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1 Introduction 

The software of avionics systems has become more complex 
and larger during recent years (Sözen and Merlo, 2012). The 
programs of advanced avionics systems require larger 
memory allocation; however the maximum allocation is 
more often than not unneeded and most of the physical 
memory is usually unused (Zhou et al., 2001). 

The memory of avionics system is typically small and 
there are many techniques how to make it smaller, e.g., 
Wiseman and Barkai (2013). An example of set of memory 
cards for avionics systems of Cypress Semiconductor Corp. 
can be seen in Figure 1. The cards should be suitable for use 
in high temperatures, withstand an impact of accelerations 
much higher than g-force and resist a potential intense 
radiation so each card contains at most just 8 MB which is 
much less than the standard SRAM cards we are familiar 
with. We would like to delve into the problem of how to 
detect unused portions of this memory so they can be 
temporarily shut down. Execution of a typical program can  
 

be divided into a sequence of phases – periods during which 
the program executes in some locality. Phase shift detection 
is useful in reducing architectural simulations, dynamic 
hardware configuration and online adaptive optimisations. 

Many phase detection methods divide program 
execution into fixed length intervals and monitor some 
characteristics of program behaviour during each interval. A 
phase shift is detected when there is a difference in the 
measured metric. Other phase detection methods are based 
on a high frequency of misses. When a program moves to a 
new locality, it misses the segments of memory that 
comprise the new locality. 

This paper proposes to detect phases by monitoring page 
fault frequency (PFF) – the rate at which a process misses 
pages and generates page faults. When the frequency of 
page faults is high, it is an indication of a transition from 
one program phase to another. PFF phase detection can be 
handled by the OS and does not need offline profiling or 
special hardware support. 
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Figure 1 The rad-hard 72-MBit QDR II+ static random  
access memories of Cypress Semiconductor Corp.  
(see online version for colours) 

 

Phases are a property of a process, not of the system as a 
whole. In a multiprogramming environment execution of 
processes is interleaved. To detect phases online in a 
multiprogramming system, each process must be tracked 
individually. We describe an implementation of PFF phase 
detection that keeps phase information in the task structure 
of the process and calculates paging frequency in terms of 
its virtual execution time. 

2 Related works 

The term locality describes the observed tendency of 
programs to refer to a small portion of their address space 
during significant periods of their execution time. Phases of 
locality are periods of program execution that have stable or 
slow changing of locality. The execution of a typical 
program can be described as a sequence of phases of 
locality 

( ) ( ) ( )1 1 2 2, , , , , , ,i il t l t l t… …  

where li is the set of segments referenced during phase i and 
ti is the duration of the phase. Segments are blocks of 
contiguous locations in the address space of the program. 
They are either units of information used in managing 
memory, such as pages and cache lines, or distinct entities 
in the source code detected by the compiler, such as loops 
and functions. A transition from one locality to another is 
not gradual, but rather characterised by excessive loading of 
segments that are needed for the execution to proceed in the 
next locality. Segments that are loaded early in the 
execution of a phase will be referenced with high 
probability during the rest of the phase. This is the principle 
underlying the performance of virtual memory and caches. 

To improve the performance of virtual memory, 
Denning (1968) proposed the working set model for the 

behaviour of programs. The known notation W(t, τ) denotes 
the set of pages referenced during a window of fixed size τ 
preceding time t. The working set size ω(t, τ) is the number 
of pages in the working set. To minimise page faults, 
memory management must allocate to a process a quantity 
of pages that is enough to contain its current locality. In a 
multiprogrammed environment, there should be space in 
memory for the locality of every active process. 

The phase behaviour of an executing program  
is exhibited not only by its working set but also  
by microarchitecture dependent characteristics such as 
instructions per cycle (IPC), branch prediction and cache 
miss rate. Research has shown a correlation between phases 
of working sets and phases of hardware metrics (Dhodapkar 
and Smith, 2002), and a correlation between the phases of 
hardware metrics themselves (Sherwood and Calder, 1999). 
The reason for these links is that program behaviour is 
dependent on the code which is executed; and as a result of 
changes in the working set, program behaviour changes, 
too. It was also found that most programs have repetitive 
behaviour, with similar phases recurring during their 
execution. 

Detecting the boundaries between phases has several 
applications. Reconfigurable hardware can be dynamically 
tuned for better performance and energy saving (Dhodapkar 
and Smith, 2002; Sherwood et al., 2003; Balasubramonian 
et al., 2000). When a phase shift is detected, retuning is 
performed by trying a number of configurations and 
selecting the optimal one. When a repeated phase is 
identified, a saved optimal configuration is installed. Phase 
detection can be exploited to reduce architectural simulation 
time (Sherwood et al., 2002). Instead of simulating an entire 
program run, a program can be divided into clusters of 
intervals having similar behaviour. Then only some 
intervals representative of those clusters need to be 
simulated. Adaptive optimisations can benefit from program 
phases by triggering re-optimisation when program 
execution changes significantly (Kistler and Franz, 2003), 
or flushing a cache of code fragments on phase shift as done 
in dynamo (Bala et al., 2000). 

Many phase detection methods work by dividing 
program execution into fixed length intervals and 
monitoring some characteristics of program behaviour 
during each interval (Bala et al., 2000; Dhodapkar and 
Smith, 2002; Shen et al., 2007; Sherwood et al., 2002). At 
the end of an interval, the measured value is compared with 
that of the previous interval. If the values differ by more 
than a predefined threshold, a phase change is detected. 
Hardware-based approaches use physical characteristics: 
branch frequency, branch misprediction, cache miss rates, 
and IPC as a metric to identify phases of program behaviour 
(Balasubramonian et al., 2000; Duesterwald et al., 2003). 
Code-based methods analyse the behaviour of programs in 
terms of the code executed over time (Dhodapkar and 
Smith, 2002; Dhodapkar and Smith, 2002, 2003). 

Dhodapkar and Smith (2002) use working set signatures 
for controlling multi-configuration hardware. The working 
set touched during a fixed interval of program execution is 
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collected by special hardware to form a working set 
signature. After each interval, software is invoked to 
compute the relative signature distance with respect to the 
previous signature. If a working set change is detected, the 
hardware is reconfigured. 

Sherwood et al. (2002) use basic block distribution 
analysis to reduce architectural simulation to selected 
intervals. To find the phases of behaviour of a program, its 
execution is divided into fixed length intervals. Basic block 
vectors are used to represent the frequency with which basic 
blocks of code are executed during a given interval. The 
Manhattan distance between vectors is then calculated to 
find the similarity between intervals, and similar intervals 
are grouped into a phase by a clustering algorithm. A 
program phase is regularly defined as a contiguous interval 
of execution during which a program metric is stable. They 
extend the notion of a phase to include all similar sections 
of execution regardless of temporal adjacency. 

In a later paper, Sherwood et al. (2003) describe an  
online method for phase detection and prediction that can be 
used for power management. To approximate the tracking 
of basic blocks used in the offline approach, they use special 
hardware to track the program counter of every committed 
branch and the number of instructions committed between 
the current branch and the last branch. After each profiling 
interval, the executed section is classified into a matching 
phase. 

Hind and Sweeney (2003) formalised the problem of 
phase detection as an operation that takes as input a profile 
of program behaviour and the following two parameters: 

• granularity – specifies how a profile is partitioned into 
fixed length units 

• similarity – a function to compute if units of 
comparison are similar. 

They demonstrated that changes to the values of these 
parameters can lead to the detection of significantly 
different phases. 

Instead of finding similarity between windows of 
execution, phase detection can be based on high frequency 
of misses. When a program moves to a new locality it 
misses the segments of memory that comprise the new 
locality, unless they are already there from a previous 
reference. 

HP dynamo (Hind and Sweeney, 2003) is a dynamic 
optimisation system that improves the performance of an 
instruction stream. It interprets the instruction stream until a 
hot instruction trace is identified. At that point, dynamo 
generates an optimised version of the trace and inserts it into 
a software code cache. Subsequent encounters of the hot 
trace will cause control to jump to the corresponding cached 
fragment. To avoid the overhead of LRU storage, dynamo 
employs a flushing heuristic to periodically remove cold 
traces from the fragment cache. A sharp rise in new 
fragment creation is an indication of a significant change in 
the working set of the program that is currently in the 
fragment cache. A complete fragment cache flush is 

triggered whenever dynamo recognises a sharp increase in 
the fragment creation rate. 

Ratanaworabhan and Burtscher (2008) proposed a phase 
detection method that is based on high frequency misses of 
basic blocks. To detect phases, an application is profiled on 
some input to generate a trace of basic blocks identifiers. 
The trace is then read and inserted into an infinite-size cache 
of basic blocks identifiers, while misses in this cache are 
monitored. As a program transitions into a new phase, it 
starts a new working set of basic blocks which causes 
closely spaced misses in the cache. A transition that is 
followed by a burst of misses is identified as signalling a 
phase change, and a basic blocks signature for that transition 
is recorded. Recurring phases do not incur misses in the 
cache; they are detected by comparing each basic blocks 
transition to previously recorded signatures. Two signatures 
match if 90% of their basic blocks are the same. Although 
their method breaks ties with execution windows and a 
threshold to make a phase change decision, other parameters 
are introduced into the operation of phase detection. To 
define closely spaced misses, there is a need to decide on 
the number of misses and the time interval during which 
they occur. There is also a need for a parameter that defines 
the comparison of two signatures. 

Another miss triggered method was suggested by 
Watanabe et al. (2008), with the aim of visualising objects 
in an object-oriented program. An LRU cache is employed 
for observing objects that are working for the current phase. 
When the cache is frequently updated, the beginning of a 
new phase is recognised. 

Phase detection can be performed offline by profiling a 
training input or dynamically online. When done offline, 
phases may be different at run-time if input data has been 
changed, if the program has been optimised or if it is 
running on a different hardware. Also, the source code may 
not be available for offline analysis. Online methods do not 
need a prior profiling step and detect phases specific to the 
current execution. However, online detection adds time and 
space overhead to a program’s execution, and usually needs 
additional hardware support. 

This paper presents an online phase detection method 
which is based on monitoring PFF – the rate at which a 
process generates page faults. Chu and Opderbeck (1972) 
suggested the use of PFF as a page replacement algorithm. 
To monitor PFF they measure the time elapsed between the 
last and current page faults and compare it to a critical inter 
page fault time. If the PFF lies above a given critical level, 
PFF replacement increases the amount of allocated memory. 
PFF replacement considers high frequency of page faults as 
an indication of an increase in the current working set. 
However, there is a major flaw in the PFF approach – it 
does not perform well when there is a shift to a new locality. 
During the transition periods, there is a rapid succession of 
page faults that causes PFF replacement to swell the 
resident set before the pages of the old locality are expelled 
(Ferrari and Yih, 1983; Stallings, 1998). 

 



228 P. Weisberg and Y. Wiseman  

Figure 2 Phases consist of a short transition period followed by a stable period 

 

 
In contrast, PFF phase detection considers high PFF as 
signalling a transition to another working set and indicating 
a program phase shift. PFF phase tracking can be done as 
part of the OS management of time and memory and does 
not require multiple runs or additional hardware support. To 
detect phases according to PFF, the OS checks the number 
of page faults that occur during each time interval of the 
tracked process. When this number exceeds a threshold, it 
will signify a phase change. We propose implementing PFF 
phase detection as a kernel service. A process that needs to 
be phase tracked will request this service from the OS via a 
system call. When requesting the service, the process will 
pass to the OS parameters such as the interval length, the 
number of free pages and a function to call when a phase 
shift is detected (e.g., reconfiguring the hardware). 

3 PFF phase detection 

Batson and Madison (1976) defined a phase as a period 
during which a program accesses a subset of its address 
space. Following such a stable period, the program 
transitions to a different component will have a different 
subset of information. When moving to the next phase, the 
program must load its code and data into memory, unless it 
is already there. A phase change is thus typically 
characterised by a short interval during which there is high 
paging activity to bring in the new working set. 

PFF phase detection uses this observation to detect the 
boundaries between phases. Figure 2 describes program 
execution according to this model, the executing program 
transitions among phases which consist of a short transition 
period followed by a stable period. For example, when a  
 

program calls a function it enters a phase. First it generates 
page faults in order to bring into memory the code necessary 
for the execution of the function; then it continues to 
execute the function without missing pages. To use PFF for 
phase detection, the executed program is divided into 
intervals of execution and page faults are counted for each 
interval. If the numbers of page faults that occur during an 
interval exceed a predefined threshold, then that interval 
signifies a phase shift. Page faults may occur on consecutive 
intervals; in that case the consecutive intervals are 
consolidated and considered as a continuous transition to a 
single phase. 

As noted above, phases that are detected on the basis of 
similarity between windows are dependent on parameters 
(Hind and Sweeney, 2003). Likewise, the method we 
propose, which is based on high miss frequency, must be 
provided with appropriate parameters for its operation. The 
length of the interval affects the number of detected phases. 
When the length is too large, consecutive phases become 
merged and the number of phases falls sharply. Reducing 
the length needlessly adds overhead to the detection 
algorithm. To ignore sporadic page faults, a threshold can 
be set on the number of faults that signify a page shift. 

Another essential parameter in determining the results of 
PFF phase detection is the amount of memory available to 
the running program. If the amount is too large, a recurring 
phase or a phase consisting of pages that were referenced in 
the past may not be detected. Since the pages of the new 
phase may already be in memory, their reference will not 
cause page faults. For example, if the process is allocated 
memory which is enough to contain its maximum RSS, no 
recurring phase can be detected. If there is little free 
memory, pages comprising the current locality will be  
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paged out and paged in during a single phase thus signifying 
false phases. Since an OS will allocate to a process all 
available memory that it needs, we must restrict the RSS 
virtually. Below, a way to virtually restrict RSS will be 
shown and the parameters will be discussed quantitatively. 

The fact that different parameters give different phases 
does not mean phase detection is not useful. Phases as well 
as locality do not have an exact definition. At the extremes, 
locality may mean the whole program on the one hand and 
every program command on the other, in between there is a 
hierarchy of localities. Although locality is not well defined 
it works well in caches and virtual memory, we can not 
imagine the performance of current computers without 
them. Phase detection can also be useful for the applications 
mentioned earlier if tuned properly. 

To visualise page faults as they occur in the OS, we 
instrumented the Linux memory manager to print the user 
time of the occurrence of a page fault to the kernel buffer. 
For this experiment we used a Pentium 4 machine having 
512 MB ram and running Linux-2.6.8. Since we were 
interested only in page faults that were generated by the test 
programs, the code was instrumented to prints page fault 
information only for a user with a specific user id (1000); 
and the test programs were run as a user having this user id. 
The kernel function that was modified is fault.c. If the 
current process (task) is run by user id 1000, the 
instrumented memory manager prints to the kernel log 
buffer the user time of the process that caused the page 
fault. The kernel differentiates between minor and major 
page faults. Faults for pages that are already loaded in 
memory are minor; faults for pages that have to be brought 
from disk are major. For the purpose of phase detection, 
there is no difference between them. They both indicate a 
page that is missing from the current working set. 

In order to direct the kernel buffer output to a file, we 
have modified the sylog.conf file. To visualise phases 
according to PFF, the process must be forced to generate 
page faults even if those pages were loaded in previous 
phases. This can be done by restricting physically or 
logically the memory available to a process. The OS will 
have to evict old pages in order to load new ones. In this 
experiment, to restrict free memory available to the process, 
we used a program that locks pages in memory according to 
a number of megabytes it receives as a parameter. Locked 
memory is not paged out to the swap area and can not be 
used by other processes. The quantity of the remaining free 
memory could be checked with the command free. Not all 
free memory is allocated to the process; some is reserved by 
the OS. The pages that are allocated to the process are 
shared by its code and data. 

Graphs displaying the behaviour of page faults and 
phases for two SPEC 2000 programs, gzip and mcf, are 
shown in Figures 3(a) and 3(b). The x-axis denotes user 
time in terms of system clock ticks attributed to the process 
running this program. The y-axis represents the number of 
page faults that occurred during that clock tick. The 

programs were run to completion with reference input and 
free memory (as reported by free) was restricted to 50 MB. 
Both programs have numerous faults during their 
initialisation (we slightly moved the origin of the graphs to 
the right). The graphs demonstrate that execution of a 
program is characterised by short intervals of paging 
activity for loading the working set of new localities that are 
followed by stable periods with insignificant paging. 

There are zones in the graphs that seem as though 
constant paging is taking place, e.g., mcf at 250,000 ticks. 
Figure 4(a) shows a zoom-in view of mcf revealing that the 
zone consists of just short intervals of paging. In  
Figure 4(a), we can also see that it is common for page 
faults to occur in bursts that last more than one tick. 
Intuitively, as a program starts to execute in a new locality, 
it references more and more pages of its working set until it 
reaches a stable state. It continues to execute for some time 
in this locality and then moves on to another locality. To 
eliminate the false phases that would result if each tick were 
considered separately, consecutive clock ticks that have 
page faults are merged as shown in Figure 4(b) and 
therefore indicate the beginning of a single phase. 

In the experiment, we used memory locking to restrict 
memory. However, to practically use page faults for phase 
detection, we do not want to lock pages and thus prevent the 
application from using available memory. We need a 
mechanism that precisely controls the amount of memory a 
process can use without incurring page faults, while 
restricting additional memory only virtually. In addition, the 
time interval we used was the system clock tick. A typical 
frequency of the system timer in the Linux kernel is 
currently 1,000 ticks per second. For a computer running at 
10,000 MIPS, it means 10 M instructions per interval. We 
will see later that this interval may be too large. 

3.1 Amount of free pages 

An essential parameter in determining the results of PFF 
phase detection is the amount of memory available to the 
running program. If the amount is too large, a phase 
consisting of pages that were previously loaded may not be 
detected. Its pages may already be in memory and their 
reference will not cause page faults. If there is little free 
memory, pages comprising the current locality will be 
paged out and paged in during a phase, thus signifying false 
phases. On the other hand, too little memory will cause 
consecutive intervals to generate page faults, the intervals 
will be merged; thus reducing the number of detected 
phases. 

The proper number of pages is the amount containing 
the locality of the phase that is currently detected, but this 
amount is changing throughout the execution of the 
program. In the following analysis, we will see that for 
phases that do not recur closely to be detected, the amount 
needs to be within a range but the exact number is not 
significant. 
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Figure 3 Number of page faults occurring during each tick of process user time, (a) free memory was limited to 50 MB – running gzip (b) 
free memory was limited to 50 MB – running mcf 
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Figure 4 A zoom into an interval of mcf, (a) consecutive ticks with page faults (b) after merging 
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As a program is executing, transition occurs from locality to 
locality. Let 

, , , ,i jl l… … …  

be the sequence of sets of pages referenced during each 
phase of locality and assume the sets are disjoint. 

Let 

, , , ,i jl l… … …  

be the number of pages of the corresponding locality sets. 
Then, in order to detect the transition to phase lj, the 
following has to be true: 

1

1

j

k
k i

RSS l
−

= +

≤ ∑  

If the next phase to be detected is a recurring phase, then the 
amount of free memory must not be larger than the 
combined amount of memory occupied by all phases 
separating the previous occurrence from the current 
occurrence. This assures us that the previous occurrence 
was evicted from memory. 

And in order to detect lj as only one phase, the following 
condition is also needed: 

.jRSS l≥  

The amount of free memory must not be smaller than the 
resident set of the detected phase; otherwise pages will be 
swapped during its execution causing it to be detected as 
more then one phase. 

As long as the amount of free pages available to the 
program is within the range 
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all phases will be detected. 

The need to restrict memory applies only to pages 
containing the code of the program, not to pages of data. 
The PFF phase detection algorithm we describe is based on 
paging that result from executing new code not from 
referencing new data. In the next section, we discuss how to 
achieve memory restriction virtually. 

3.2 Virtual resident set size 

A mechanism to virtually limit free pages to some number 
can be implemented by using the valid bit of page table 
entries. The valid bit is used by operating systems to 
simulate the referenced bit. Operating systems usually use 
the referenced bit during page replacement to find pages 
that were not recently used. In architectures that do not 
support the referenced bit in hardware (Wiseman, 2001), 
operating systems simulate it in software by turning of the 
valid bit and examining this bit instead. When the page is 
referenced, a page fault occurs and the page fault handler 
sets back the valid bit. Turning of the valid bit can be used 
in our case to limit the number of pages that can be 
referenced without forcing a page fault. The operating 
system will turn of the valid bit of all code pages of the 
tracked process, except for the number of free pages. 
However, the free pages need to be those pages containing 
the recent locality. If the pages of the process could be 
arranged in LRU order, then we could turn of the valid bit 
of all pages except those at the head of the list. To achieve 
this, we can incorporate the management of the valid bit in 
the page replacement of the operating system. 

Now we describe how it can be done in Linux. Page 
replacement in Linux is global and is based on two  
LRU-like lists, called the active list and the inactive list. The 
objective is for the active list to contain the working set of 
all processes and for the inactive list to contain reclaim 
candidates (Johnson and Shasha, 1994; Gorman, 2004). 
Each physical page in Linux is represented by a page 
descriptor; the lru fields in the page descriptor stores 
pointers to the next and previous elements of the LRU lists. 

Figure 5 Pages belonging to processes are grouped into two lists, the active list and the inactive list 

 
Note: A list of pages belonging to a specific process was added. 
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To keep the pages of a specific process in LRU order, its 
pages can be inserted into a list by adding a process_lru 
pointer field to the page descriptor as illustrated in Figure 5. 
Using this pointer, an LRU-like list of active pages 
belonging to a specific process can be maintained. When the 
kernel moves a referenced page of the active list to the head 
of the list, it will also move it to the first position of the 
process-lru list. To keep the number of free pages of a 
process bounded, pages that are in the head of the active 
process-lru list will be marked valid by setting the valid bit 
in their corresponding PTEs, other pages will be marked 
invalid. Whenever a new page is inserted at the top of the 
list, the valid page furthest from the top will be marked 
invalid, thus keeping the number of valid pages constant. 
The process-lru list has to be maintained only for pages of 
the code of the process not for pages of data. Code and data 
can be distinguished because they belong to different 
memory areas of the process. This limiting mechanism does 
have an overhead in the extra page faults that are generated 
and in managing the process-lru list. 

3.3 Tracking PFF per process 

Phases depend on the code executed by a process and are 
thus a property of the process executing the code and not of 
the system as a whole. In a multiprogramming environment, 
execution of processes is interleaved; therefore there is no 
meaning in detecting system phases. A process may be 
preempted within a phase because its time slice expired or 
for other reasons and rescheduled later to continue the 
phase. Tracking phases has to be done per process not per 
system. To detect the phases of a specific process according 
to PFF, we have to consider only page faults generated by 
that process and calculate time intervals in terms of its 
processing time. 

The method we use to detect a phase change is to divide 
program execution into intervals and monitor the number of 
page faults that occur during each interval. If the number of 
page faults that occur during an interval exceeds a 
predefined threshold, the interval is considered a faulting 
interval; otherwise it is considered a non-faulting interval. 
The threshold is set to filter out sporadic faults. One or more 
faulting intervals that follow a non-faulting interval define 
the start of a new phase. We keep the information needed to 
track phases in the task structure of the tracked process and 
consider time intervals during which the tracked process 
runs. 

The period of the timer needs to be adjusted to the time 
it takes to run the number of instructions that were chosen 
for the interval. However, the resolution of the regular 
Linux timer is not adequate. The frequency of the system 
timer is between 100 and 1,000 ticks per second giving at 
best a resolution of one millisecond. For computers running 
at 10,000 MIPS, a higher resolution timer is needed. 
Fortunately, high resolution timers with microsecond 
resolution are already supported by the Linux kernel. 

4 Experiments 

To find out how the amount of free pages and interval 
length influence PFF phase detection and to evaluate the 
usefulness of the phases detected, we used several tools 
from the SimpleScalar toolset (Austin et al., 2002). To track 
the dynamic behaviour of the simulated programs, the tools 
have been modified to print interval statistics per a specified 
number of instructions. We configured the tools to report 
statistics at every interval of 100 K committed instructions 
and derived longer intervals from the output of this interval. 
We used sim-cache to simulate PFF phase detection,  
sim-bpred and sim-outorder to examine the detected phases. 

We simulated ten programs from the SPEC CPU2000 
benchmark suite using binaries precompiled for the Alpha 
ISA. They are the six integer programs crafty, eon, gcc, 
gzip, perlbmk and vpr and the four floating point programs 
applu, equake, galgel and mesa. All programs were run from 
start to completion with reference inputs. 

4.1 Choosing the size of free memory 

The sim-cache simulator has been configured to simulate a 
fully associative L1 instruction cache with an LRU 
replacement policy. The block size of the cache was set to 
4,096 and the number of cache lines varied from 4 to 256. 
All other caches were disabled as their output was irrelevant 
to our experiments. 

In the memory hierarchy, the relation between disk 
storage and main memory is like that between main memory 
and cache. Virtual memory uses a page size of typically 4 K 
bytes, the pages are fully associative and its replacement 
policy is usually LRU-like. The misses reported by  
sim-cache for a specified number of cache lines as 
configured above correspond to the page faults that would 
occur to a process running with an equivalent number of 
physical pages. 

The output of sim-cache gave us a series of the page 
faults that occurred during each interval of the executing 
program. By looking for one or more faulting intervals that 
follow a non-faulting interval, we can find the number and 
length of phases. 

4.2 Free pages and interval length 

We tried various combinations of free pages and intervals to 
determine the appropriate parameters for PFF phase 
detection. Different parameters give different number of 
phases and phase length. The intuition behind this is that 
since a program comprises a hierarchy of phases, as free 
memory is reduced, the resolution of detected phases gets 
finer. The desired number and length of phases is dependent 
on the application for which the program is partitioned into 
phases. For the purpose of dynamically tuning cache sizes, 
reconfiguration latency has to be taken into account; phases 
must be longer than this latency. We also have to consider 
the overhead of switching between different cache 
configurations. Changing a cache parameter is likely to 
cause flushing of dirty entries; phases must execute long 
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enough to benefit from reconfiguration. On the other hand, 
adaptive optimisations are related to program constructs and 
may profit from smaller phases. 

Figure 6 shows graphically, page faults that occur 
during each interval of 100 K instructions throughout the 
execution of the program crafty. Figures 6(a) to 6(f) 
correspond to running the program with the number of free 
pages ranging from 4 to 128. As the number of page frame 
is increased the number of page faults decrease, until at 128 
pages (512 K) almost the whole program is read into 
memory at the start of execution and there are hardly any 
page faults from then on. 

Table 1 shows the results of phase detection for the ten 
programs listed above. Each row gives the number of 
detected phases when restricting free memory to a different 
number of 4 K pages. The number of free pages is at all 
times a power of 2, ranging from four pages to 128 pages. 
Each program has three rows showing the results when 
using intervals of 100 K, 1 M and 10 M instructions. 

We saw in Figure 6 that the frequency of page faults 
increases with diminishing free memory, as expected; 
however, when we look at the first raw of Table 1 we see 
that the program crafty reaches the maximum of detected 
phases when using 16 pages, 4 and 8 pages detect just few 

phases. It turns out that when using 4 and 8 pages for the 
execution of crafty, the system suffers from thrashing 
(Reuven and Wiseman, 2006). Since free memory is smaller 
than the working set, pages that are moved out of memory 
to make room for new pages are brought in soon after. 
Because almost all intervals contain many page faults, the 
algorithm can hardly find a faulting interval that follows a 
non-faulting interval. On the other hand, using 128 and 256 
pages gives also a small number of phases. A large part of 
the program is read into memory in an early stage of its 
execution and stays there, referencing phases later does not 
impose page faults. Figure 7 shows graphically the number 
of phases detected for free pages ranging from 4 to 128 
pages. Because the programs are of different length and 
different phase behaviour, for each program the maximum 
of phases detected was normalised to 100. 

We see from Table 1 and from Figure 7 that PFF phase 
detection is quite sensitive to the parameter of free pages. 
This means that in order to use it effectively, the parameter 
needs to be known in advance and passed to the algorithm. 
As an alternative, the rate of detected phases can be 
monitored to dynamically adjust the parameter of free pages 
to a value within the range 4 to 32. 

 

Figure 6 Number of page faults that occur during each interval of 100 K instructions when execution the program crafty with free pages 
ranging from 4 to 128, (a) 4 pages (b) 8 pages (c) 16 pages (d) 32 pages (e) 64 pages (f) 128 pages 
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Table 1 Number of detected phases for free memory ranging from 4 to 128 pages and for intervals of 100 K, 1 M and 10 M instructions 

Program Interval 4 Pages 8 Pages 16 Pages 32 Pages 64 Pages 128 Pages 256 Pages 

100 K 7 7 157,797 301 26 8 8
1 M 1 1 1,300 193 13 3 3 

crafty 

10 M 0 0 0 99 11 2 2 
100 K 7,019 7,373 7,373 7,024 6,323 25 25 
1 M 4,911 5,265 5,265 4,916 4,565 17 17 

applu 

10 M 1,379 2,435 2,435 2,435 2,435 9 9 
100 K 2 65 48 9,640 14 12 10 
1 M 0 0 1 5,628 4 3 3 

eon 

10 M 0 0 1 716 4 3 3 
100 K 13,199 443 1,303 8 7 7 7 
1 M 10,396 403 1,262 7 7 7 7 

equake 

10 M 3,816 266 260 6 6 6 6 
100 K 7,550 4,051 583 344 51 26 26 
1 M 6,377 3,366 569 332 48 25 25 

galgel 

10 M 1,329 1,381 342 202 36 21 21 
100 K 7,153 5,302 3,607 7,650 2,934 1,269 987 
1 M 49 385 397 503 408 365 321 

gcc 

10 M 4 15 36 24 72 86 81 
100 K 85,275 15,311 33 5 5 5 5 
1 M 20,772 10,217 21 3 3 3 3 

gzip 

10 M 11 18 21 3 3 3 3 
100 K 2,002 2,002 151,006 3,005 7 6 6 
1 M 1,147 1,147 103,914 2,150 5 4 4 

mesa 

10 M 0 0 2 1,002 4 3 3 
100 K 357 373 696 5,699 3,822 36 20 
1 M 21 26 32 32 1,129 13 9 

perlbmk 

10 M 7 8 11 14 309 6 4 
100 K 2,215 2,120 70 29 14 14 14 
1 M 1,088 885 47 22 12 12 12 

vpr 

10 M 522 424 16 11 8 8 8 

Figure 7 Number of phases for 4 to 128 free pages (see online version for colours) 

 
Note: For each program the maximum of phases detected was normalised to 100. 
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Another important parameter is the interval length. Table 1 
shows results for three interval lengths 100 K, 1 M and 10 
M instructions. Figures 8(a) and 8(b) show graphically the 
percent of phases detected when using 1 M and 10 M 
intervals relative to 100 K intervals. Figure 8(a) shows for 
each program the average of all free page sizes 4 to 128; 
whereas Figure 8(b) shows for each program the average of 
the three page sizes giving the maximal number of phases. 
Because page sizes that produce only few intervals are not 
of much use, the results shown in Figure 8(b) are more 

reliable. We see that the number of detected phases falls on 
the average to 50% when using 1 M intervals and to 19% 
when using 10 M intervals. The reason is that half of the 
phases detected by PFF with an interval of 100 K are shorter 
than 1 M instructions and most are shorter than 10 M 
instructions. When a phase is shorter than the interval, it can 
not be detected by the algorithm because page faults 
generated by the next interval prevent it. Since intervals are 
formed by the locality of program constructs such as loops 
and functions, the results found above are reasonable. 

Figure 8 Percent of phases detected when using 1 M and 10 M intervals relative to 100 K intervals, (a) for each program the average  
of all free page sizes 4 to 128 (b) for each program the average of the three page sizes giving the maximal number of phases  
(see online version for colours) 
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4.3 Similarity of metrics within phases 

To evaluate the effectiveness of phases detected by PFF, we 
used sim-bpred to measure the instructions per branch (IPB) 
metric for the ten SPEC CPU2000 programs that we 
examined. The output of sim-bpred was a series of IPB 
values for intervals of 100 K instructions. For each group of 
intervals detected by the output of sim-cache as a phase, we 
calculated the coefficient of variation (CV) (the ratio of the 
standard deviation to the mean) in IPB. We then calculated 
the average of the CVs of all phases and compared it to the 
CV of all program intervals. For each program, the output of 
IPB was partitioned into phases according to the output of 
sim-cache that gave maximal phases. The results in percent 
are shown in Figure 9(a). The average of all programs is 
41% for the whole programs and 11% for the phases, a 
reduction to about a fourth. 

As a further evaluation, we used the timing simulator 
sim-outorder to measure the IPC metric. For this test  
we did not need the output of sim-cache since  
sim-outorder simulates the cache. We configured the cache 
of sim-outorder for each program with the same cache 
configuration we used for sim-cache that gave maximal 
phases. All other parameters of sim-outorder (e.g., branch 
predictor) were not changed from their default value. The 
output of sim-outorder was a series of misses and IPC 
values for intervals of 100 K instructions. Using this output 
we partitioned the program into phases and calculated the 
average of the CVs in IPC of all phases and compared it to 
the CV of all program intervals. The results in percent are 
shown in Figure 9(b). The average of all programs is 39% 
for the whole programs and 12% for the phases, a reduction 
to about a fourth. 

Figure 9 Average CV of all phases and CV of whole program, (a) IPB (b) IPC (see online version for colours) 
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5 Conclusions 

The utmost memory capacity of avionics systems is 
typically superfluous and most of their physical memory is 
more often than not, effectively idle. The actual memory use 
can be detected by monitoring PFF. We used the propensity 
of programs to have a high frequency of page faults when a 
transition from one program phase to another occurs. When 
a phase switch is detected, an inspection of which portion of 
the memory can be shut down is taken. There is no need for 
a special hardware for PFF phase detection; it can be 
handled by the operating system. Such a detection system 
can be very beneficial for an efficient use of memory. 
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