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Abstract — Operating Systems of Embedded Devices can 

manage application data more effectively. This directed us to 
consider a new dynamic memory management approach for GPS 
and similar embedded systems. The uniqueness of the suggested 
approach is shifting elements of the application to the Operating 
System with the aim of manage application data more effectively. 
A key component of an application is caching its data with the 
purpose of preventing excessive memory accesses and allocations. 
The suggested approach called “Cache Based Dynamic Memory 
Management” – CBDMM proposes to move the caching 
component from the application to the Operating Systems. We 
present CBDMM design, discusses its advantages and show 
encouraged benchmarking results.  

 

I. INTRODUCTION  

he use of GPS (Global Positioning System) turns out to 
be the standard of rent a car companies, taxis and actually 

it grows to be the standard of many conventional car. The 
adaption of all-purpose Operating Systems like Linux for 
GPS devices is an up-and-coming field [1]. A GPS is an 
embedded and Real-Time device; therefore the management 
of its resource is done differently [2]. 

An embedded/Real-Time environment adds additional 
constrains on the OS (Operating System), such as a lack of 
resources (memory, storage) and performance concerns. Most 
of the embedded devices do not have a permanent storage 
device like a hard disk. The reason is the high cost of the 
storage device or the necessary size that prevents the 
manufacturer from including the device in relatively small 
embedded systems. CPU that is used by an embedded device 
is usually much cheaper and as a result much slower than a 
regular PC CPU. In addition, there are predefined restrictions 
imposed on RTOS (Real Time Operating Systems) such as a 
deterministic time response in most of RTOS possible service 
requests. In this environment memory management is always 
tensed between two main constraints: a lack of memory for 
dynamic allocations and a deterministic time response for a 
memory allocation request. The survey below shows that 
RTOSes are divided into two main categories: 
• RTOSes preferring deterministic memory allocations 

over a possible fragmentation. 
• RTOSes prefferring a minimal fragmentation over 

deterministic memory allocations.  
Another important issue is the performance - allocation 

policy producing a minimal fragmentation can consume too 

much resources and CPU cycles. 
 

II. RELATED WORKS 

 The following survey reviews the basic dynamic memory 
allocation methods of the most common RTOSes. 
• VxWorks[3]: The memory management of VxWorks 

RTOS was replaced several times. The early versions of 
VxWorks implemented the first-fit allocation policy. 
Later versions of VxWorks implemented the best-fit 
allocation policy that according to some benchmarking 
causes less memory fragmentation and a better time 
response.  

• µC/OS-II[4]: Each task creates a pool of memory 
partitions. Each partition is planned for block allocations 
of a specific size. When a task requests to allocate a 
specific size of blocks the allocation should be done from 
the planned partition. This fixed block size allocation 
scheme helps to avoid fragmentation, because available 
memory is typically small in embedded applications. 
Allocations and deallocations of these fixed-sized 
memory blocks are done in a constant time and thus 
deterministic.  

• Nucleus[5]: The dynamic allocation is made out of the 
memory pool that is defined by the application. The 
dynamic allocation policy is a standard linear "first-fit". 
A block split mechanism will be applied if the first fitted 
block is significantly larger than the requested size. An 
application can allocate any number of pools. Due to a 
possible external fragmentation, the first-fit based block 
allocation process is not deterministic, but the 
deallocation is deterministic. 

• FreeRTOS[6]: The memory allocation algorithm simply 
subdivides a single array into smaller blocks as a 
dynamic memory allocator does and uses the best-fit 
allocation policy. An allocation of a block is always 
deterministic i.e. it always takes the same time to allocate 
a block). 

• RT-Linux[7]: The original version of RT-Linux did not 
provide any mechanism for dynamic memory allocation, 
because RT-Linux is non-determinism, but later versions 
of RT-Linux 2.2 have some dynamic memory allocation 
facilities which are based on predefined pools of blocks 
with fixed size (the size is configurable). The RT-Linux 
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memory allocator searches for the most appropriate 
preallocated block with a size that is not bigger than 
twice of the requested size. If all the preallocated blocks 
are bigger than twice of the requested size, the big block 
is splitted into pieces sized as the requested block and the 
first piece is returned for this request. This approach is 
pretty fast and reliable but is not deterministic. Also this 
approach is not suitable for the stack [8]. There was 
another try to implement dynamic memory management 
in RT-Linux based on the TLSF [1] algorithm with worst 
case allocation complexity of O(1) [9]. 

All the above methods have no cache mechanism for freed 
blocks. 
 

III. CBDMM 

It can be concluded from the above survey that usually 
RTOSes almost do not use virtual memory mechanism 
because its resource consumption is quite high and it requires 
a storage device that in most of the systems does not exist, 
and as a result there is no memory caching on memory 
management level. Even Operating Systems that implement a 
virtual memory approach have an internal cache logic that 
works on the memory pages level and manages application 
pages but does not involve in the application logic. The 
common concept is that the application logic is out of scope 
of OSes and particularly RTOSes. 

 

 
 
Figure 1 demonstrates the separation of application and 

RTOS. When an application reads data from any 
asynchronous read only source (IP, DVB Broadcast, DSM-
CC carousels, etc.) dynamic memory allocation may be 
required. The application requires the data using a data 
acquisition manager. In some system the data cycle-time is 
too long, so when some data is received, the application will 
try to save the currently unnecessary portions of data in the 
memory (if possible) for a later use, because most embedded 
systems do not have any storage device as was mentioned 
before or the storage device is too slow and the overlapping 
suggested in [10] will not be suitable. When there is no more 
room in the RAM for additional allocations, the application 

will free the data i.e. it is removed from memory until the 
next application access. It means that always when a new 
dynamic memory allocation fails, the application should 
release a data block which is part of some unused blocks list 
that the application needs to manage, and try to do the new 
allocation again.  

Another problem is that the data download manager is not 
aware of the application logic, so when an application 
requests some data, the application should translate its request 
into the download manager language that works on 
packets/module level. So even if the dynamic memory 
manager is able to cache the unnecessary application, the data 
download manager must be aware of this caching so it will 
not reread the data from the source. 

The main idea of the paper is adapting application logic to 
the dynamic memory management. Thus application can 
choose/provide an allocation policy for its dynamic memory 
allocation and also choose/provide the caching mechanism 
for caching/releasing allocated memory blocks. The new 
proposed dynamic memory management preferably should be 
the part of the RTOS and not a part of the application. 
Besides, the proposed scheme suggests making use of some 
kind of data acquisition layers that will manage cached 
memory blocks upon an application data request.  The 
acquisition manager is only a sample of how the proposed 
system can work. It shows in the best way the advantages of 
the new approach and can be either a part of the application 
or fully integrated entity in the OS. 

The following new components are defined: 
Data acquisition manager (DAM) – is a client of the 

CBDMM and also an application client, the responsibilities of 
DAM are: 
• Receiving data requests from an application and 

translating it into download manager requests. 
• Managing application data requests with its statuses. 

When application decides to release the requested data it 
is done also using the DAM. In this case DAM marks the 
released data as cached and keeps it till the next 
allocation request. 

• DAM is responsible for the dynamic memory allocations 
required for the data download, here DAM interacts with 
CBDMM 

• DAM serves as repository for all downloaded data. 
Cache based dynamic memory manager (CBDMM) – 

Memory manager. At each memory allocation request the 
CBDMM receives from DAM several figures: the list of 
required allocations, allocation policy, application callback, 
cache block list and cache policy application callback. After 
allocation transaction is succeeded, CBDMM will return to 
DAM the status of the cache list. Allocations and cache 
policies are managed by the application.  

Figure 1 demonstrates this model. 
How does it actually work? 

• The Application requires the data from DAM using a 
predefined protocol or a wild card/regular expression 



mechanism. For example download file with name 
“account_info.xml” from the remote server using tcp/ip 
protocol.  

• If the data is already loaded (in cache), DAM takes it 
from the cache and returns the requested data 
immediately (in synchronous way), otherwise builds new 
download request. Sequence diagrams on figure 2, 3, 4 
describe these cases. 
 

 
 

• New download request contains the following steps: 
o Allocation of the new memory blocks for the 

request – here DAM is responsible to notify 
CBDMM about all unused (cached) by 
application memory blocks that CBDMM can 
free in case of need, so during the Dynamic 
memory allocation request DAM passes the list 
of all cached memory blocks to the CBDMM 
and waits for result. 

o  After memory allocation transaction is 
succeeded DAM updates the its cache list (some 
of the cached modules could be freed during 
new allocation request) and sends request to the 
download manager to download requested 
content into preallocated memory.  

• DAM waits until all data's modules/parts are loaded and 
notifies the application that download transactions are 
done. 

• If the application frees the data, DAM will keep it in the 
cache. Figure 4 shows the sequence diagram for this use 
case. 

The CBDMM system includes two sub-systems:  
• MM - Subsystem for memory allocation. Implements a 

number of allocation policies that application can choose 

from and/or uses allocation policies provided by an 
application. 

• MC  - Subsystem for caching the memory blocks. The 
cache policy is implemented by CBDMM client (DAM, 
Application) and can be chosen by an application. 

 

 
 

Both sub-systems, together with the API user system, 
provide the following functionality: 
• Efficient memory allocation— reducing the likelihood of 

memory fragmentation, by  increasing the number of 
modules resident in the memory (MM). 

• Efficient module acquisition—reducing the time required 
to fetch a module by caching redundant modules in 
memory when possible (MC). 

Both MM and MC should reduce the module request time 
by reusing the cached modules. MC is effective only when 
the CBDMM user is aware of the need to release unused 
modules as soon as possible. If the allocation function cannot 
allocate the memory that is required, it will begin to release 
cached modules. In order to prevent an arbitrary release of 
cache modules, (or when there is a higher probability that 
certain cached modules will be in use in the future than 
others) each cached module contains special cache data that 
defines the rank of the module with regard to release. 
Modules will be released according to their rank, in low to 
high order.  

In order to determine which module has the lowest rank, 
the CBDMM queries the cache policy and, according to the 
module’s rank, releases the module. If releasing some 



non-required modules does not assist in providing the 
required space for the new module allocation, the release 
process will continue until all cache modules are released. If 
sufficient space is not freed the allocation transaction will roll 
back (i.e. will be cancelled). If sufficient space is freed, the 
module will be allocated and the next allocation transaction 
begins. Figure 5 demonstrates this flow. 

   

 
Figure 5. Block diagram for allocation transaction 

 

IV. BENEFITS 

The benefits of the proposed model are obvious: 
Applications have accessibility to their data in a maximal 
optimized way, because all the allocation policies and the 
cache policies are provided/can be choosen by the application 
that can predict the memory map better. This way the 
application can optimize the data accessibility. It should be 
noted that this approach can be combined with predictive 
cache mechanism, but this is out of scope of this proposal. 
Both DAM and CBDMM can be either a part of 
RTOS/Middleware [11] (preferable) or fully integrated into 
the application. 

The survey above shows that nowadays there is no RTOS 
that has a cache mechanism for the dynamically allocated 
block scheme. In addition, the allocation policies that are 
used by RTOSes are not changeable or configurable by the 

application. So applications cannot be tuned to produce the 
minimal external fragmentation. In our suggested system if an 
application runs on different platforms, the tuning process can 
be done only once.  

Some other interesting approaches have been developed 
during the years e.g. [12,13], where a particular cache 
mechanism is applied to the memory block size level, without 
any relation to the data that the memory block contains. 
These approaches try to use some heuristics to find which 
block size is more frequently used. The disadvantage of these 
approaches vs. CBDMM proposal is that the cached data of 
the cache blocks is usually irrelevant for further allocation 
requests and as a result new download request is required 
even in case the returned cached block already contains the 
requested data. In this case only time for memory allocation 
is saved and not time for downloading the data. 

 

V. POSSIBLE DISADVANTAGES 

The main disadvantage of this proposal is the overhead. 
According to this proposal the application can manage the 
memory allocation policy, so if the policy is not implemented 
by the RTOS, it should be implemented by the application 
itself. It can be less reliable than an OS implementation and 
may not meet performance requirements. The same relates to 
the cache policy which is also might be implemented either 
by an application or by DAM, but managing the cache block 
list still remains in DAM that can be part of an OS like [14] 
that handles page lists in the OS. 

Another issue is the concept of application and OS logic 
separation. CBDMM breaks the border between the OS and 
the application and passes some OS logic to the application. 
Hopefully this feature will not place problems like an 
application which tries to handle some OS functionality that 
actually cannot be passed to the application even 
theoretically.  

 

VI. EVALUATION 

The benchmarking of system is based on some web 
browser like applications that have multiple presentation 
pages and links. Each page requires downloading a data. Page 
presentation (on the screen) time will be a benchmarking 
parameter. The benchmarking has been made on a GPS, but 
even a PC simulation could be enough. The simulation 
compares application performance based on the original 
RTOS and the RTOS with the described DAM/CBDMM 
model. 

Some servers broadcast the data using IP multicast. Data is 
broadcasted with some predefined cycle time (depends on 
type of data and target application). There are handy 
embedded devices that receive data using a WIFI receiver and 
process it by certain applications. This function is fully 
portable [15,16]. The device does not have any internal 
storage unit and a browser application can consume only 
512k RAM for its internal needs.  



On the device site there is a browser using “Weather 
forecast” application which has to present 4 different screens 
with the forecast information. Each screen will be presented 
when the application enters a proper state. There are 4 
equivalent states for 4 screens. Figure 6 shows the acceptable 
state switch. 
 
 
 

          
Figure 6. Application states 

 
Each state requires a data for presentation. Table 1 shows 

the dependency between state and data modules: 
 
State Data modules 

1 resources.mod presentation_1.mod text.mod 
ads.mod 

2 resources.mod presentation_2.mod 
metadata_2.mod text.mod 

3 resources.mod presentation_3.mod 
metadata_2.mod text.mod presentation_2.mod 

4 resources.mod presentation_3.mod 
metadata_2.mod text.mod  

presentation_2.mod ads.mod  
Table 1: Dependency between state and data modules 
 
Table 2 defines data modules cycle time: 
 

Module name Cycle Time 
(ms) 

Size 
(bytes) 

resources.mod 1000 128000 
presentation_1.mod 1000 128000 

text.mod 1000 25000 
ads.mod 1000 35000 

presentation_2.mod 1000 130000 
metadata_2.mod 1000 100000 

presentation_3.mod 1000 30000 
Table 2: Data modules cycle time 
 

Application Test Plan (ATP) is a document that provides 
QC team the rules for testing the application. There is a test 
from the “Weather Forecast Application”. The ATP that has 
been used for benchmarking is “Weather Forecast 
Application” PC simulator based on CBDMM.  

# Test description Time 
(ms) 

1 Launch the Whether application 4087 
2 Using the yellow button navigate to screen 2 2168 
3 Using the arrows navigate to screen 3 1154 
4 Using the arrows navigate to screen 4 2184 
5 Using the arrows navigate to screen 3 47 
6 Using the arrows navigate to screen 2 31 
7 Using the arrows navigate to screen 3 31 
8 Using the arrows navigate to screen 4 47 

Table 3: Performance results of the first test 
 
# Test description Number 

of 
Requests 

Cache 
hit 
count 

1 Launch the Whether application 4 0 
2 Using the yellow button navigate 

to screen 2 
4 2 

3 Using the arrows navigate to 
screen 3 

5 4 

4 Using the arrows navigate to 
screen 4 

6 5 

5 Using the arrows navigate to 
screen 3 

5 5 

6 Using the arrows navigate to 
screen 2 

4 4 

7 Perform steps 3,4,5,6 20 times 400 400 
Table 4: Cache hit ratio of the first test 

 
# Test description Time 

(ms) 
1 Launch the Whether application 4134 
2 Using the yellow button navigate to screen 

2 
4134 

3 Using the arrows navigate to screen 3 5132 
4 Using the arrows navigate to screen 4 7191 
5 Using the arrows navigate to screen 3 5148 
6 Using the arrows navigate to screen 2 4119 

 
7 Using the arrows navigate to screen 3 5132 
8 Using the arrows navigate to screen 4 7191 
Table 5: Performance results of the second test 
 
# Test description Number 

of 
Requests 

Cache 
hit 
count 

1 Launch the Whether application 4 0 
2 Using the yellow button navigate to 

screen 2 
4 0 

3 Using the arrows navigate to screen 3 5 0 
4 Using the arrows navigate to screen 4 6 0 
5 Using the arrows navigate to screen 3 5 0 
6 Using the arrows navigate to screen 2 4 0 
7 Perform steps 3,4,5,6 20 times 400 0 
Table 6: Cache hit ratio of the first test 

 



The first test uses CBDMM approach and an OS simulator 
which implements the test. The OS has been configured to 
use WorstFit allocation policy and LRF cache policy. When a 
new screen is requested all previous screen modules are 
moved to the cache list automatically and released (if 
required) using LRF policy. The data is requested 
correspondently to the specific state. 

The results of the first test are shown in Table 3 and Table 
4. The cache hit ratio for all the test steps is 420/428 = 0.981. 
 

 
Figure 7. Cache hit ratio graph 

 

 
Figure 8. Performance graph 

 
The second test uses only the Operating System dynamic 

memory management system calls. When a new screen is 
requested all previous screen data will be deleted using 
system free and a new memory space will be allocated with 
malloc(BestFit). The data is requested correspondently to the 
state. The results of the second test are shown in Table 5 and 
Table 6. The cache hit ratio of all the test steps is 0/428 = 0.  

Figure 7 compares cache hit ratio results for general OS 
memory management and CBDMM. Certainly, a high cache 
hit ratio affects the data request's performance. Figure 8 
compares performance results in milliseconds for general OS 
data requests and CBDMM. 

VII. CONCLUSION 

Memory management of navigation systems is typically 
done in the application level [17,18]. We showed in this paper 
that moving components of the memory management to the 
Operating System can enhance the performance of a 
conventional GPS. Particularly, we showed that the caching 
management mechanism should be the part of the RTOS and 
not part of the application. Benchmarking tests (Figure 7 and 
Figure 8) explicitly demonstrate that the CBDMM approach 

obtains a higher cache hit ratio and as a result a significant 
increase of data request's performance by choosing proper 
allocation and caching policies. In addition, the manipulation 
of allocation policies generates a better fragmentation of the 
heap. This flexibility will not be available when using 
standard Operating System memory management and data 
acquisition mechanisms which are completely separated in an 
all-purpose Operating System. In the future we consider 
adapting parallel approaches [19,20] so as to make the 
suggested system suitable for parallel processing. 
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