
Int. J. Embedded Systems, Vol. 5, No. 4, 2013 225

Copyright © 2013 Inderscience Enterprises Ltd.

Efficient memory control for avionics and embedded
systems

Pinchas Weisberg and Yair Wiseman*
Computer Science Department,
Bar-Ilan University,
Ramat-Gan 52900, Israel
E-mail: pinchas@cs.biu.ac.il
E-mail: wiseman@cs.biu.ac.il
*Corresponding author

Abstract: Modern aircrafts have seen a significant growth of avionics systems. Most of new
aircrafts have systems for navigation, automatic flight control, collision avoidance systems, flight
data recorder, weather radar system as well as communication and monitoring systems. All of
these systems use embedded computer systems with increasing memory requirements. In order to
reduce the electricity consumed by these systems, we suggest detecting the portion of the
computer memory that is actually used. The other portion can be temporarily shut down and
turned on again when needed. Such a shut down can notably reduce the electricity consumption
of the avionics systems.

Keywords: avionics; embedded systems; energy-aware systems; memory management; address
space.

Reference to this paper should be made as follows: Weisberg, P. and Wiseman, Y. (2013)
‘Efficient memory control for avionics and embedded systems’, Int. J. Embedded Systems,
Vol. 5, No. 4, pp.225–238.

Biographical notes: Pinchas Weisberg is a PhD student at the Computer Science Department
of Bar-Ilan University. His research interests include efficient memory handling, embedded
systems and operating system kernel manipulation.

Yair Wiseman received his PhD degree from Bar-Ilan University and completed two post-doc
degrees – one at the Hebrew University of Jerusalem and one in Georgia Institute of Technology.
His research interests include embedded systems, process scheduling, hardware-software
codesign, memory management and real-time operating systems. He has been supervising many
graduate students and his papers have been published in many venues.

1 Introduction

The software of avionics systems has become more complex
and larger during recent years (Sözen and Merlo, 2012). The
programs of advanced avionics systems require larger
memory allocation; however the maximum allocation is
more often than not unneeded and most of the physical
memory is usually unused (Zhou et al., 2001).

The memory of avionics system is typically small and
there are many techniques how to make it smaller, e.g.,
Wiseman and Barkai (2013). An example of set of memory
cards for avionics systems of Cypress Semiconductor Corp.
can be seen in Figure 1. The cards should be suitable for use
in high temperatures, withstand an impact of accelerations
much higher than g-force and resist a potential intense
radiation so each card contains at most just 8 MB which is
much less than the standard SRAM cards we are familiar
with. We would like to delve into the problem of how to
detect unused portions of this memory so they can be
temporarily shut down. Execution of a typical program can

be divided into a sequence of phases – periods during which
the program executes in some locality. Phase shift detection
is useful in reducing architectural simulations, dynamic
hardware configuration and online adaptive optimisations.

Many phase detection methods divide program
execution into fixed length intervals and monitor some
characteristics of program behaviour during each interval. A
phase shift is detected when there is a difference in the
measured metric. Other phase detection methods are based
on a high frequency of misses. When a program moves to a
new locality, it misses the segments of memory that
comprise the new locality.

This paper proposes to detect phases by monitoring page
fault frequency (PFF) – the rate at which a process misses
pages and generates page faults. When the frequency of
page faults is high, it is an indication of a transition from
one program phase to another. PFF phase detection can be
handled by the OS and does not need offline profiling or
special hardware support.

226 P. Weisberg and Y. Wiseman

Figure 1 The rad-hard 72-MBit QDR II+ static random
access memories of Cypress Semiconductor Corp.
(see online version for colours)

Phases are a property of a process, not of the system as a
whole. In a multiprogramming environment execution of
processes is interleaved. To detect phases online in a
multiprogramming system, each process must be tracked
individually. We describe an implementation of PFF phase
detection that keeps phase information in the task structure
of the process and calculates paging frequency in terms of
its virtual execution time.

2 Related works

The term locality describes the observed tendency of
programs to refer to a small portion of their address space
during significant periods of their execution time. Phases of
locality are periods of program execution that have stable or
slow changing of locality. The execution of a typical
program can be described as a sequence of phases of
locality

() () ()1 1 2 2, , , , , , ,i il t l t l t… …

where li is the set of segments referenced during phase i and
ti is the duration of the phase. Segments are blocks of
contiguous locations in the address space of the program.
They are either units of information used in managing
memory, such as pages and cache lines, or distinct entities
in the source code detected by the compiler, such as loops
and functions. A transition from one locality to another is
not gradual, but rather characterised by excessive loading of
segments that are needed for the execution to proceed in the
next locality. Segments that are loaded early in the
execution of a phase will be referenced with high
probability during the rest of the phase. This is the principle
underlying the performance of virtual memory and caches.

To improve the performance of virtual memory,
Denning (1968) proposed the working set model for the

behaviour of programs. The known notation W(t, τ) denotes
the set of pages referenced during a window of fixed size τ
preceding time t. The working set size ω(t, τ) is the number
of pages in the working set. To minimise page faults,
memory management must allocate to a process a quantity
of pages that is enough to contain its current locality. In a
multiprogrammed environment, there should be space in
memory for the locality of every active process.

The phase behaviour of an executing program
is exhibited not only by its working set but also
by microarchitecture dependent characteristics such as
instructions per cycle (IPC), branch prediction and cache
miss rate. Research has shown a correlation between phases
of working sets and phases of hardware metrics (Dhodapkar
and Smith, 2002), and a correlation between the phases of
hardware metrics themselves (Sherwood and Calder, 1999).
The reason for these links is that program behaviour is
dependent on the code which is executed; and as a result of
changes in the working set, program behaviour changes,
too. It was also found that most programs have repetitive
behaviour, with similar phases recurring during their
execution.

Detecting the boundaries between phases has several
applications. Reconfigurable hardware can be dynamically
tuned for better performance and energy saving (Dhodapkar
and Smith, 2002; Sherwood et al., 2003; Balasubramonian
et al., 2000). When a phase shift is detected, retuning is
performed by trying a number of configurations and
selecting the optimal one. When a repeated phase is
identified, a saved optimal configuration is installed. Phase
detection can be exploited to reduce architectural simulation
time (Sherwood et al., 2002). Instead of simulating an entire
program run, a program can be divided into clusters of
intervals having similar behaviour. Then only some
intervals representative of those clusters need to be
simulated. Adaptive optimisations can benefit from program
phases by triggering re-optimisation when program
execution changes significantly (Kistler and Franz, 2003),
or flushing a cache of code fragments on phase shift as done
in dynamo (Bala et al., 2000).

Many phase detection methods work by dividing
program execution into fixed length intervals and
monitoring some characteristics of program behaviour
during each interval (Bala et al., 2000; Dhodapkar and
Smith, 2002; Shen et al., 2007; Sherwood et al., 2002). At
the end of an interval, the measured value is compared with
that of the previous interval. If the values differ by more
than a predefined threshold, a phase change is detected.
Hardware-based approaches use physical characteristics:
branch frequency, branch misprediction, cache miss rates,
and IPC as a metric to identify phases of program behaviour
(Balasubramonian et al., 2000; Duesterwald et al., 2003).
Code-based methods analyse the behaviour of programs in
terms of the code executed over time (Dhodapkar and
Smith, 2002; Dhodapkar and Smith, 2002, 2003).

Dhodapkar and Smith (2002) use working set signatures
for controlling multi-configuration hardware. The working
set touched during a fixed interval of program execution is

 Efficient memory control for avionics and embedded systems 227

collected by special hardware to form a working set
signature. After each interval, software is invoked to
compute the relative signature distance with respect to the
previous signature. If a working set change is detected, the
hardware is reconfigured.

Sherwood et al. (2002) use basic block distribution
analysis to reduce architectural simulation to selected
intervals. To find the phases of behaviour of a program, its
execution is divided into fixed length intervals. Basic block
vectors are used to represent the frequency with which basic
blocks of code are executed during a given interval. The
Manhattan distance between vectors is then calculated to
find the similarity between intervals, and similar intervals
are grouped into a phase by a clustering algorithm. A
program phase is regularly defined as a contiguous interval
of execution during which a program metric is stable. They
extend the notion of a phase to include all similar sections
of execution regardless of temporal adjacency.

In a later paper, Sherwood et al. (2003) describe an
online method for phase detection and prediction that can be
used for power management. To approximate the tracking
of basic blocks used in the offline approach, they use special
hardware to track the program counter of every committed
branch and the number of instructions committed between
the current branch and the last branch. After each profiling
interval, the executed section is classified into a matching
phase.

Hind and Sweeney (2003) formalised the problem of
phase detection as an operation that takes as input a profile
of program behaviour and the following two parameters:

• granularity – specifies how a profile is partitioned into
fixed length units

• similarity – a function to compute if units of
comparison are similar.

They demonstrated that changes to the values of these
parameters can lead to the detection of significantly
different phases.

Instead of finding similarity between windows of
execution, phase detection can be based on high frequency
of misses. When a program moves to a new locality it
misses the segments of memory that comprise the new
locality, unless they are already there from a previous
reference.

HP dynamo (Hind and Sweeney, 2003) is a dynamic
optimisation system that improves the performance of an
instruction stream. It interprets the instruction stream until a
hot instruction trace is identified. At that point, dynamo
generates an optimised version of the trace and inserts it into
a software code cache. Subsequent encounters of the hot
trace will cause control to jump to the corresponding cached
fragment. To avoid the overhead of LRU storage, dynamo
employs a flushing heuristic to periodically remove cold
traces from the fragment cache. A sharp rise in new
fragment creation is an indication of a significant change in
the working set of the program that is currently in the
fragment cache. A complete fragment cache flush is

triggered whenever dynamo recognises a sharp increase in
the fragment creation rate.

Ratanaworabhan and Burtscher (2008) proposed a phase
detection method that is based on high frequency misses of
basic blocks. To detect phases, an application is profiled on
some input to generate a trace of basic blocks identifiers.
The trace is then read and inserted into an infinite-size cache
of basic blocks identifiers, while misses in this cache are
monitored. As a program transitions into a new phase, it
starts a new working set of basic blocks which causes
closely spaced misses in the cache. A transition that is
followed by a burst of misses is identified as signalling a
phase change, and a basic blocks signature for that transition
is recorded. Recurring phases do not incur misses in the
cache; they are detected by comparing each basic blocks
transition to previously recorded signatures. Two signatures
match if 90% of their basic blocks are the same. Although
their method breaks ties with execution windows and a
threshold to make a phase change decision, other parameters
are introduced into the operation of phase detection. To
define closely spaced misses, there is a need to decide on
the number of misses and the time interval during which
they occur. There is also a need for a parameter that defines
the comparison of two signatures.

Another miss triggered method was suggested by
Watanabe et al. (2008), with the aim of visualising objects
in an object-oriented program. An LRU cache is employed
for observing objects that are working for the current phase.
When the cache is frequently updated, the beginning of a
new phase is recognised.

Phase detection can be performed offline by profiling a
training input or dynamically online. When done offline,
phases may be different at run-time if input data has been
changed, if the program has been optimised or if it is
running on a different hardware. Also, the source code may
not be available for offline analysis. Online methods do not
need a prior profiling step and detect phases specific to the
current execution. However, online detection adds time and
space overhead to a program’s execution, and usually needs
additional hardware support.

This paper presents an online phase detection method
which is based on monitoring PFF – the rate at which a
process generates page faults. Chu and Opderbeck (1972)
suggested the use of PFF as a page replacement algorithm.
To monitor PFF they measure the time elapsed between the
last and current page faults and compare it to a critical inter
page fault time. If the PFF lies above a given critical level,
PFF replacement increases the amount of allocated memory.
PFF replacement considers high frequency of page faults as
an indication of an increase in the current working set.
However, there is a major flaw in the PFF approach – it
does not perform well when there is a shift to a new locality.
During the transition periods, there is a rapid succession of
page faults that causes PFF replacement to swell the
resident set before the pages of the old locality are expelled
(Ferrari and Yih, 1983; Stallings, 1998).

228 P. Weisberg and Y. Wiseman

Figure 2 Phases consist of a short transition period followed by a stable period

In contrast, PFF phase detection considers high PFF as
signalling a transition to another working set and indicating
a program phase shift. PFF phase tracking can be done as
part of the OS management of time and memory and does
not require multiple runs or additional hardware support. To
detect phases according to PFF, the OS checks the number
of page faults that occur during each time interval of the
tracked process. When this number exceeds a threshold, it
will signify a phase change. We propose implementing PFF
phase detection as a kernel service. A process that needs to
be phase tracked will request this service from the OS via a
system call. When requesting the service, the process will
pass to the OS parameters such as the interval length, the
number of free pages and a function to call when a phase
shift is detected (e.g., reconfiguring the hardware).

3 PFF phase detection

Batson and Madison (1976) defined a phase as a period
during which a program accesses a subset of its address
space. Following such a stable period, the program
transitions to a different component will have a different
subset of information. When moving to the next phase, the
program must load its code and data into memory, unless it
is already there. A phase change is thus typically
characterised by a short interval during which there is high
paging activity to bring in the new working set.

PFF phase detection uses this observation to detect the
boundaries between phases. Figure 2 describes program
execution according to this model, the executing program
transitions among phases which consist of a short transition
period followed by a stable period. For example, when a

program calls a function it enters a phase. First it generates
page faults in order to bring into memory the code necessary
for the execution of the function; then it continues to
execute the function without missing pages. To use PFF for
phase detection, the executed program is divided into
intervals of execution and page faults are counted for each
interval. If the numbers of page faults that occur during an
interval exceed a predefined threshold, then that interval
signifies a phase shift. Page faults may occur on consecutive
intervals; in that case the consecutive intervals are
consolidated and considered as a continuous transition to a
single phase.

As noted above, phases that are detected on the basis of
similarity between windows are dependent on parameters
(Hind and Sweeney, 2003). Likewise, the method we
propose, which is based on high miss frequency, must be
provided with appropriate parameters for its operation. The
length of the interval affects the number of detected phases.
When the length is too large, consecutive phases become
merged and the number of phases falls sharply. Reducing
the length needlessly adds overhead to the detection
algorithm. To ignore sporadic page faults, a threshold can
be set on the number of faults that signify a page shift.

Another essential parameter in determining the results of
PFF phase detection is the amount of memory available to
the running program. If the amount is too large, a recurring
phase or a phase consisting of pages that were referenced in
the past may not be detected. Since the pages of the new
phase may already be in memory, their reference will not
cause page faults. For example, if the process is allocated
memory which is enough to contain its maximum RSS, no
recurring phase can be detected. If there is little free
memory, pages comprising the current locality will be

 Efficient memory control for avionics and embedded systems 229

paged out and paged in during a single phase thus signifying
false phases. Since an OS will allocate to a process all
available memory that it needs, we must restrict the RSS
virtually. Below, a way to virtually restrict RSS will be
shown and the parameters will be discussed quantitatively.

The fact that different parameters give different phases
does not mean phase detection is not useful. Phases as well
as locality do not have an exact definition. At the extremes,
locality may mean the whole program on the one hand and
every program command on the other, in between there is a
hierarchy of localities. Although locality is not well defined
it works well in caches and virtual memory, we can not
imagine the performance of current computers without
them. Phase detection can also be useful for the applications
mentioned earlier if tuned properly.

To visualise page faults as they occur in the OS, we
instrumented the Linux memory manager to print the user
time of the occurrence of a page fault to the kernel buffer.
For this experiment we used a Pentium 4 machine having
512 MB ram and running Linux-2.6.8. Since we were
interested only in page faults that were generated by the test
programs, the code was instrumented to prints page fault
information only for a user with a specific user id (1000);
and the test programs were run as a user having this user id.
The kernel function that was modified is fault.c. If the
current process (task) is run by user id 1000, the
instrumented memory manager prints to the kernel log
buffer the user time of the process that caused the page
fault. The kernel differentiates between minor and major
page faults. Faults for pages that are already loaded in
memory are minor; faults for pages that have to be brought
from disk are major. For the purpose of phase detection,
there is no difference between them. They both indicate a
page that is missing from the current working set.

In order to direct the kernel buffer output to a file, we
have modified the sylog.conf file. To visualise phases
according to PFF, the process must be forced to generate
page faults even if those pages were loaded in previous
phases. This can be done by restricting physically or
logically the memory available to a process. The OS will
have to evict old pages in order to load new ones. In this
experiment, to restrict free memory available to the process,
we used a program that locks pages in memory according to
a number of megabytes it receives as a parameter. Locked
memory is not paged out to the swap area and can not be
used by other processes. The quantity of the remaining free
memory could be checked with the command free. Not all
free memory is allocated to the process; some is reserved by
the OS. The pages that are allocated to the process are
shared by its code and data.

Graphs displaying the behaviour of page faults and
phases for two SPEC 2000 programs, gzip and mcf, are
shown in Figures 3(a) and 3(b). The x-axis denotes user
time in terms of system clock ticks attributed to the process
running this program. The y-axis represents the number of
page faults that occurred during that clock tick. The

programs were run to completion with reference input and
free memory (as reported by free) was restricted to 50 MB.
Both programs have numerous faults during their
initialisation (we slightly moved the origin of the graphs to
the right). The graphs demonstrate that execution of a
program is characterised by short intervals of paging
activity for loading the working set of new localities that are
followed by stable periods with insignificant paging.

There are zones in the graphs that seem as though
constant paging is taking place, e.g., mcf at 250,000 ticks.
Figure 4(a) shows a zoom-in view of mcf revealing that the
zone consists of just short intervals of paging. In
Figure 4(a), we can also see that it is common for page
faults to occur in bursts that last more than one tick.
Intuitively, as a program starts to execute in a new locality,
it references more and more pages of its working set until it
reaches a stable state. It continues to execute for some time
in this locality and then moves on to another locality. To
eliminate the false phases that would result if each tick were
considered separately, consecutive clock ticks that have
page faults are merged as shown in Figure 4(b) and
therefore indicate the beginning of a single phase.

In the experiment, we used memory locking to restrict
memory. However, to practically use page faults for phase
detection, we do not want to lock pages and thus prevent the
application from using available memory. We need a
mechanism that precisely controls the amount of memory a
process can use without incurring page faults, while
restricting additional memory only virtually. In addition, the
time interval we used was the system clock tick. A typical
frequency of the system timer in the Linux kernel is
currently 1,000 ticks per second. For a computer running at
10,000 MIPS, it means 10 M instructions per interval. We
will see later that this interval may be too large.

3.1 Amount of free pages

An essential parameter in determining the results of PFF
phase detection is the amount of memory available to the
running program. If the amount is too large, a phase
consisting of pages that were previously loaded may not be
detected. Its pages may already be in memory and their
reference will not cause page faults. If there is little free
memory, pages comprising the current locality will be
paged out and paged in during a phase, thus signifying false
phases. On the other hand, too little memory will cause
consecutive intervals to generate page faults, the intervals
will be merged; thus reducing the number of detected
phases.

The proper number of pages is the amount containing
the locality of the phase that is currently detected, but this
amount is changing throughout the execution of the
program. In the following analysis, we will see that for
phases that do not recur closely to be detected, the amount
needs to be within a range but the exact number is not
significant.

230 P. Weisberg and Y. Wiseman

Figure 3 Number of page faults occurring during each tick of process user time, (a) free memory was limited to 50 MB – running gzip (b)
free memory was limited to 50 MB – running mcf

(a)

(b)

 Efficient memory control for avionics and embedded systems 231

Figure 4 A zoom into an interval of mcf, (a) consecutive ticks with page faults (b) after merging

(a)

(b)

232 P. Weisberg and Y. Wiseman

As a program is executing, transition occurs from locality to
locality. Let

, , , ,i jl l… … …

be the sequence of sets of pages referenced during each
phase of locality and assume the sets are disjoint.

Let

, , , ,i jl l… … …

be the number of pages of the corresponding locality sets.
Then, in order to detect the transition to phase lj, the
following has to be true:

1

1

j

k
k i

RSS l
−

= +

≤ ∑

If the next phase to be detected is a recurring phase, then the
amount of free memory must not be larger than the
combined amount of memory occupied by all phases
separating the previous occurrence from the current
occurrence. This assures us that the previous occurrence
was evicted from memory.

And in order to detect lj as only one phase, the following
condition is also needed:

.jRSS l≥

The amount of free memory must not be smaller than the
resident set of the detected phase; otherwise pages will be
swapped during its execution causing it to be detected as
more then one phase.

As long as the amount of free pages available to the
program is within the range

1

1

j

k k
k i

l RSS l
−

= +

≤ ≤ ∑

all phases will be detected.

The need to restrict memory applies only to pages
containing the code of the program, not to pages of data.
The PFF phase detection algorithm we describe is based on
paging that result from executing new code not from
referencing new data. In the next section, we discuss how to
achieve memory restriction virtually.

3.2 Virtual resident set size

A mechanism to virtually limit free pages to some number
can be implemented by using the valid bit of page table
entries. The valid bit is used by operating systems to
simulate the referenced bit. Operating systems usually use
the referenced bit during page replacement to find pages
that were not recently used. In architectures that do not
support the referenced bit in hardware (Wiseman, 2001),
operating systems simulate it in software by turning of the
valid bit and examining this bit instead. When the page is
referenced, a page fault occurs and the page fault handler
sets back the valid bit. Turning of the valid bit can be used
in our case to limit the number of pages that can be
referenced without forcing a page fault. The operating
system will turn of the valid bit of all code pages of the
tracked process, except for the number of free pages.
However, the free pages need to be those pages containing
the recent locality. If the pages of the process could be
arranged in LRU order, then we could turn of the valid bit
of all pages except those at the head of the list. To achieve
this, we can incorporate the management of the valid bit in
the page replacement of the operating system.

Now we describe how it can be done in Linux. Page
replacement in Linux is global and is based on two
LRU-like lists, called the active list and the inactive list. The
objective is for the active list to contain the working set of
all processes and for the inactive list to contain reclaim
candidates (Johnson and Shasha, 1994; Gorman, 2004).
Each physical page in Linux is represented by a page
descriptor; the lru fields in the page descriptor stores
pointers to the next and previous elements of the LRU lists.

Figure 5 Pages belonging to processes are grouped into two lists, the active list and the inactive list

Note: A list of pages belonging to a specific process was added.

 Efficient memory control for avionics and embedded systems 233

To keep the pages of a specific process in LRU order, its
pages can be inserted into a list by adding a process_lru
pointer field to the page descriptor as illustrated in Figure 5.
Using this pointer, an LRU-like list of active pages
belonging to a specific process can be maintained. When the
kernel moves a referenced page of the active list to the head
of the list, it will also move it to the first position of the
process-lru list. To keep the number of free pages of a
process bounded, pages that are in the head of the active
process-lru list will be marked valid by setting the valid bit
in their corresponding PTEs, other pages will be marked
invalid. Whenever a new page is inserted at the top of the
list, the valid page furthest from the top will be marked
invalid, thus keeping the number of valid pages constant.
The process-lru list has to be maintained only for pages of
the code of the process not for pages of data. Code and data
can be distinguished because they belong to different
memory areas of the process. This limiting mechanism does
have an overhead in the extra page faults that are generated
and in managing the process-lru list.

3.3 Tracking PFF per process

Phases depend on the code executed by a process and are
thus a property of the process executing the code and not of
the system as a whole. In a multiprogramming environment,
execution of processes is interleaved; therefore there is no
meaning in detecting system phases. A process may be
preempted within a phase because its time slice expired or
for other reasons and rescheduled later to continue the
phase. Tracking phases has to be done per process not per
system. To detect the phases of a specific process according
to PFF, we have to consider only page faults generated by
that process and calculate time intervals in terms of its
processing time.

The method we use to detect a phase change is to divide
program execution into intervals and monitor the number of
page faults that occur during each interval. If the number of
page faults that occur during an interval exceeds a
predefined threshold, the interval is considered a faulting
interval; otherwise it is considered a non-faulting interval.
The threshold is set to filter out sporadic faults. One or more
faulting intervals that follow a non-faulting interval define
the start of a new phase. We keep the information needed to
track phases in the task structure of the tracked process and
consider time intervals during which the tracked process
runs.

The period of the timer needs to be adjusted to the time
it takes to run the number of instructions that were chosen
for the interval. However, the resolution of the regular
Linux timer is not adequate. The frequency of the system
timer is between 100 and 1,000 ticks per second giving at
best a resolution of one millisecond. For computers running
at 10,000 MIPS, a higher resolution timer is needed.
Fortunately, high resolution timers with microsecond
resolution are already supported by the Linux kernel.

4 Experiments

To find out how the amount of free pages and interval
length influence PFF phase detection and to evaluate the
usefulness of the phases detected, we used several tools
from the SimpleScalar toolset (Austin et al., 2002). To track
the dynamic behaviour of the simulated programs, the tools
have been modified to print interval statistics per a specified
number of instructions. We configured the tools to report
statistics at every interval of 100 K committed instructions
and derived longer intervals from the output of this interval.
We used sim-cache to simulate PFF phase detection,
sim-bpred and sim-outorder to examine the detected phases.

We simulated ten programs from the SPEC CPU2000
benchmark suite using binaries precompiled for the Alpha
ISA. They are the six integer programs crafty, eon, gcc,
gzip, perlbmk and vpr and the four floating point programs
applu, equake, galgel and mesa. All programs were run from
start to completion with reference inputs.

4.1 Choosing the size of free memory

The sim-cache simulator has been configured to simulate a
fully associative L1 instruction cache with an LRU
replacement policy. The block size of the cache was set to
4,096 and the number of cache lines varied from 4 to 256.
All other caches were disabled as their output was irrelevant
to our experiments.

In the memory hierarchy, the relation between disk
storage and main memory is like that between main memory
and cache. Virtual memory uses a page size of typically 4 K
bytes, the pages are fully associative and its replacement
policy is usually LRU-like. The misses reported by
sim-cache for a specified number of cache lines as
configured above correspond to the page faults that would
occur to a process running with an equivalent number of
physical pages.

The output of sim-cache gave us a series of the page
faults that occurred during each interval of the executing
program. By looking for one or more faulting intervals that
follow a non-faulting interval, we can find the number and
length of phases.

4.2 Free pages and interval length

We tried various combinations of free pages and intervals to
determine the appropriate parameters for PFF phase
detection. Different parameters give different number of
phases and phase length. The intuition behind this is that
since a program comprises a hierarchy of phases, as free
memory is reduced, the resolution of detected phases gets
finer. The desired number and length of phases is dependent
on the application for which the program is partitioned into
phases. For the purpose of dynamically tuning cache sizes,
reconfiguration latency has to be taken into account; phases
must be longer than this latency. We also have to consider
the overhead of switching between different cache
configurations. Changing a cache parameter is likely to
cause flushing of dirty entries; phases must execute long

234 P. Weisberg and Y. Wiseman

enough to benefit from reconfiguration. On the other hand,
adaptive optimisations are related to program constructs and
may profit from smaller phases.

Figure 6 shows graphically, page faults that occur
during each interval of 100 K instructions throughout the
execution of the program crafty. Figures 6(a) to 6(f)
correspond to running the program with the number of free
pages ranging from 4 to 128. As the number of page frame
is increased the number of page faults decrease, until at 128
pages (512 K) almost the whole program is read into
memory at the start of execution and there are hardly any
page faults from then on.

Table 1 shows the results of phase detection for the ten
programs listed above. Each row gives the number of
detected phases when restricting free memory to a different
number of 4 K pages. The number of free pages is at all
times a power of 2, ranging from four pages to 128 pages.
Each program has three rows showing the results when
using intervals of 100 K, 1 M and 10 M instructions.

We saw in Figure 6 that the frequency of page faults
increases with diminishing free memory, as expected;
however, when we look at the first raw of Table 1 we see
that the program crafty reaches the maximum of detected
phases when using 16 pages, 4 and 8 pages detect just few

phases. It turns out that when using 4 and 8 pages for the
execution of crafty, the system suffers from thrashing
(Reuven and Wiseman, 2006). Since free memory is smaller
than the working set, pages that are moved out of memory
to make room for new pages are brought in soon after.
Because almost all intervals contain many page faults, the
algorithm can hardly find a faulting interval that follows a
non-faulting interval. On the other hand, using 128 and 256
pages gives also a small number of phases. A large part of
the program is read into memory in an early stage of its
execution and stays there, referencing phases later does not
impose page faults. Figure 7 shows graphically the number
of phases detected for free pages ranging from 4 to 128
pages. Because the programs are of different length and
different phase behaviour, for each program the maximum
of phases detected was normalised to 100.

We see from Table 1 and from Figure 7 that PFF phase
detection is quite sensitive to the parameter of free pages.
This means that in order to use it effectively, the parameter
needs to be known in advance and passed to the algorithm.
As an alternative, the rate of detected phases can be
monitored to dynamically adjust the parameter of free pages
to a value within the range 4 to 32.

Figure 6 Number of page faults that occur during each interval of 100 K instructions when execution the program crafty with free pages
ranging from 4 to 128, (a) 4 pages (b) 8 pages (c) 16 pages (d) 32 pages (e) 64 pages (f) 128 pages

(a) (b) (c)

(d) (e) (f)

 Efficient memory control for avionics and embedded systems 235

Table 1 Number of detected phases for free memory ranging from 4 to 128 pages and for intervals of 100 K, 1 M and 10 M instructions

Program Interval 4 Pages 8 Pages 16 Pages 32 Pages 64 Pages 128 Pages 256 Pages

100 K 7 7 157,797 301 26 8 8
1 M 1 1 1,300 193 13 3 3

crafty

10 M 0 0 0 99 11 2 2
100 K 7,019 7,373 7,373 7,024 6,323 25 25
1 M 4,911 5,265 5,265 4,916 4,565 17 17

applu

10 M 1,379 2,435 2,435 2,435 2,435 9 9
100 K 2 65 48 9,640 14 12 10
1 M 0 0 1 5,628 4 3 3

eon

10 M 0 0 1 716 4 3 3
100 K 13,199 443 1,303 8 7 7 7
1 M 10,396 403 1,262 7 7 7 7

equake

10 M 3,816 266 260 6 6 6 6
100 K 7,550 4,051 583 344 51 26 26
1 M 6,377 3,366 569 332 48 25 25

galgel

10 M 1,329 1,381 342 202 36 21 21
100 K 7,153 5,302 3,607 7,650 2,934 1,269 987
1 M 49 385 397 503 408 365 321

gcc

10 M 4 15 36 24 72 86 81
100 K 85,275 15,311 33 5 5 5 5
1 M 20,772 10,217 21 3 3 3 3

gzip

10 M 11 18 21 3 3 3 3
100 K 2,002 2,002 151,006 3,005 7 6 6
1 M 1,147 1,147 103,914 2,150 5 4 4

mesa

10 M 0 0 2 1,002 4 3 3
100 K 357 373 696 5,699 3,822 36 20
1 M 21 26 32 32 1,129 13 9

perlbmk

10 M 7 8 11 14 309 6 4
100 K 2,215 2,120 70 29 14 14 14
1 M 1,088 885 47 22 12 12 12

vpr

10 M 522 424 16 11 8 8 8

Figure 7 Number of phases for 4 to 128 free pages (see online version for colours)

Note: For each program the maximum of phases detected was normalised to 100.

236 P. Weisberg and Y. Wiseman

Another important parameter is the interval length. Table 1
shows results for three interval lengths 100 K, 1 M and 10
M instructions. Figures 8(a) and 8(b) show graphically the
percent of phases detected when using 1 M and 10 M
intervals relative to 100 K intervals. Figure 8(a) shows for
each program the average of all free page sizes 4 to 128;
whereas Figure 8(b) shows for each program the average of
the three page sizes giving the maximal number of phases.
Because page sizes that produce only few intervals are not
of much use, the results shown in Figure 8(b) are more

reliable. We see that the number of detected phases falls on
the average to 50% when using 1 M intervals and to 19%
when using 10 M intervals. The reason is that half of the
phases detected by PFF with an interval of 100 K are shorter
than 1 M instructions and most are shorter than 10 M
instructions. When a phase is shorter than the interval, it can
not be detected by the algorithm because page faults
generated by the next interval prevent it. Since intervals are
formed by the locality of program constructs such as loops
and functions, the results found above are reasonable.

Figure 8 Percent of phases detected when using 1 M and 10 M intervals relative to 100 K intervals, (a) for each program the average
of all free page sizes 4 to 128 (b) for each program the average of the three page sizes giving the maximal number of phases
(see online version for colours)

(a)

(b)

 Efficient memory control for avionics and embedded systems 237

4.3 Similarity of metrics within phases

To evaluate the effectiveness of phases detected by PFF, we
used sim-bpred to measure the instructions per branch (IPB)
metric for the ten SPEC CPU2000 programs that we
examined. The output of sim-bpred was a series of IPB
values for intervals of 100 K instructions. For each group of
intervals detected by the output of sim-cache as a phase, we
calculated the coefficient of variation (CV) (the ratio of the
standard deviation to the mean) in IPB. We then calculated
the average of the CVs of all phases and compared it to the
CV of all program intervals. For each program, the output of
IPB was partitioned into phases according to the output of
sim-cache that gave maximal phases. The results in percent
are shown in Figure 9(a). The average of all programs is
41% for the whole programs and 11% for the phases, a
reduction to about a fourth.

As a further evaluation, we used the timing simulator
sim-outorder to measure the IPC metric. For this test
we did not need the output of sim-cache since
sim-outorder simulates the cache. We configured the cache
of sim-outorder for each program with the same cache
configuration we used for sim-cache that gave maximal
phases. All other parameters of sim-outorder (e.g., branch
predictor) were not changed from their default value. The
output of sim-outorder was a series of misses and IPC
values for intervals of 100 K instructions. Using this output
we partitioned the program into phases and calculated the
average of the CVs in IPC of all phases and compared it to
the CV of all program intervals. The results in percent are
shown in Figure 9(b). The average of all programs is 39%
for the whole programs and 12% for the phases, a reduction
to about a fourth.

Figure 9 Average CV of all phases and CV of whole program, (a) IPB (b) IPC (see online version for colours)

(a)

(b)

238 P. Weisberg and Y. Wiseman

5 Conclusions

The utmost memory capacity of avionics systems is
typically superfluous and most of their physical memory is
more often than not, effectively idle. The actual memory use
can be detected by monitoring PFF. We used the propensity
of programs to have a high frequency of page faults when a
transition from one program phase to another occurs. When
a phase switch is detected, an inspection of which portion of
the memory can be shut down is taken. There is no need for
a special hardware for PFF phase detection; it can be
handled by the operating system. Such a detection system
can be very beneficial for an efficient use of memory.

References
Austin, T., Larson, E. and Ernst, D. (2002) ‘Simplescalar:

an infrastructure for computer system modeling’, Computer,
Vol. 35, No. 2, pp.59–67.

Bala, V., Duesterwald, E. and Banerjia, S. (2000) ‘Dynamo:
a transparent dynamic optimization system’, in ACM
SIGPLAN Notices, pp.1–12.

Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A. and
Dwarkadas, S. (2000) ‘Memory hierarchy reconfiguration for
energy and performance in general-purpose processor
architectures’, in MICRO 33: Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture,
pp.245–257, New York, NY, USA.

Batson, A.P. and Madison, A.W. (1976) ‘Measurements of
major locality phases in symbolic reference strings’,
in SIGMETRICS ‘76: Proceedings of the 1976 ACM
SIGMETRICS Conference on COMPUTER performance
Modeling Measurement and Evaluation, pp.75–84, New
York, NY, USA.

Chu, W.W. and Opderbeck, H. (1972) ‘The page fault frequency
replacement algorithm’, AFIPS ‘72: Proceedings of the
December 5–7, 1972, Fall Joint Computer Conference, Part I,
Fall, pp.597–609.

Denning, P.J. (1968) ‘The working set model for program
behavior’, Commun. ACM, Vol. 11, No. 5, pp.323–333.

Dhodapkar, A.S. and Smith, J.E. (2002) ‘Managing
multi-configuration hardware via dynamic working set
analysis’, SIGARCH Comput. Archit. News, Vol. 30, No. 2,
pp.233–244.

Duesterwald, E., Cascaval, C. and Dwarkadas, S. (2003)
‘Characterizing and predicting program behavior
and its variability’, in PACT ‘03: Proceedings of the
12th International Conference on Parallel Architectures and
Compilation Techniques, p.220, Washington, DC, USA.

Ferrari, D. and Yih, Y-Y. (1983) ‘VSWS: the variable-interval
sampled working set policy’, IEEE Trans. Softw. Eng., Vol. 9,
No. 3, pp.299–305.

Gorman, M. (2004) Understanding the Linux Virtual Memory
Manager, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Hind, V.R.M. and Sweeney, P.F. (2003) Phase Detection:
A Problem Classification, Technical Report 22887,
IBM Research.

Johnson, T. and Shasha, D. (1994) ‘2Q: a low overhead high
performance buffer management replacement algorithm’,
in VLDB’94, Proceedings of 20th International Conference
on Very Large Data Bases, September 12–15,
Santiago de Chile, Chile, pp.439–450, Morgan Kaufmann.

Kistler, T. and Franz, M. (2003) ‘Continuous program
optimization: a case study’, ACM Trans. Program. Lang.
Syst., Vol. 25, No. 4, pp.500–548.

Ratanaworabhan, P. and Burtscher, M. (2008) ‘Program phase
detection based on critical basic block transitions’, in ISPASS
‘08: Proceedings of the ISPASS 2008 – IEEE International
Symposium on Performance Analysis of Systems and
Software, pp.11–21, IEEE Computer Society, Washington,
DC, USA.

Reuven, M. and Wiseman, Y. (2006) ‘Medium-term scheduler as a
solution for the thrashing effect’, The Computer Journal,
Oxford University Press, Swindon, UK, Vol. 49, No. 3,
pp.297–309.

Shen, X., Zhong, Y. and Ding, C. (2007) ‘Predicting
locality phases for dynamic memory optimization’, J. Parallel
Distrib. Comput., Vol. 67, No. 7, pp.783–796.

Sherwood, T. and Calder, B. (1999) Time Varying Behaviour of
Programs, Technical Report of the Department of Computer
Science and Engineering, University of California, San
Diego, CS99-630, 16pp, August.

Sherwood, T., Perelman, E., Hamerly, G. and Calder, B. (2002)
‘Automatically characterizing large scale program behavior’,
ASPLOS-X: Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pp.45–57.

Sherwood, T., Sair, S. and Calder, B. (2003) ‘Phase tracking and
prediction’, SIGARCH Comput. Archit. News, Vol. 31, No. 2,
pp.336–349.

Sözen, N. and Merlo, E. (2012) ‘Adapting software product lines
for complex certifiable avionics software’, 3rd International
Workshop on Product Line Approaches in Software
Engineering (PLEASE-2012), pp.21–24, Zurich, Switzerland,
June.

Stallings, W. (1998) Operating Systems: Internals and Design
Principles, 3rd ed., Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

Watanabe, Y., Ishio, T. and Inoue, K. (2008) ‘Feature-level phase
detection for execution trace using object cache’, in WODA
‘08: Proceedings of the 2008 International Workshop on
Dynamic Analysis, pp.8–14, New York, NY, USA.

Wiseman, Y. (2001) ‘A pipeline chip for quasi arithmetic coding’,
IEICE Journal – Trans. Fundamentals, Tokyo, Japan,
Vol. E84-A, No. 4, pp.1034–1041.

Wiseman, Y. and Barkai, A. (2013) ‘Smaller flight data recorders’,
Journal of Aviation Technology and Engineering, Vol. 2,
No. 2, pp.45–55.

Zhou, H., Toburen, M., Rotenberg, E. and Conte, T. (2001)
‘Adaptive mode control: a static-power-efficient cache
design’, Proc. of the Intl. Conf. on Parallel Architectures and
Compilation Techniques, September, pp.61–72.

