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PAPER

A Pipeline Chip for Quasi Arithmetic Coding

Yair WISEMAN†a), Nonmember

SUMMARY A combination of a software and a systolic hard-
ware implementation for the Quasi Arithmetic compression algo-
rithm is presented. The hardware is implemented as a pipeline
hardware implementation. The implementation doesn’t change
the the algorithm. It just split it into two parts. The combina-
tion of parallel software and pipeline hardware can give very fast
compression without decline of the compression efficiency.
key words: pipeline structure, compression, arithmetic coding,

hardware-software combination

1. Introduction

In order to increase the rate of computers, many manu-
facturers use the pipeline method [1]–[3]. This method
enables performing several actions in a machine in par-
allel mode. Every action is in a different phase of its
performing. The action is divided into some fundamen-
tal sub-actions which can be performed in one clock cy-
cle. In every clock cycle, from every action, the machine
will perform a new sub-action. A pipeline machine can
perform different sub-actions in parallel. In every clock
cycle, the machine performs sub-actions for different
actions.

Nowadays, most of the CPU manufacturing is
pipelining. For example, all Intel’s Chips from 486 and
on, are pipeline chips. Many articles describe improve-
ments in pipeline machines for example [4]. In addi-
tion to this progress, there is a progress in manufactur-
ing dedicated pipeline chips. For example, see in [5],
[6] implementation of a Boltzmann Machine in a ded-
icated pipeline chip. Moreover, there is a progress in
manufacturing dedicated chips for data compression or
decompression [7].

This article introduces a combined implementa-
tion of hardware and software of the adaptive com-
pression algorithm - Quasi Arithmetic Coding [8]–[10].
Quasi Arithmetic Coding is a version of the well-known
Arithmetic compression algorithm [11], [12]. The use of
Quasi Arithmetic Coding in embedded systems is sug-
gested in [13], but the the compression there is done
in software. This article suggests assigning part of the
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compression to a dedicated systolic hardware. The part
of the hardware is developed as a pipeline hardware.
The software part also can be implemented in parallel
mode. It can be done as we suggested in [14] for de-
coding, or as was suggested in [15], or a combination of
both of them.

There have been a lot of studies to reduce the im-
plementation complexity of Arithmetic Coding. This
complexity damaged the time performance of Arith-
metic Coding. Some of those studies can be found in
[16]–[19]. Quasi Arithmetic coding is one of the meth-
ods which approximate Arithmetic Coding. by using
state tables. Such tables are very common in the chip
designing field and can be easily adapted to a hardware
implementation, which can obviously be much faster.
So we achieve not only an improvement in time by re-
placing Arithmetic Coding by Quasi Arithmetic Cod-
ing, but even more so by implementing the tables of the
Quasi Arithmetic Coding in hardware.

2. Quasi Arithmetic Coding

In [20] Shannon proved that an optimal coding encodes
every event with a probability P, by − log2 P bits. Huff-
man Coding rounds the sizes of the codewords to an
integer number of bits. Hence Huffman Coding [21] is
not optimal, unless − log2 P is an integer number for
every probability P for any codeword in the Alphabet.
Such a distribution is called a Dyadic Distribution [22]
and is not realistic in most cases. Arithmetic Coding
tries to fix this disadvantage but can be complex and
slow. Quasi Arithmetic Coding is a simpler and faster
version of Arithmetic Coding.

Let L be a set of codewords. In Arithmetic Cod-
ing, every codeword i ∈ L, gets a probability Pi ∈ [0, 1]
when

∑
i∈L Pi = 1. Every codeword is represented

by the interval [
∑

j<i Pj ,
∑

j≤i Pj). Similarly, in Quasi
Arithmetic Coding, the following steps are done:

• Constructing a code for the codewords “1” and
“0.” The construction of this code is explained
below.

• Constructing a prefix coding for the codewords
which need to be compressed. The well known
prefix coding—Huffman [21] can be used but any
other prefix coding is welcome. The probability of
any codeword in this coding is actually the product



WISEMAN: A PIPELINE CHIP FOR QUASI ARITHMETIC CODING
1035

of the probabilities of all the codewords’ bits. Since
every bit value is a binary value, the probability is
known from the previous step.

• Writing the algorithm which implemented the pre-
fix coding that was decided. This Algorithm cre-
ates the prefix code from the previous step, for ev-
ery codeword it gets. Since this code contains just
bits i.e. binary values, they can be compressed by
the coding that was built in the first step.

Constructing Quasi Arithmetic Coding is done in
an adaptive way. We save for each stage, the approxi-
mate ratio between the bits we read and their value was
0, to the bits we read and their value was 1. The ratio is
saved as counters pair-counter for the “1”s and counter
for the “0”s. The ratio is saved in an approximate way.
The ratio is rounded to i

j where i, j ∈ [1, N ] and N is
an integer number. The counters are initialized to the
value 1, although no bit was read. The reason is be-
cause a zero value can cause a division by zero problem
[23]. If one of the counters exceeds the value N , we will
try to find another approximate ratio which is near to
the original ratio. In fact we defined N2 states since
the value of i and j, will be always between 1 to N .
Let us denote these states as P states.

In addition we save the interval which represents
the current state. In the original Arithmetic Coding
the interval is always in the format [i, j) with 0 ≤ i ≤
j ≤ 1. In Quasi Arithmetic Coding, the interval is in
the format [k, l) with 0 ≤ k ≤ l ≤ M and k, l, M are
integer numbers. In fact we defined (M+1)M

2 states. If
l is the right edge of the interval, we can define k < l
as the left edge of the interval. Therefore we can have
(M+1)M

2 states which is the sum of the sequence 1 . . .M .
Let us denote these states as Q states. From all of these
states 3M2

16 states are terminal states. When the state
is a non-terminal state, this interval can be broaden
by the known scaling algorithm of Arithmetic Coding.
Sometimes this scaling algorithm also produces some
output. When the state is a terminal state, the interval
can’t be broaden and there is no output.

The moving between P states is clear. According
to the input which is always “0” or “1,” we will increase
the value of the appropriate counter. If we exceed the
value N , we will try to find a new ratio that will be close
to the required ratio. The state that will be defined
with the two new counters, will be the new state.

The moving between Q states is a little bit compli-
cated. According to the current Q, the interval size is
computed. According to the new P state, we can know
the ratio between the counters after reading the current
bit. If the current bit is “0,” we will look on the ratio
as Count0

Count1
. If the current bit is “1,” we will look on the

ratio as Count1
Count0

. According to the interval size and ratio
between the counters, the new interval size is set. If the
current bit is “0,” the left part of the interval is taken.
If the current bit is “1,” the right part of the interval

is taken. The new interval can be a non-terminal inter-
val. If the new interval is a non-terminal interval, the
interval will be broaden until the interval is becoming
a terminal interval. This broadening is done according
to the scaling algorithm of Arithmetic Coding.

3. Parallel Quasi Arithmetic Coding

In [15] there is an algorithm for parallel Arithmetic
Coding, done entirely in software. This Article will
introduce a new approach. The algorithm will be im-
plemented in a combination of software and hardware.
Also the algorithm of this article is for Quasi Arith-
metic Coding and not for Arithmetic Coding. The two
major parts of the implementation are:

• The software will deal with building the prefix cod-
ing. There are some prefix codes which can be
used. For example Huffman code [21], Golomb
code [24], Elias code [25] or Rice code [26]. This
part will not be introduced here since there are
several ways to do it. One of them has been in-
troduced by us in [14] for decoding. Also it can
be done in another approach as introduced in [15].
One of these approaches (or a combination between
them) can be taken for the software assignment.

• The hardware will deal with Quasi Arithmetic
Coding for the binary values. After the software
outputs its code, the hardware will take this stream
of binary values and compress them according to
the Quasi Arithmetic Coding algorithm. The pre-
fix coding doesn’t create an optimal coding as
was mentioned above. This step will fix this non-
optimal result.

Firstly we will build the hardware for handling the
P and the Q states. This hardware is shown in Fig. 1.
First of all into the register “New bit,” a new bit is
assigned. The register size is one bit. According to this
bit, the value of the previous P state and according
to Next p() function, the new P state is calculated.
This calculation is written into the register P . This
calculation is done during one clock cycle. At the end
of this clock cycle the calculated value is written into
the register P .

After this clock cycle, the Q state is calculated.
According to the previous Q state, the size of the pre-
vious interval is known. Using the previous interval
size and new P state, the new interval size is calcu-
lated. This calculation is done in the function defined
in Compute length(). If the input is “0,” we can know
the left edge of the interval. It will be the same as it
was in the previous interval. If the input is “1,” we
can know the right edge of the interval. The previous
state Q gives us the the left and the right edges. One
of them is copied to the new interval. Now when we
know the size of the new interval and one of its edges,
we can find the new interval itself. This calculation is
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Fig. 1 Hardware for handling P and Q states.

done by the Nonterminal state() function. The Termi-
nal state() function also determines the values of all the
lines go out to the hardware which handles the mem-
ory. The lines which go out to the memory hardware
are:

• The “Follow bits” count. (According to the scaling
algorithm of Arithmetic Coding).

• The count of the bits written into memory. (Not
including one leading bit).

• The bits that should be written into memory.
(They are split to one leading bit and the other
bits).

• Write enable for the memory.

As was mentioned, the function Nontermi-
nal state() is calculating a non-terminal state that can
be broaden. This broadening is done by the scaling al-
gorithm of Arithmetic Coding. In this hardware this
broadening is done by the Terminal state() function.
In fact the functions Nonterminal state() and Termi-
nal state(), can be implemented in one function. The
split here is done just for making the illustration clearer.
In a real implementation they should be implemented
by one function.

The number of the lines in the hardware is varying
according to the values of N and M . All the values in
Fig. 1 will be ceiling values if there is a need in rounding.
The number of the lines are always log2 of the possible
values that should be represented in the lines.

The function Original length() will output the size
of the terminal interval. If we want to know how many
values there are for the output, we should find the num-
ber of the possible sizes that can be for a terminal inter-
val. Let us denote an interval as [i, j). If this interval
can be scaled, one of these conditions must be satisfied:

• [i, j) ⊆ [0,12 ]
• [i, j) ⊆ [14 ,

3
4 ]

• [i, j) ⊆ [12 ,1]

Any interval with size not larger than M
4 , regard-

less of its edges, can be scaled. If M is divisible by 4,
we can say that every interval with size not larger than
M
4 +1 can be scaled. We will generally use M such that

M = 2n and n > 2, so the number of the possible sizes
of the terminal intervals is 3M

4 −1
In Fig. 2 we can see a first attempt of implemen-

tation of the memory handling. The reading from the
memory is simple. The read address register saves the
value of the current address. In every clock cycle, the
register’s value is increased by one.

The writing to the memory is a little bit compli-
cated. There is a need of writing two different values
to the memory. Each one of these values’ sizes is un-
known. The first value is the leading bit and after it the
following bits (if any at all). The second value is the
other bits, if there are more bits for writing. Because of
this reason, the first solution will be doubling the clock
cycle time for the hardware which handles the P and
the Q states. The clock cycle time of this hardware will
be twice of the clock cycle time of the hardware which
handles the memory. While the hardware which han-
dles the P and the Q states is computing next states,
the hardware which handles the memory will have two
cycles. In the first clock cycle, the leading bit with the
follow bits will be written. In the second clock cycle,
the remaining bits will be written. Calculating the next
Q state needs passing of three functions. If the num-
ber of lines is small, a truth table can be written and a
circuit which implements sum of products can be done.
If the number of lines is bigger, we can not implement
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Fig. 2 Hardware for handling the memory.

this by sum of products, due to Fan-In of the gates
[27]. We may need a microcode implementation [28],
[29]. In such a case three functions in one cycle can be
problematic. Doubling the clock cycle period can be
reasonable in such a case.

In Fig. 2 we can see that the number of lines for
the follow bits count is log(logM − 1). Calculating the
maximum count of follow bits that can be generated be-
cause of reading one bit is done in this way: We suppose
M is even. Since M is even, an interval with size one,
can not be scaled with follow bits. All of the interval
will be in the right side of the interval or in the left size
of the interval. It can’t be in both sides of the middle
of the interval [0, M). The scaling for such an interval
will be without follow bits. The minimal interval that
can be scaled with follow bits is [M2 −1,M

2 +1). This in-
terval will be scaled with follow bits log(M

2 ) times. The
number of lines that can introduce it is log(logM − 1).

The maximum number of broadening for any in-
terval is logM . Since one bit is written as leading bit,
the maximum number of remaining bits is logM − 1.
The number of lines required for introducing this value

is log(logM). We need logM and not logM − 1, since
the value zero is also meaningful here.

A rough estimation of hardware size (gates count)
can be done by calculating the number of gates for each
function in hardware. A formal expression can be de-
rived, but in order to give a feeling of how many gates
will be needed, we assume that N=4 and M=8. An ex-
planation of how to generalize the results will be given
too.

The hardware which handles the P and Q states
has some functions which can be implemented in a sim-
ple truth table. On average, half of the entries in those
truth tables are “1”s and the other half are “0”s.

• Next p() has 5 input lines and 4 output lines. It
has 32 options of inputs. In each line of output,
about 16 input combinations will give true. In or-
der to implement this function, the circuit should
have about 64 NOT gates (4*16), 64 AND gates
(4*16) and 4 OR gates which are 132 gates. The
OR gates may have Fan-In problem, so a few more
OR gates may be needed.
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• Compute length() has 9 input lines and 3 output
lines. Similarly, the circuit will have about 771
gates.

• Nonterminal state() has 6 input lines and 6 output
lines, giving about 198 gates.

• Terminal state() has 6 input lines and 4 output
lines, giving about 132 gates.

• Original length() has 4 input lines and 3 output
lines, giving about 27 gates.

• Each of the functions Right interval() and
Left interval() has 4 input lines and 3 output lines,
giving about 27 gates.

The sum of the number of gates in these circuits is 1314.
There is also a need for flip-flops for registers in

both hardwares (The hardware in Fig. 1 and the hard-
ware in Fig. 2):

• New bit—1 flip-flop.
• Previous bit—1 flip-flop.
• P—4 flip-flops.
• Q—4 flip-flops.
• Write size—2 flip-flops.
• More bits—2 flip-flops.
• Follow—depends on how much follow bits are al-
lowed to be.

• Read address, Write address—depends on what is
the last address in memory.

The sum of the number of flip-flops in these circuits
is a few dozens.

4 multiplexor and 4 adders will be needed too.
The estimation for the number of gates in hard-

ware is some hundreds of gates. A larger N and M will
give a circa linear increase in number of gates, since
the number of lines which go into functions, is roughly
logarithmic in N, M and the number of gates is roughly
exponential in the number of lines which go into func-
tions.

Figure 3 describes the progress of the machine by
showing the pipeline chart. The names of the clock
cycles are:

• New is the clock cycle when a new bit is read from
memory into the New bit flip-flop.

• P is the clock cycle when P state is computed.

0 2 4 6 8 10 12 14 16

Clock cycles

New

New

New

New

New
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P

P

P
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Q

Q

Q

Q

Q

F

F

F

F

F

R

R

R

R

R

Fig. 3 Pipeline chart.

• Q is the clock cycle when Q state is computed.
• F is the clock cycle when the new follow bits are
computed and the leading bit with the old follow
bits are written into memory.

• R is the clock cycle when the remaining bits are
written into memory.

As was mentioned the clock cycle period of New,
P and Q is twice of the clock cycle period of F and
R. In Fig. 3 we can see the progress of this machine as
function of time.

4. Improving Performance by Canceling the
Clock Time Doubling

Doubling the clock time period causes a decline in per-
formance. We shall try finding another solution to the
problems that were solved by doubling the clock cycle
period.

The first problem was that the computing time
of Q was too long. Such a duration can decline the
clock cycle rate. The second problem was that we
had to write into memory two different values in vari-
able lengths. The length was not known so we didn’t
know how much increase should be done to the address
pointed by Write address register. The values were first
the leading bit and the follow bits that should be writ-
ten after it and second the remaining bits.

In order to solve the first problem of computing Q,
we should split the computing into two stages. These
stages will be done in two separated clock cycles. We
should add a new register that will save the intermedi-
ate value.

In order to solve the second problem of writing two
different values in variable sizes, we should add a mul-
tiplexor. The possible numbers of the follow bits are
higher than the possible numbers of the remaining bits.
Hence the remaining bits of the previous step will be
joined to the follow bits of the current step. The mul-
tiplexor will select how many bits can be omitted from
the remaining bits. In fact the select lines of the multi-
plexor will have exactly the same value as the lines that
determine the number of bits which should be written
in memory.

The writing of the remaining bits will be delayed
by one cycle in order to enable the hardware to compute
the follow bits of the next clock cycle. This delay can be
done by connecting registers that will delay the writing
of the remaining bits in one clock cycle. There will be
two registers for this purpose. One register for delaying
the adding of the number of bits to the address pointed
by Write address register. One more register to delay
the writing of the remaining bits into memory.

In Fig. 4 the new hardware is shown.
In Fig. 5 the hardware for computing P and Q

states is shown. This hardware is very similar to the
hardware in Fig. 1. The only difference is that in this
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Fig. 4 New hardware for handling the memory.

Fig. 5 New hardware for handling P and Q states.

hardware there is a new register Q1, which saves the
intermediate value of computing Q states.

Now we should give a new name to the new clock
cycle that was added. The new clock cycle in which
Q1 is computed will be denoted Q1. The new pipeline

chart will be as described in Fig. 6.
The estimation for the number of gates in this im-

plementation will be very close to that of the previous
implementation, because of the similarity in circuits.
However, the time savings are significant. The longest
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operation which has to be completed in one cycle is the
memory access. According to [30], memory access time
is decreasing over years, but the decrease is not linear
in the number of years. The change in access time is
getting smaller every year, but still access time itself
is getting shorter every year. Every decrease can be
helpful in reducing the clock cycle, so more bits can
be compressed in a shorter time period. Nowadays, ac-
cording to [31], such an access can take about 25–110 ns.
In this implementation every bit will be compressed in
one cycle, instead of two cycles. There is always an ad-
dition of five clock cycles to the total amount of cycles,
in order to wait for the last bit, but if the amount of
data to be compressed is large enough, these five cy-
cles can be neglected. This means that if the caching
system works well, some Megabits can be compressed
in one second. An improvement is expected in coming
years when memory access time will be reduced.

5. Conclusion

A systolic hardware for an implementation of a Quasi
Arithmetic compression for binary values has been pro-
posed. The implementation succeeds to compress K
bits in K + 5 clock cycles. Such a chip should be con-
nected to a very high speed computer which can do the
software assignment in an appropriate time.
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