

Scalable Parallel Simulator for Vehicular Collision Detection
Ilan Grinberg and Yair Wiseman

Lucidlogix Technologies Ltd. Holon Institute of technology
Israel

wiseman@cs.huji.ac.il

Abstract— Several simulations for parallel vehicular collision
detection have been suggested during the last years. Such a
simulator saves the need to physically cause the collision. The
algorithms usually greatly depend on the parallel infrastructure
and this dependency causes in many times non-scalability per-
formance. The dependency also harms the portability of the
simulation. This paper suggests a scalable and portable parallel
algorithm for a vehicular collision detection simulation that fits
both clusters and MPI machines. This paper explains how this
Simulator was designed and implemented in a large transporta-
tion company.

I. INTRODUCTION

HERE are many vehicular simulation software tools in
the civilian and military markets for many purposes [1],

for example Crash Detection Simulation [2], Vehicle Surviv-
al Performance [3], Sensor Calibration Optimization, Safety
and Simulation of Car accidents. All of these tools are based
on three-dimensional shapes that made up of elementary
polygons. Such simulation systems are designed to illustrate
the real world; hence, they require high accuracy. High accu-
racy is obtained by using ten thousands to millions of poly-
gons [4]. Handling so many polygons obviously requires
enormous computation resources.

To accommodate the many requirements of the computa-
tional geometry functions (e.g. Polygon-Polygon intersec-
tions in a space where each polygon has its own velocity and
acceleration) there will be a need for:
• Clever algorithms that can reduce the complexity of the

function.
• Utilization of as many as possible of processors i.e. pa-

rallel or distributed computation.
In this paper, we present a parallel algorithm for Collision

Detection Simulation. The suggested algorithm is based on
the Locality Principle and the Load Balance Principle. The
algorithm is suitable for both complex and simple geometry
models with no dependency on the parallel environment and
the architecture of the machines [5].

II. SCALABLE COLLISION DETECTION
The new parallel simulation that is suggested in this paper

includes several advantages over the known parallel collision
detection simulations [6,7,8,9]. The main idea of the sug-
gested simulation is keeping the scalability principle while
not abandoning the locality principle and the load balancing
of the system [10].

We can use one of the known algorithms for Bounding
Volumes Hierarchies to check the intersection or a collision
of two models [11]. Let us define the smallest "work unit" as

one operation (like a collision detection) on a complex geo-
metry model or one operation between two complex geome-
try models. Indeed, a finer split into smaller unit could have
been done like the author of [6] suggest; however, the cost of
execution of one "work unit" that we suggest will be still
very small, even if the geometry model is very complex.
Experiments show that a splitting of geometry models into
too many smallest units can produce too much overhead.

Let us define "processing unit" as one process that gets
some parts of the collision detection procedure and returns
the results to the master process. Any process in the parallel
system can migrate from one processor to another processor
in the same machine or migrate from one node (machine) to
another node in the same computer cluster, if this is the poli-
cy of the parallel infrastructure.

The algorithm uses the Vector Space technique [12] to
find similarity of scenarios ("work units") and machines
("processing units") in a similar way of queries in document
sets in the Information Retrieval field.

Let us assume that we have two geometry models consist
of basic polygons, n different scenarios where the models are
placed in various places and various orientations and there is
a collision in each scenario.

The work is defined as finding ∑ k୧୬ଵ intersection points of
two objects in the n different scenarios where ki is the num-
ber of the intersection points in scenario i. In such a case, the
finding of one single collision will be denoted as one "work
unit".

TABLE 1
Example of a "work unit" list

scenario BB1 BB2 BB3 BB4 BB5 BB6

1 0 0 1 0 1 4
2 0 11 1 1 1 0
3 1 11 1 1 0 4
4 0 0 1 0 0 0
5 0 11 1 1 1 0
6 … … … … … …

scenario BB1 BB2 BB3 BB4

1 2 0 14 6
2 2 1 14 6
3 0 0 14 6
4 0 1 0 0
5 0 1 0 6
6 … … … …

A. The Simulation Algorithm
Let us denote np as the maximal processors in our ma-

T

chine.
• Create np children that will be the "processing units".
• Create a queue of "processing units" in an arbitrary order.
• Construct the Bounding Volumes hierarchy of the two
geometry models by one of the known models that have been
cited above. The data structure can be saved along with the
geometry information so there will be no need to reconstruct
the hierarchy many times. The Bounding Volumes hierarchy
trees represent the geometry models and any leaf in any tree
contains one basic polygon. The indices are put in nodes of
no more than level d in each tree from left to right as can be
seen in Fig. 1.
• Create a list of scenarios containing for each scenario, the
scenario index and the Bounding Volume vector. i. e. for
each scenario ("work unit"), the Bounding Volumes (the
black nodes in Fig. 1) that are a part of the current check will
be put in the list.
• Let us denote the Bounding Volume vector as BB. The
value of a BBi that is not intersected in the given scenario
will be 0. The value of a BBj that is intersected in the given
scenario will be the number of the primitive polygons that
the Bounding Volume bounds. An example for such a data
structure can be seen in Table 1 -- The first table is the
Bounding Volume vectors that are intersected in given scena-
rios for the geometry model that is depicted in Fig. 1 The
second table depicts Bounding Volume vectors for the same
scenarios but for the geometry colliding with the first model.
• Create a list of "processing units". Each "processing unit"
will contain a vector in the same length as the vectors in the
"work unit" list. In the beginning, these vectors are zeroed.
• Allocate q scenarios for each "processing unit" in this
way:
• For each "work unit" in the processing queue, the q free
scenarios that are most similar to the "work unit" vector will
be selected. The most similar scenarios can be chosen by the
well-known VS tactic [12] i.e. a scalar multiplication of the
scenario vector and the "processing unit" vector.
• These q scenarios will be allocated for these q
"processing units" and will be removed from the "work unit"
list.
• The "processing unit" vector will be update by a switch
of 0 to 1 for any Bounding Volume that was added by the
new q scenarios.
• Any "processing unit" finds the collision points of the
two geometry models for any scenario that was allocated for
this specific "processing unit". If the "processing unit" needs
more information on the primitive polygons and it does not
have the information, the "processing unit" will call the par-
ent process and will get this information from it. The
"processing unit" will cache this information for a possible
future use.
• When a "processing unit" finishes its jobs, the
"processing unit" will call the parent process and will return
the results about the intersections that were found in each
scenario. The parent process will add the "processing unit" to
the free "processing unit" queue.

• This procedure will be repeated until the "work unit"
list is empty.

Fig. 1 depicts an example of a node indexing getting to
level 4 in the tree. Each of the filled squares leaves represent
one single polygon. The white nodes represent internal nodes
whereas the black nodes are the nodes that will be indexed
and will be put in the geometry vector. The number within
the node indicate the number of the polygons within the vo-
lume that the node bounds. The number beside the node is
the index of the node in the vector.

Fig. 1: Example of a node indexing

B. The Simulation Analysis
It can be seen that the "work unit" splitting mechanism

enables the simulation to keep the locality principle, because
the splitting of a job that contains information on parts of the
geometry model is similar to the information that the
"processing unit" has worked on it. In this way, the overhead
of transferring the geometry models to all the machines in
the cluster is prevented. If the geometry models are very
complex (This is very common in many simulation tools)
and the communication line speed is the common 1Gb/sec,
the execution time can be improved significantly.

The simulation keeps the load balancing in the "processing
units" by managing a dynamic queue and allocation of a
small work portion in each iteration for each "processing
unit". In this way, an optimal computation time will be ob-
tained even if the simulation is executed on a complex paral-
lel infrastructure.

The simulation allocates the needed memory for each
work portion in each "processing unit" and in that way the
simulation saves unnecessary memory allocations in other
machines in the cluster [13].

The simulation is generic and it can be independently im-
plemented on any Operating System, Middleware, Hardware
or Framework. The simulation is fully portable and can be
used in any environment.

There is no harm for the simulation performance in any
geometry models. The simulation can handle flawlessly
geometry of different sizes or shapes.

III. IMPLEMENTATION
Our collision detection algorithm was implemented based

on a wide background including several fields, like: comput-
er graphics, computational geometry, object oriented pro-
gramming and distributed programming. Our implementation
can be divided into two categories: a Serial infrastructure and
a Parallel infrastructure [14]. The serial infrastructure in-
cludes the following elements:
• Basic mathematical and geometrical operations of matrices

and vectors.
• Primitives intersection algorithms, like point, line, seg-

ment, plane and triangle.
• 3D interactive viewer implemented in openGL.
• Loading geometry information from a file.
• Generating an OBB tree.
• Intersections between two OBB trees.
The parallel infrastructure includes the following elements:
• Data structures for parallel OBB Trees.
• A particular client-server model.
• A "Matchmaker" object.
• A parallel algorithm for an intersection between two OBB

trees.

A. OBB Tree Generation
Given a triangular mesh consisting of a vertices collection

and a connectivity list, the basic methodology to constructing
an OBB tree is recursive.

The generation process can be divided into three major
steps:
1. Generating a bounding box for the set of remained trian-

gles.
2. Splitting the set of triangles into two submeshs.
3. Running the recursive process on the two new split

submeshs.
The motivation of splitting the triangles into two submeshs

is creating bounding boxes with a minimal volume for the
submeshes. This split typically produces a better regional
distinction that helps the parallel collision detection algo-
rithm to build distinctive clients and fewer nodes will be
needed in each scenario of collision detections.

B. Data Structures for Parallel OBB Trees
Our suggested algorithm has an unusual implementation

of bounding box trees. Not all the nodes are known by the
clients. This is the reason why we need a different imple-
mentation of OBB tree data structure. We call this data struc-
ture, Parallel OBB Tree.

The parallel OBB tree inherits its properties from a stan-
dard OBB tree object. Additional members and methods
provide the parallel OBB tree parallel attributes. The client
holds a list of pointers to the nodes, which contain the
bounding volume vector of the parallel OBB tree. The client

initializes the pointers in the list to null at the beginning of
the analysis. Each time the client needs to analyze a collision
detection scenario, the client will set all its relevant pointers
from the list to the new distributed root subtrees, which play
a part in the scenario. These subtrees are received from the
master process. A detailed explanation of the implementation
can be found at our project website:

http://u.cs.biu.ac.il/~wiseman/Collision.htm

IV. EXPERIMENTAL RESULTS
The comparisons tests that are shown in this section focus

on the differences between the "matchmaker" algorithm sug-
gested in this paper to other algorithms of client selection.

All the experimental results were conducted on the same
setting consists of an heterogenic computer cluster with 5
computers of 2 dual cpus, Intel Xeon 2.8Ghz Dual Core and
3GB RAM, 4 computers of 2 dual cpu, Xeon 2.4Ghz Single
Core, and 2GB RAM, altogether 28 cores in the cluster. The
cluster was interconnected with 1Gbps LAN network. Linux
Kernel 2.6 with Mosix 2.0 was installed on all the comput-
ers. We selected two different geometries for our tests. The
first one represents a heavy vehicle model that is represented
by approximately 300,000 triangles and its serialized Parallel
OBB tree consumes approximately 62MB. The second geo-
metry represents a small car model with approximately
90,000 triangles and its serialized Parallel OBB tree con-
sumes approximately 19MB.

The number of collisions scenarios chosen for each test
depended on the geometry size. With the aim of emphasize
the matchmaker's contribution to the simulation, it is impor-
tant to limit the number of scenarios. At the first step of the
computation, when the computer cluster spends a lot of time
on acquiring the geometry data but it is required to quickly
analyze scenarios, the matchmaker is mostly needed. The
number limit of the scenarios was chosen in a trial and error
way - for each test we seek out the limit that caused a per-
formance drop comparing to the other algorithms.

The matchmaker algorithm described in this paper is based
on finding out the client with the most similar geometry parts
to the given collision detection scenario. With the purpose of
testing this algorithm, we need to compare different match-
ing strategies between a client and a scenario. We compared
the following algorithms:
• Best Match - The suggested algorithm of this paper
• Random Match - For each scenario, a random un-

claimed client will be picked. This algorithm represents
a strategy that actually does not find a connection be-
tween clients and scenarios.

• Lowest Match - For each scenario, the unclaimed client
with the geometry that less resembles the scenario is se-
lected.

• Best Match-Load - One can argue that if a client is
loaded with many scenarios, this client should not be
preferred to analyze the next scenario over a less loaded
client even if the less loaded client's geometry is less
similar. A client load is calculated by dividing the buf-

fered scenarios in the client by its buffer maximal size.
We took into consideration both the load and the geome-
try similarity to the client.

In the tests performed in the following sections, the fol-
lowing parameters have been used:
• Collisions between "heavy vehicle" to Jaguar scenarios

and collisions between two Jaguars scenarios.
• Scenarios buffer size (q) has been set to 20, which is

approximately the optimal value.
• The fixed geometry has been distributed at depth 12 for

the "heavy vehicle" and at depth 10 for the Jaguar,

which is approximately the optimal value.

A. Amount of Scenarios Influence Analysis
The main data transmission overhead occurs at the early

stages of the work, when all the clients have small portions
of the geometries parts. At this stage, each new starting job
consumes more time due to many geometry parts transmis-
sion. Testing the influence of the number of scenarios from
the early stage to the saturation stage, when there is a little
data transmission overhead for each job submission, is sig-
nificant.

 (a) (b)

Fig. 2. Amount of scenarios influence analysis on (a) speedup and (b) relative data transfer of "heavy vehicle" with Jaguar
collisions

In Fig. 2 we tested this influence from two different as-

pects, speedup and relative data transfer. The speedup is cal-
culated by dividing the weighted serial time by the parallel
time measured for each test. The relative data transfer is cal-
culated by dividing the total amount of data transmitted to
the remote clients by the entire serial size of the two test
geometries, as is mentioned at the beginning of the experi-
mental results section.

It can be seen in Fig. 2 that Best Match and Best Match-
Load algorithms give the best speedup. When the number of
scenarios gets bigger, the ratio between the performances of
these two algorithms and the other two algorithms will get
bigger. At the final stage (100% of the scenarios), the spee-
dup gets to 20 out of 25 comparing to Lowest Match, which
gets only to speedup of 12. As long as there are more scena-
rios the clients will collect more geometries portions. Best
Match algorithms utilize this way of collecting to reduce the
data transmission overhead. The Best Match algorithms re-
duce transferred data, which causes less memory allocations
at the clients, comparing to the two other algorithms. It can
be seen that Best Match-Load algorithm does not give any
significant performance improvement comparing to the stan-
dard Best Match algorithm.

B. Distribution Depth Analysis
We have examined the influence of various depths of the

OBB tree on the matchmaker algorithms. The results are
shown in Fig. 3. It can be noticed that Best Match algorithms
give better performance, both in speedup and relative data
transfer.

Fig. 3 also shows that each geometry model has an optim-
al distribution depth, particularly, for "heavy vehicle", the
optimal distribution depth is 12 and for Jaguar, the optimal
distribution depth is 10.

It can be concluded from Fig. 3 that if the given geometry
model is bigger, the relative performance of the Best Match
algorithm will be better.

We can see in Fig. 3 trimmed lines in the low distribution
depth of Lowest Match and Random Match algorithms. This
missing data has been ensued as a result of a crash at the
transmitting machine due to a lack of memory. At the initial
stage, when the first jobs are transmitted, all the remote
clients are still located as a process at the local (transmitting)
machine waiting for being migrated to other machine in the
cluster. When using a memory wasteful algorithm like Low-
est Match or Random Match, the machine can quickly run
out of memory and crash [15].

We also checked the influence of several scenarios buffer
sizes on the matchmaker algorithms. We concluded that a
buffer size 20MB gives the best performance in most of the
algorithms. Increasing the buffer size can cause a perfor-
mance drop because the clients are occupied for too long

3

5

7

9

11

13

15

17

19

20% 40% 60% 80% 100%
Re

la
ti

ve
 D

at
a

Tr
an

sf
er

Relative Amount of Scenarios

4

6

8

10

12

14

16

18

20

20% 40% 60% 80% 100%

Sp
ee

d
U

p

Relative Amount of Scenarios

Lowest Match

Random
Match

Best Match

Best Match-
Load

time and consequently they lose scenarios that other less
suitable clients will take.

Another reason that can cause the performance drop is the
increasing transmission time that the main process takes to

transmit its first tasks to the clients. The initial time of the
process is crucial for decent performance because at this time
period, the clients are idle and parallelism still does not take
place.

 (a) (b)

 (c) (d)
Fig. 3. Distribution depth analysis of (a) speedup and (b) relative data transfer of "heavy vehicle" with Jaguar collisions

and of (c) speedup and (d) relative data transfer of two Jaguars collisions.

C. Scalability Analysis
The cluster that was used for the tests contains two types

of CPUs; one is almost two times faster than the other. We
biased the number of processing units (can be referred as
max speedup of the cluster) in respect to the faster CPU. The
relative speeds of the two different CPUs were calculated as
a ratio of them and the serial results. Table 2 shows the clus-
ter weights calculated for several cluster configurations.

Fig. 4 shows the influence of several cluster configura-
tions on the matchmaker algorithms. It can be seen that Best
Match algorithms are scalable to the number of processing
units in the cluster. Lowest Match and Random Match algo-
rithms do not scale up well. We can also see in Fig. 4a that
when the tested geometries are big, it will be unworthy to use
more than 20 weighted cores for the scenarios analysis for
those two algorithms.

When using less than 16 weighted cores, the performance

is equal for all algorithms. This comes about because the
geometry transmission to the clients comes to an end very
quickly because of the small number of clients.

V. CONCLUSIONS AND FUTURE WORK
Simulators for collision detection are an intelligent trans-

portation system that helps us to know more about vulnera-
ble points of a vehicle [16] and can help us to make the ve-
hicle safer.

TABLE 2
 Tested Cluster Configurations
 No. of CPU Cores
Fast Computer Slow Computer Weighted Cores

12 0 12.0
16 0 16.0
16 6 19.8
20 8 25.0

9

11

13

15

17

19

6 8 10 12 14 16

Sp
ee

du
p

Distribution Depth

Best Match

Best Match-
Load

Random
Match

Lowest
Match

9

11

13

15

17

19

21

23

25

6 8 10 12 14 16

Re
la

ti
ve

 D
at

a
Tr

an
sf

er

Distribution Depth

8

10

12

14

16

6 8 10 12 14

Sp
ee

du
p

Distribution Depth

16
17
18
19
20
21
22
23

6 8 10 12 14

Re
la

ti
ve

 D
at

a
Tr

an
sf

er

Distribution Depth

 (a) (b)
Fig. 4. Processing units' scalability analysis on (a) speedup of "heavy vehicle" with Jaguar collisions and (b) speedup of

two Jaguars collisions

Given complex geometry models, the simulation can

detect an intersection in an efficient execution time. The
suggested simulation cuts down the initial overhead of test-
ing a parallel collision between complicated vehicle geome-
tries on a computer cluster. This overhead is cut down by
minimizing the dependency of data transfer growth and the
number of processing units in the cluster. This is the reason
why the suggested simulation scales up well in respect to the
cluster size and the geometries size, whereas standard algo-
rithms fail to scale up well. Reducing the amount of clients'
memory allocation is another benefit of the suggested simu-
lation. This reducing gives the simulation the flexibility to be
ported to any given parallel infrastructure.

In the future we would like to add an ability of transferring
geometry data between clients with the intention of reducing
the I/O load of the transmitting machine. When a client will
need a geometry portion that another client has, the clients-
manager will be able to transmit the missing portion to this
client.

Another interesting addition we would like to integrate in-
to this simulation is our work on the subject of compressing
the transferred data on top of the communication channel
[17]. The compression of the different parts of the OBB tree
can be done in the preprocessing phase [18,19] and can re-
duce the overhead of the data transmission.

VI. REFERENCES
[1] P. Jiménez, F. Thomas, and C. Torras, "3d Collision Detection: A Sur-

vey", Computers and Graphics, Vol. 25(2), pp. 269-285, 2001.
[2] S. Brown, S. Attaway, S. Plimpton, and B. Hendrickson, "Parallel

Strategies for Crash and Impact Simulations" Computer Methods in
Applied Mechanics and Engineering, Vol. 184, pp. 375-390, 2000.

[3] L. Thomas Wasmund. "New Model to Evaluate Weapon Effects and
Platform Vulnerability: AJEM. WSTIAC. 2001, Vol. 2, 4, pp. 1-3.

[4] B. Curless and M. Levoy. "A Volumetric Method for Building Com-
plex Models from Range Images", In Proceedings of ACM Siggraph
'96, pp. 303-312, 1996.

[5] R. B. Yehezkael, Y. Wiseman, H. G. Mendelbaum and I. L. Gordin,
Experiments in Separating Computational Algorithm from Program

Distribution and Communication, LNCS of Springer Verlag Vol. 1947,
pp. 268-278, 2001.

[6] M. Figueiredo and T. Fernando. "An Efficient Parallel Collision Detec-
tion Algorithm for Virtual Prototype Environments". ICPADS'04.
2004.

[7] O. Lawlor and L. Kale. "A Voxel-Based Parallel Collision Detection
Algorithm". Proceedings of the 16th international conference on Su-
percomputing. 2002.

[8] U. Assarsson and P. Stenstr. "A Case Study of Load Distribution in
Parallel View Frustum Culling and Collision Detection". Lecture Notes
in Computer Science Vol. 2150, pp. 663 - end, 2001.

[9] O. Lawlor. "A Grid-Based Parallel Collision Detection Algorithm",
Master's thesis, University of Illinois at Urbana-Champaign, March
2001.

[10] I. Grinberg and Y. Wiseman, Scalable Parallel Collision Detection
Simulation, Proc. Signal and Image Processing (SIP-2007), Honolulu,
Hawaii, pp. 380-385, 2007.

[11] G. van der Bergen . "Collision Detection in interactive 3D Environ-
ments" Spatial Data Structures, pp. 171-217, 2004.

[12] Salton, G., Wong, A., and Yang, C. S.. "A Vector Space Model for
Automatic Indexing". Commun. ACM vol. 18(11), pp. 613-620, Nov.
1975.

[13] M. Geva and Y. Wiseman, Distributed Shared Memory Integration,
Proc. IEEE Conference on Information Reuse and Integration (IEEE
IRI-2007), Las Vegas, Nevada, pp. 146-151, 2007.

[14] Y. Wiseman, ASOSI: Asymmetric Operating System Infrastructure,
Proc. 21st Conference on Parallel and Distributed Computing and
Communication Systems, (PDCCS 2008), New Orleans, Louisiana,
pp. 193-198, 2008.

[15] M. Reuven and Y. Wiseman, Medium-Term Scheduler as a Solution
for the Thrashing Effect, The Computer Journal, Oxford University
Press, Swindon, UK, Vol. 49(3), pp. 297-309, 2006.

[16] A. Avila, G. Korkmaz, Y. Liu, H. Teh, E. Ekici, F. Ozguner, U. Oz-
guner, K. Redmill, O. Takeshita and K. Tokuda, A complete simulator
architecture for inter-vehicle communication based intersection warn-
ing systems, Proceedings of the Intelligent Transportation Systems
Conference, Vienna, Austria, pp. 461-466, 2005.

[17] Y. Wiseman, K. Schwan and P. Widener, "Efficient End to End Data
Exchange Using Configurable Compression", Proc. The 24th IEEE
Conference on Distributed Computing Systems (ICDCS 2004), Tokyo,
Japan, pp. 228-235, 2004.

[18] S. T. Klein and Y. Wiseman, Parallel Lempel Ziv Coding, Journal of
Discrete Applied Mathematics, Vol. 146(2), pp. 180-191, 2005.

[19] S. T. Klein and Y. Wiseman, Parallel Huffman Decoding with Applica-
tions to JPEG Files, The Computer Journal, Oxford University Press,
Swindon, UK, Vol. 46(5), pp. 487-497, 2003.

9

10

11

12

13

14

15

16

12 14 16 18 20 22 24

Sp
ee

du
p

No. of Weighted CPU cores (max speedup)

10

12

14

16

18

20

12 14 16 18 20 22 24

Sp
ee

d
U

p

No. of Weighted CPU cores (max speedup)

Best Match
Best Match-Load
Random Match
Lowest Match

