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Abstract— Several simulations for parallel vehicular collision 
detection have been suggested during the last years. Such a 
simulator saves the need to physically cause the collision. The 
algorithms usually greatly depend on the parallel infrastructure 
and this dependency causes in many times non-scalability per-
formance. The dependency also harms the portability of the 
simulation. This paper suggests a scalable and portable parallel 
algorithm for a vehicular collision detection simulation that fits 
both clusters and MPI machines. This paper explains how this 
Simulator was designed and implemented in a large transporta-
tion company. 

I. INTRODUCTION 

HERE are many vehicular simulation software tools in 
the civilian and military markets for many purposes [1], 

for example Crash Detection Simulation [2], Vehicle Surviv-
al Performance [3], Sensor Calibration Optimization, Safety 
and Simulation of Car accidents. All of these tools are based 
on three-dimensional shapes that made up of elementary 
polygons. Such simulation systems are designed to illustrate 
the real world; hence, they require high accuracy. High accu-
racy is obtained by using ten thousands to millions of poly-
gons [4]. Handling so many polygons obviously requires 
enormous computation resources. 

To accommodate the many requirements of the computa-
tional geometry functions (e.g. Polygon-Polygon intersec-
tions in a space where each polygon has its own velocity and 
acceleration) there will be a need for: 
• Clever algorithms that can reduce the complexity of the 

function. 
• Utilization of as many as possible of processors i.e. pa-

rallel or distributed computation. 
In this paper, we present a parallel algorithm for Collision 

Detection Simulation. The suggested algorithm is based on 
the Locality Principle and the Load Balance Principle. The 
algorithm is suitable for both complex and simple geometry 
models with no dependency on the parallel environment and 
the architecture of the machines [5]. 

II. SCALABLE COLLISION DETECTION 
The new parallel simulation that is suggested in this paper 

includes several advantages over the known parallel collision 
detection simulations [6,7,8,9]. The main idea of the sug-
gested simulation is keeping the scalability principle while 
not abandoning the locality principle and the load balancing 
of the system [10]. 

We can use one of the known algorithms for Bounding 
Volumes Hierarchies to check the intersection or a collision 
of two models [11]. Let us define the smallest "work unit" as 

one operation (like a collision detection) on a complex geo-
metry model or one operation between two complex geome-
try models. Indeed, a finer split into smaller unit could have 
been done like the author of [6] suggest; however, the cost of 
execution of one "work unit" that we suggest will be still 
very small, even if the geometry model is very complex. 
Experiments show that a splitting of geometry models into 
too many smallest units can produce too much overhead. 

Let us define "processing unit" as one process that gets 
some parts of the collision detection procedure and returns 
the results to the master process. Any process in the parallel 
system can migrate from one processor to another processor 
in the same machine or migrate from one node (machine) to 
another node in the same computer cluster, if this is the poli-
cy of the parallel infrastructure. 

The algorithm uses the Vector Space technique [12] to 
find similarity of scenarios ("work units") and machines 
("processing units") in a similar way of queries in document 
sets in the Information Retrieval field. 

Let us assume that we have two geometry models consist 
of basic polygons, n different scenarios where the models are 
placed in various places and various orientations and there is 
a collision in each scenario.  

The work is defined as finding ∑ k୧୬ଵ  intersection points of 
two objects in the n different scenarios where ki is the num-
ber of the intersection points in scenario i. In such a case, the 
finding of one single collision will be denoted as one "work 
unit".  

TABLE 1 
Example of a "work unit" list 

 
scenario BB1 BB2 BB3 BB4 BB5 BB6 

1 0 0 1 0 1 4 
2 0 11 1 1 1 0 
3 1 11 1 1 0 4 
4 0 0 1 0 0 0 
5 0 11 1 1 1 0 
6 … … … … … … 

 
scenario BB1 BB2 BB3 BB4 

1 2 0 14 6 
2 2 1 14 6 
3 0 0 14 6 
4 0 1 0 0 
5 0 1 0 6 
6 … … … … 

A. The Simulation Algorithm 
Let us denote np as the maximal processors in our ma-
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chine. 
• Create np children that will be the "processing units". 
• Create a queue of "processing units" in an arbitrary order. 
• Construct the Bounding Volumes hierarchy of the two 
geometry models by one of the known models that have been 
cited above. The data structure can be saved along with the 
geometry information so there will be no need to reconstruct 
the hierarchy many times. The Bounding Volumes hierarchy 
trees represent the geometry models and any leaf in any tree 
contains one basic polygon. The indices are put in nodes of 
no more than level d in each tree from left to right as can be 
seen in Fig. 1. 
• Create a list of scenarios containing for each scenario, the 
scenario index and the Bounding Volume vector. i. e. for 
each scenario ("work unit"), the Bounding Volumes (the 
black nodes in Fig. 1) that are a part of the current check will 
be put in the list. 
• Let us denote the Bounding Volume vector as BB. The 
value of a BBi that is not intersected in the given scenario 
will be 0. The value of a BBj that is intersected in the given 
scenario will be the number of the primitive polygons that 
the Bounding Volume bounds. An example for such a data 
structure can be seen in Table 1 -- The first table is the 
Bounding Volume vectors that are intersected in given scena-
rios for the geometry model that is depicted in Fig. 1 The 
second table depicts Bounding Volume vectors for the same 
scenarios but for the geometry colliding with the first model.  
• Create a list of "processing units". Each "processing unit" 
will contain a vector in the same length as the vectors in the 
"work unit" list. In the beginning, these vectors are zeroed. 
• Allocate q scenarios for each "processing unit" in this 
way: 
• For each "work unit" in the processing queue, the q free 
scenarios that are most similar to the "work unit" vector will 
be selected. The most similar scenarios can be chosen by the 
well-known VS tactic [12] i.e. a scalar multiplication of the 
scenario vector and the "processing unit" vector. 
• These q scenarios will be allocated for these q 
"processing units" and will be removed from the "work unit" 
list. 
• The "processing unit" vector will be update by a switch 
of 0 to 1 for any Bounding Volume that was added by the 
new q scenarios. 
• Any "processing unit" finds the collision points of the 
two geometry models for any scenario that was allocated for 
this specific "processing unit". If the "processing unit" needs 
more information on the primitive polygons and it does not 
have the information, the "processing unit" will call the par-
ent process and will get this information from it. The 
"processing unit" will cache this information for a possible 
future use. 
• When a "processing unit" finishes its jobs, the 
"processing unit" will call the parent process and will return 
the results about the intersections that were found in each 
scenario. The parent process will add the "processing unit" to 
the free "processing unit" queue. 

• This procedure will be repeated until the "work unit" 
list is empty. 

Fig. 1 depicts an example of a node indexing getting to 
level 4 in the tree. Each of the filled squares leaves represent 
one single polygon. The white nodes represent internal nodes 
whereas the black nodes are the nodes that will be indexed 
and will be put in the geometry vector. The number within 
the node indicate the number of the polygons within the vo-
lume that the node bounds. The number beside the node is 
the index of the node in the vector.  

Fig. 1: Example of a node indexing 

B. The Simulation Analysis 
It can be seen that the "work unit" splitting mechanism 

enables the simulation to keep the locality principle, because 
the splitting of a job that contains information on parts of the 
geometry model is similar to the information that the 
"processing unit" has worked on it. In this way, the overhead 
of transferring the geometry models to all the machines in 
the cluster is prevented. If the geometry models are very 
complex (This is very common in many simulation tools) 
and the communication line speed is the common 1Gb/sec, 
the execution time can be improved significantly. 

The simulation keeps the load balancing in the "processing 
units" by managing a dynamic queue and allocation of a 
small work portion in each iteration for each "processing 
unit". In this way, an optimal computation time will be ob-
tained even if the simulation is executed on a complex paral-
lel infrastructure.  

The simulation allocates the needed memory for each 
work portion in each "processing unit" and in that way the 
simulation saves unnecessary memory allocations in other 
machines in the cluster [13]. 

The simulation is generic and it can be independently im-
plemented on any Operating System, Middleware, Hardware 
or Framework. The simulation is fully portable and can be 
used in any environment.  



 

There is no harm for the simulation performance in any 
geometry models. The simulation can handle flawlessly 
geometry of different sizes or shapes. 

III. IMPLEMENTATION 
Our collision detection algorithm was implemented based 

on a wide background including several fields, like: comput-
er graphics, computational geometry, object oriented pro-
gramming and distributed programming. Our implementation 
can be divided into two categories: a Serial infrastructure and 
a Parallel infrastructure [14]. The serial infrastructure in-
cludes the following elements: 
• Basic mathematical and geometrical operations of matrices 

and vectors. 
• Primitives intersection algorithms, like point, line, seg-

ment, plane and triangle. 
• 3D interactive viewer implemented in openGL. 
• Loading geometry information from a file. 
• Generating an OBB tree. 
• Intersections between two OBB trees. 
The parallel infrastructure includes the following elements: 
• Data structures for parallel OBB Trees. 
• A particular client-server model. 
• A "Matchmaker" object. 
• A parallel algorithm for an intersection between two OBB 

trees. 

A. OBB Tree Generation 
Given a triangular mesh consisting of a vertices collection 

and a connectivity list, the basic methodology to constructing 
an OBB tree is recursive. 

The generation process can be divided into three major 
steps:  
1. Generating a bounding box for the set of remained trian-

gles. 
2. Splitting the set of triangles into two submeshs. 
3. Running the recursive process on the two new split 

submeshs. 
The motivation of splitting the triangles into two submeshs 

is creating bounding boxes with a minimal volume for the 
submeshes. This split typically produces a better regional 
distinction that helps the parallel collision detection algo-
rithm to build distinctive clients and fewer nodes will be 
needed in each scenario of collision detections. 

B.  Data Structures for Parallel OBB Trees 
Our suggested algorithm has an unusual implementation 

of bounding box trees. Not all the nodes are known by the 
clients. This is the reason why we need a different imple-
mentation of OBB tree data structure. We call this data struc-
ture, Parallel OBB Tree. 

The parallel OBB tree inherits its properties from a stan-
dard OBB tree object. Additional members and methods 
provide the parallel OBB tree parallel attributes. The client 
holds a list of pointers to the nodes, which contain the 
bounding volume vector of the parallel OBB tree. The client 

initializes the pointers in the list to null at the beginning of 
the analysis. Each time the client needs to analyze a collision 
detection scenario, the client will set all its relevant pointers 
from the list to the new distributed root subtrees, which play 
a part in the scenario. These subtrees are received from the 
master process. A detailed explanation of the implementation 
can be found at our project website: 

http://u.cs.biu.ac.il/~wiseman/Collision.htm 

IV. EXPERIMENTAL RESULTS 
The comparisons tests that are shown in this section focus 

on the differences between the "matchmaker" algorithm sug-
gested in this paper to other algorithms of client selection. 

All the experimental results were conducted on the same 
setting consists of an heterogenic computer cluster with 5 
computers of 2 dual cpus, Intel Xeon 2.8Ghz Dual Core and 
3GB RAM, 4 computers of 2 dual cpu, Xeon 2.4Ghz Single 
Core, and 2GB RAM, altogether 28 cores in the cluster. The 
cluster was interconnected with 1Gbps LAN network. Linux 
Kernel 2.6 with Mosix 2.0 was installed on all the comput-
ers. We selected two different geometries for our tests. The 
first one represents a heavy vehicle model that is represented 
by approximately 300,000 triangles and its serialized Parallel 
OBB tree consumes approximately 62MB. The second geo-
metry represents a small car model with approximately 
90,000 triangles and its serialized Parallel OBB tree con-
sumes approximately 19MB. 

The number of collisions scenarios chosen for each test 
depended on the geometry size. With the aim of emphasize 
the matchmaker's contribution to the simulation, it is impor-
tant to limit the number of scenarios. At the first step of the 
computation, when the computer cluster spends a lot of time 
on acquiring the geometry data but it is required to quickly 
analyze scenarios, the matchmaker is mostly needed. The 
number limit of the scenarios was chosen in a trial and error 
way - for each test we seek out the limit that caused a per-
formance drop comparing to the other algorithms. 

The matchmaker algorithm described in this paper is based 
on finding out the client with the most similar geometry parts 
to the given collision detection scenario. With the purpose of 
testing this algorithm, we need to compare different match-
ing strategies between a client and a scenario. We compared 
the following algorithms: 
• Best Match - The suggested algorithm of this paper 
• Random Match - For each scenario, a random un-

claimed client will be picked. This algorithm represents 
a strategy that actually does not find a connection be-
tween clients and scenarios. 

• Lowest Match - For each scenario, the unclaimed client 
with the geometry that less resembles the scenario is se-
lected. 

• Best Match-Load - One can argue that if a client is 
loaded with many scenarios, this client should not be 
preferred to analyze the next scenario over a less loaded 
client even if the less loaded client's geometry is less 
similar. A client load is calculated by dividing the buf-



   

fered scenarios in the client by its buffer maximal size. 
We took into consideration both the load and the geome-
try similarity to the client.  

In the tests performed in the following sections, the fol-
lowing parameters have been used: 
• Collisions between "heavy vehicle" to Jaguar scenarios 

and collisions between two Jaguars scenarios. 
• Scenarios buffer size (q) has been set to 20, which is 

approximately the optimal value.  
• The fixed geometry has been distributed at depth 12 for 

the "heavy vehicle" and at depth 10 for the Jaguar, 

which is approximately the optimal value.  

A. Amount of Scenarios Influence Analysis 
The main data transmission overhead occurs at the early 

stages of the work, when all the clients have small portions 
of the geometries parts. At this stage, each new starting job 
consumes more time due to many geometry parts transmis-
sion. Testing the influence of the number of scenarios from 
the early stage to the saturation stage, when there is a little 
data transmission overhead for each job submission, is sig-
nificant. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
           (a)              (b) 

Fig. 2. Amount of scenarios influence analysis on (a) speedup and (b) relative data transfer of "heavy vehicle" with Jaguar 
collisions 

 
In Fig. 2 we tested this influence from two different as-

pects, speedup and relative data transfer. The speedup is cal-
culated by dividing the weighted serial time by the parallel 
time measured for each test. The relative data transfer is cal-
culated by dividing the total amount of data transmitted to 
the remote clients by the entire serial size of the two test 
geometries, as is mentioned at the beginning of the experi-
mental results section. 

It can be seen in Fig. 2 that Best Match and Best Match-
Load algorithms give the best speedup. When the number of 
scenarios gets bigger, the ratio between the performances of 
these two algorithms and the other two algorithms will get 
bigger. At the final stage (100% of the scenarios), the spee-
dup gets to 20 out of 25 comparing to Lowest Match, which 
gets only to speedup of 12. As long as there are more scena-
rios the clients will collect more geometries portions. Best 
Match algorithms utilize this way of collecting to reduce the 
data transmission overhead. The Best Match algorithms re-
duce transferred data, which causes less memory allocations 
at the clients, comparing to the two other algorithms. It can 
be seen that Best Match-Load algorithm does not give any 
significant performance improvement comparing to the stan-
dard Best Match algorithm. 

B. Distribution Depth Analysis 
We have examined the influence of various depths of the 

OBB tree on the matchmaker algorithms. The results are 
shown in Fig. 3. It can be noticed that Best Match algorithms 
give better performance, both in speedup and relative data 
transfer.  

Fig. 3 also shows that each geometry model has an optim-
al distribution depth, particularly, for "heavy vehicle", the 
optimal distribution depth is 12 and for Jaguar, the optimal 
distribution depth is 10. 

It can be concluded from Fig. 3 that if the given geometry 
model is bigger, the relative performance of the Best Match 
algorithm will be better.  

We can see in Fig. 3 trimmed lines in the low distribution 
depth of Lowest Match and Random Match algorithms. This 
missing data has been ensued as a result of a crash at the 
transmitting machine due to a lack of memory. At the initial 
stage, when the first jobs are transmitted, all the remote 
clients are still located as a process at the local (transmitting) 
machine waiting for being migrated to other machine in the 
cluster. When using a memory wasteful algorithm like Low-
est Match or Random Match, the machine can quickly run 
out of memory and crash [15]. 

We also checked the influence of several scenarios buffer 
sizes on the matchmaker algorithms. We concluded that a 
buffer size 20MB gives the best performance in most of the 
algorithms. Increasing the buffer size can cause a perfor-
mance drop because the clients are occupied for too long 
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time and consequently they lose scenarios that other less 
suitable clients will take.  

Another reason that can cause the performance drop is the 
increasing transmission time that the main process takes to 

transmit its first tasks to the clients. The initial time of the 
process is crucial for decent performance because at this time 
period, the clients are idle and parallelism still does not take 
place.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           (a)              (b) 
 
 
 
 
 
 
 
 
 
 
 
 
           (c)              (d) 
Fig. 3. Distribution depth analysis of (a) speedup and (b) relative data transfer of "heavy vehicle" with Jaguar collisions 

and of (c) speedup and (d) relative data transfer of two Jaguars collisions. 
 

C. Scalability Analysis 
The cluster that was used for the tests contains two types 

of CPUs; one is almost two times faster than the other. We 
biased the number of processing units (can be referred as 
max speedup of the cluster) in respect to the faster CPU. The 
relative speeds of the two different CPUs were calculated as 
a ratio of them and the serial results. Table 2 shows the clus-
ter weights calculated for several cluster configurations.  

Fig. 4 shows the influence of several cluster configura-
tions on the matchmaker algorithms. It can be seen that Best 
Match algorithms are scalable to the number of processing 
units in the cluster. Lowest Match and Random Match algo-
rithms do not scale up well. We can also see in Fig. 4a that 
when the tested geometries are big, it will be unworthy to use 
more than 20 weighted cores for the scenarios analysis for 
those two algorithms. 

When using less than 16 weighted cores, the performance 

is equal for all algorithms. This comes about because the 
geometry transmission to the clients comes to an end very 
quickly because of the small number of clients.  

 
 
 
 
 
 
 

 

V. CONCLUSIONS AND FUTURE WORK 
Simulators for collision detection are an intelligent trans-

portation system that helps us to know more about vulnera-
ble points of a vehicle [16] and can help us to make the ve-
hicle safer. 

TABLE 2 
           Tested Cluster Configurations 
            No. of CPU Cores 
Fast Computer Slow Computer Weighted Cores 

12 0 12.0 
16 0 16.0 
16 6 19.8 
20 8 25.0 
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           (a)              (b) 
Fig. 4. Processing units' scalability analysis on (a) speedup of "heavy vehicle" with Jaguar collisions and (b) speedup of 

two Jaguars collisions 
 
Given complex geometry models, the simulation can 

detect an intersection in an efficient execution time. The 
suggested simulation cuts down the initial overhead of test-
ing a parallel collision between complicated vehicle geome-
tries on a computer cluster. This overhead is cut down by 
minimizing the dependency of data transfer growth and the 
number of processing units in the cluster. This is the reason 
why the suggested simulation scales up well in respect to the 
cluster size and the geometries size, whereas standard algo-
rithms fail to scale up well. Reducing the amount of clients' 
memory allocation is another benefit of the suggested simu-
lation. This reducing gives the simulation the flexibility to be 
ported to any given parallel infrastructure. 

In the future we would like to add an ability of transferring 
geometry data between clients with the intention of reducing 
the I/O load of the transmitting machine. When a client will 
need a geometry portion that another client has, the clients-
manager will be able to transmit the missing portion to this 
client. 

Another interesting addition we would like to integrate in-
to this simulation is our work on the subject of compressing 
the transferred data on top of the communication channel 
[17]. The compression of the different parts of the OBB tree 
can be done in the preprocessing phase [18,19] and can re-
duce the overhead of the data transmission. 
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