LRU of Qi and put it as

the MRU of 2
iB

Allocate (xn, i)

If there is a contiguous empty space of sizei in the cache

o Fetch xj to the cache

o Move SP(xj) to be the MRU of 2
iT

o ci = ci + 1

Demote (xn, i)

Cancel SP(xj)

If(i > 1)

o Dsize = sizei 1

Else

o Dsize = 1

free = The biggest available continuous empty space of maximum Dsize.

if (free > 0)

o Create super-page jx of size free which must contain xj

o Move jx to the MRU of Qfree.

Else

Call Release(xj, 1)

Fetch xj to the cache

move xj to the MRU of Q1.

 332 M. Itshak and Y. Wiseman

4 Results

4.1 Testbed

We implemented the standard CLOCK algorithm, the ARC algorithm and the AMSQM
algorithm. We used Valgrind (Nethercote and Seward, 2007) to capture the pages that
were used by some of the SPEC – cpu2000 (SPEC, 2000). The SPEC manual explicitly
notes that attempting to run the suite with less than 256 MB of memory will cause a
measuring of the paging system speed instead of the CPU speed. This suits us well,
because our aim is to measure the paging system speed precisely; hence, we simulated a
machine with just 128 MB of RAM, although it is obviously a very small memory.

The sizes of the super-pages that we used were 8, 16, 32, 64, 128 and 256 kB. We
assumed a tagged TLB of 32 entries for instructions and 64 entries for data.

Both AMSQM and ARC outperform CLOCK by all the parameters in our simulation,
so we found no point in presenting the results of CLOCK; therefore, the results presented
here are only the ratio between strict ARC and AMSQM.

Let us define:
n: number of memory requests by the benchmark.
p: number of pages that the benchmark accesses.
tmARC: number of TLB misses when ARC is the replacement algorithm.
tmAMSQM: number of TLB misses when AMSQM is the replacement algorithm.
pfARC: number of the benchmark’s page faults when ARC is the replacement algorithm.
pfAMSQM: number of the benchmark’s page faults when AMSQM is the replacement
algorithm.

AMSQM

ARC

tm
tm_ratio 1

tm
p

AMSQM

ARC

pf
pf_ratio = 1

pf
p

p

The TLB misses are shown as the ratio between the TLB misses that AMSQM produces
and the TLB misses that ARC produces. When a page is accessed at the first time, any
algorithm will have to induce a TLB miss and obviously there is no way to eliminate this
TLB miss, so we calculated only the TLB misses of the pages just from the second time
they are accessed. The page faults are also shown as the ratio between the page faults that
AMSQM produces and the page faults that ARC produces counting for each page only
the second and further accesses.

tm_ratio and pf_ratio are the values that represent the calculation of the TLB miss
ratio and the page fault ratio, respectively.

4.2 SPEC-2000 results

Figures 1 and 2 show the extra overhead of ARC over AMSQM. Figure 1 shows the
tm_ratio of several selected SPEC2000 benchmarks whereas Figure 2 shows the pf_ratio
of the same SPEC2000 benchmarks. It can be clearly seen in Figure 1 that AMSQM
achieves a higher TLB ratio because of the super-pages usage.

 AMSQM: adaptive multiple super-page queue management 333

Figure 1 The TLB miss reduction of AMSQM

Figure 2 The page fault reduction of AMSQM

Furthermore, AMSQM memory hit ratio is also higher than ARC memory hit ratio in
most of the benchmarks as can be noticed in Figure 2. The improvement of the memory
hit ratio is because AMSQM takes advantage of the locality principle as it is mentioned
above in the introduction section. The other SPEC benchmarks show similar results, so
we do not include these benchmarks in this paper.

4.3 Setting the threshold
Figures 3 and 4 show the influence of threshold on the system performance. Too high
threshold harms the TLB hit ratio, whereas too low threshold harms the page fault ratio;
hence, it can be concluded from Figures 3 and 4 that the best balance of the TLB ratio
requirements and the page faults requirements is setting threshold to 0.5. On one hand
choosing a threshold less than 0.5 will yield a good TLB miss ratio, but on the other hand
choosing a threshold more than 0.5 will yield a good page fault ratio. Setting threshold to
exactly 0.5 will produce a reasonable result for both the TLB ratio and the page fault
ratio.

 334 M. Itshak and Y. Wiseman

Figure 3 Influence of threshold on TLB misses

Figure 4 Influence of threshold on page faults

We also tested the running of both of the algorithms using the subroutine “clock()” in
“time.h” of GNU C compiler. We found the results are quite similar, so we do not include
these results in this paper as well.

4.4 Setting
According to the experiments, we found that AMSQM gives the best results if its
parameters are set to the following values:

 = 0.5
 = 4
 = 0.25.

 AMSQM: adaptive multiple super-page queue management 335

Figures 5 and 6 show the effect of different values on the TLB miss ratio and the
number of page faults. It can be clearly concluded from these figures that setting to 4
gives the best performance in terms of TLB hit ratio and the number of page faults. It can
be noticed as well that setting with low values or alternatively with big values causes a
poorer performance of the algorithm. Similar tests were taken to determine the best value
of and . The conclusion was that the best value for is 0.5 and the best value for is
0.25.

Figure 5 The influence of on TLB miss ratio

Figure 6 The influence of on page faults

 336 M. Itshak and Y. Wiseman

4.5 Heavy memory consuming benchmarks

As we have mentioned above, during last years, the TLB size has been increased slowly
when comparing to the memory increasing rate; hence the TLB coverage has been
dramatically reduced. We find it very commonsensical to assume that in the coming years
the ratio between the memory size and the TLB size will be even smaller than the current
ratio.

It is very uncommon to publish nowadays a new memory management technique or
system that is not tested by a heavy workload benchmarking system (Hristea et al., 1997),
because the future anticipates a significant increase in the memory usage of the
applications; hence we also checked the heavy memory workload scenario.

With the aim of simulated this scenario, we modelled a machine with a TLB coverage
that is even smaller than the one we have simulated above. For this purpose, we
simulated a machine with 512 MB of RAM and a tagged TLB consists of 32 entries for
instructions and 64 entries for data.

Consequently, we had to create new benchmarks that will request for many pages that
a machine with 512 MB of RAM cannot handle without causing a thrashing. With the
purpose of overloading the memory, we have chosen the heaviest memory consuming
benchmarks among the SPEC-CPU2000 benchmarks. The applications which were
selected are: apsi, crafty, bzip2 and gzip.

The new traces were created by executing instances of these applications in parallel
and merging them into one trace by using the timestamps which we have added to each
memory access.

The benchmarks which we have built are defined herein below:

Trace 1: composed of four instances of the application bzip2 executed in parallel.

Trace 2: composed of four instances of the application gzip executed in parallel.

Trace 3: composed of four instances of the application apsi executed in parallel.

Trace 4: composed of four instances of the application crafty executed in parallel.

Trace 5: composed of two instances of the application bzip2 and two instances of the
application gzip, executed in parallel.

Trace 6: composed of two instances of the application bzip2 and two instances of the
application apsi, executed in parallel.

Trace 7: composed of two instances of the application bzip2 and two instances of the
application crafty, executed in parallel.

Trace 8: composed of two instances of the application gzip and two instances of the
application apsi, executed in parallel.

Trace 9: composed of two instances of the application crafty and two instances of the
application apsi, executed in parallel.

Trace 10: composed of two instances of the application gzip and two instances of the
application crafty, executed in parallel.

Trace 11: composed of the instances of apsi, crafty, bzip2 and gzip, executed in
parallel.

 AMSQM: adaptive multiple super-page queue management 337

Figure 7(a)and (b) shows the TLB miss ratio of AMSQM versus ARC. It can be easily
seen that AMSQM TLB misses are significantly fewer than ARC TLB misses. It can be
noticed that trace 2 achieves a higher TLB hit ratio comparing to strict gzip. This can be
explained as a result of the TLB coverage in this experiment which is significantly
smaller than the TLB coverage in the previous experiment; thus a base-page replacing
algorithm such as ARC will experience enormous number of TLB misses, whereas an
algorithm such as AMSQM that utilises wisely the super-paging mechanism will gain a
higher TLB coverage and hence will produce relatively less TLB misses comparing to
ARC. The significant improvement in the TLB ratio of AMSQM comparing to ARC can
be similarly explained in the other traces.

Figure 7 (a) First group of heavy traces TLB misses and (b) second group of heavy traces
TLB misses

 338 M. Itshak and Y. Wiseman

Figure 8(a)and (b) shows the page faults of AMSQM versus ARC. It can be clearly seen
that AMSQM achieves a higher memory hit ratio in all the benchmarks because of a good
utilisation of super-pages and based on the locality principle. However, the improvements
vary from 0.2% for trace 4 up to 10.4% for trace 1. We found out that ARC performs
efficiently in trace 4 (and trace 3), that is, does not produce many page faults because
there is enough space in the main memory, and therefore AMSQM’s improvement is
relatively small.

Figure 8 (a) First group of heavy traces page faults and (b) second group of heavy traces
page faults

 AMSQM: adaptive multiple super-page queue management 339

Yet, we found it very encouraging that for an extreme heavy memory consumer
benchmarks (such as: trace 1, trace 2, traces 5–7, trace 8 and trace 11), AMSQM achieves
a notably higher memory hit ratio, since contemporary applications require a big portion
of the memory and reducing the number of the page faults in such applications can
significantly improve the overall performance.

5 Conclusions and future work

The new adaptive super-page replacement algorithm AMSQM has been presented. We
have shown that AMSQM usually achieves a higher TLB coverage than ARC and also a
better page fault ratio in most of the benchmarks we have used.

This paper shows another important aspect of the super-paging environment. We
believe operating systems have an improper attitude towards the super-page replacement
algorithm selection. They usually just copy the old algorithms of the traditional paging
mechanism with no attention to the new super-paging environment. This brings about an
improvement of the hardware support for a smaller TLB miss ratio, but the software
support for a smaller TLB miss ratio is considerably poorer.

We show a way to adapt one of the most recent algorithms to the super-paging
environment with the aim of obtaining a better TLB hit ratio.

In the future, we would like to find ways to set the AMSQM parameters (, ,)
dynamically. In our experiments, we have found that the values we used for these
parameters are best for most of the benchmarks; however, there is a minority of
benchmarks that have a preference of other values and there are also few benchmarks that
will have a preference of adaptively modified values. Therefore, we believe that
adaptively modified values can improve the performance of several benchmarks. Another
issue that should be addressed as well is the mutual influence of the processes scheduled
together (Wiseman and Feitelson, 2003).

In addition, we would like to find a pattern for super-pages reoccurrence. Such a
pattern can improve the efficiency of the super-page promotion decisions. The traditional
threshold parameter seems to be not enough for taking the most beneficial decision. Some
applications such as Wiseman et al. (2004), Wisemanm (2001), and Klein and Wiseman
(2003) have a pattern of supper-pages reoccurrence and the operating system can take an
advantage of it.

We would also like to integrate the suggested patch into the Linux kernel. The current
results are encouraging and they support our belief that the new replacement algorithm
can significantly enhance the memory management mechanism in the above mentioned
two manners: better TLB hit ratio and fewer page faults.

6 Acknowledgement

The authors would like to thank SUN Microsystems for their donation.

 340 M. Itshak and Y. Wiseman

References
Abouaissa, H., Delpeyroux, E., Wack, M. and Deschizeaux, P. (1999) ‘Modelling and integration

of resource communication in multimedia applications with high constraints using hierarchical
Petri nets’, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics
(SMC-99), Vol. 5, pp.220–225, Tokyo, Japan.

Corbato, F.J. (1968) ‘A paging experiment with the multics system’, MIT Project MAC Report,
MAC-M-384, May.

Friedman, M.B. (1999) ‘Windows NT page replacement policies’, Proceedings of 25th
International Computer Measurement Group Conference, pp.234–244, December.

Ganapathy, N. and Schimmel, C. (1998) ‘General purpose operating system support for multiple
page sizes’, Proceedings of the USENIX Annual Technical Conference, New Orleans.

Geppert, L. (2003) ‘The new indelible memories’, IEEE Spectrum, Vol. 40, Part 3, pp.48–54.
Hristea, C., Lenoski, D. and Keen, J. (1997) ‘Measuring memory hierarchy performance of

cache-coherent multiprocessors using micro benchmarks’, Supercomputing, ACM/IEEE 1997
Conference, p.45, November.

Itshak, M. and Wiseman, Y. (2008) ‘AMSQM: adaptive multiple superpage queue management’,
Proceedings of IEEE Conference on Information Reuse and Integration (IEEE IRI-2008),
Las Vegas, Nevada, pp.52–57.

Jiang, S., Chen, F. and Zhang, X. (2005) ‘CLOCK-Pro: an effective improvement of the CLOCK
replacement’, Proceedings of 2005 USENIX Annual Technical Conference, Anaheim, CA,
pp.323–336, April.

Jiang, S. and Zhang, X. (2002) ‘LIRS: an efficient low inter-reference recency set replacement
policy to improve buffer cache performance’, Proceeding of 2002 ACM SIGMETRICS,
Marina Del Rey, CA, pp.31–42, 15–19 June.

Johnson, T. and Shasha, D. (1994) ‘2Q: a low overhead high performance buffer management
replacement algorithm’, Proceedings of the Twentieth International Conference on Very Large
Databases, VLDB’94, Santiago, Chile, pp.439–450, September.

Khalidi, Y.A., Talluri, M., Nelson, M.N. and Williams, D. (1993) ‘Virtual memory support for
multiple page sizes’, Proceedings of the Fourth IEEE Workshop on Workstation Operating
Systems, Napa, California, October.

Kim, J., Choi, J., Kim, J., Noh, S., Min, S., Cho, Y. and Kim, C.A. (2000) ‘Low-overhead,
high-performance unified buffer management scheme that exploits sequential and looping
references’, 4th Symposium on Operating System Design and Implementation, San Diego, CA,
pp.119–134, 23–25 October.

Klein, S.T. and Wiseman, Y. (2003) ‘Parallel huffman decoding with applications to JPEG files’,
The Computer Journal, Swindon, Vol. 46, No. 5, pp.487–497.

Lee, D., Choi, J., Kim, J-H., Noh, S.H., Min, S.L., Cho, Y. and Kim, C.S. (2001) ‘LRFU: a
spectrum of policies that subsumes the least recently used and least frequently used policies’,
IEEE Transactions on Computers, Vol. 50, No. 12, pp.1352–1360.

Megiddo, N. and Modha, D.S. (2003a) ‘ARC: a self-tuning, low overhead replacement cache’,
Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST’2003),
San Francisco, pp.115–130, 31 March–2 April.

Megiddo, N. and Modha, D.S. (2003b) ‘One Up on LRU’, Login: The Magazine of the USENIX
Association, Vol. 28, No. 4, pp.7–11, August.

Megiddo, N. and Modha, D.S. (2004) ‘Outperforming LRU with an adaptive replacement cache
algorithm’, IEEE Computer, pp.4–11, April.

Navarro, J. (2004) ‘Transparent operating system support for superpages’, PhD Thesis, Department
of Computer Science, Rice University, April.

Nethercote, N. and Seward, J. (2007) ‘Valgrind: a framework for heavyweight dynamic binary
instrumentation’, Proceedings of ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI 2007), San Diego, CA, USA, June.

 AMSQM: adaptive multiple super-page queue management 341

O’Neil, E., O’Neil, P. and Weikum, G. (1993) ‘The LRU-K page replacement algorithm for
database disk buffering’, Proceedings of SIGMOD ‘93, Washington, DC, May.

Smaragdakis, Y., Kaplan, S. and Wilson, P. (2003) ‘The EELRU adaptive replacement algorithm’,
Performance Evaluation, Vol. 53, No. 2, pp.93–123, July.

SPEC (2000) CPU-2000. Standard Performance Evaluation Corporation, Warrenton, VA,
Available at: http://www.spec.org/.

Subramanian, I., Mather, C., Peterson, K. and Raghunath, B. (1998) ‘Implementation of multiple
page size support in HP-UX’, Proceedings of the USENIX Annual Technical Conference,
New Orleans.

Wallace, R.F., Norman, R.D. and Harari, E. (2006) ‘Computer memory cards using flash EEPROM
integrated circuit chips and memory-controller systems’, US Patent No. 7106609.

Wang, J. (2008) ‘Improving decision-making practices through information filtering’, Int. J.
Information and Decision Sciences, Vol. 1, No. 1, pp.1–4.

Wiseman, Y. (2001) ‘A pipeline chip for quasi arithmetic coding’, IEICE Journal – Transactions
on Fundamentals, Tokyo, Japan, Vol. E84-A, No. 4, pp.1034–1041.

Wiseman, Y. (2005) ‘ARC based superpaging’, Operating Systems Review, Vol. 39, No. 2,
pp.74–78.

Wiseman, Y. and Feitelson, D.G. (2003) ‘Paired gang scheduling’, IEEE Transactions on Parallel
and Distributed Systems, Vol. 14, No. 6, pp.581–592.

Wiseman, Y., Schwan, K. and Widener, P. (2004) ‘Efficient end to end data exchange using
configurable compression’, Proceedings of the 24th IEEE Conference on Distributed
Computing Systems (ICDCS 2004), Tokyo, Japan, pp.228–235.

Zhou, Y., Chen, Z. and Li, K. (2004) ‘Second-level buffer cache management’, IEEE Transaction
on Parallel and Distributed Systems (TPDS), Vol. 15, No. 7, pp.505–519.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

