
Cache Based Dynamic Memory Management
For GPS

David Livshits, Yair Wiseman
Computer Science Department

Bar-Ilan University
wiseman@cs.biu.ac.il

Abstract — Operating Systems of Embedded Devices can

manage application data more effectively. This directed us to
consider a new dynamic memory management approach for GPS
and similar embedded systems. The uniqueness of the suggested
approach is shifting elements of the application to the Operating
System with the aim of manage application data more effectively.
A key component of an application is caching its data with the
purpose of preventing excessive memory accesses and allocations.
The suggested approach called “Cache Based Dynamic Memory
Management” – CBDMM proposes to move the caching
component from the application to the Operating Systems. We
present CBDMM design, discusses its advantages and show
encouraged benchmarking results.

I. INTRODUCTION

he use of GPS (Global Positioning System) turns out to
be the standard of rent a car companies, taxis and actually

it grows to be the standard of many conventional car. The
adaption of all-purpose Operating Systems like Linux for
GPS devices is an up-and-coming field [1]. A GPS is an
embedded and Real-Time device; therefore the management
of its resource is done differently [2].

An embedded/Real-Time environment adds additional
constrains on the OS (Operating System), such as a lack of
resources (memory, storage) and performance concerns. Most
of the embedded devices do not have a permanent storage
device like a hard disk. The reason is the high cost of the
storage device or the necessary size that prevents the
manufacturer from including the device in relatively small
embedded systems. CPU that is used by an embedded device
is usually much cheaper and as a result much slower than a
regular PC CPU. In addition, there are predefined restrictions
imposed on RTOS (Real Time Operating Systems) such as a
deterministic time response in most of RTOS possible service
requests. In this environment memory management is always
tensed between two main constraints: a lack of memory for
dynamic allocations and a deterministic time response for a
memory allocation request. The survey below shows that
RTOSes are divided into two main categories:
• RTOSes preferring deterministic memory allocations

over a possible fragmentation.
• RTOSes prefferring a minimal fragmentation over

deterministic memory allocations.
Another important issue is the performance - allocation

policy producing a minimal fragmentation can consume too

much resources and CPU cycles.

II. RELATED WORKS

 The following survey reviews the basic dynamic memory
allocation methods of the most common RTOSes.
• VxWorks[3]: The memory management of VxWorks

RTOS was replaced several times. The early versions of
VxWorks implemented the first-fit allocation policy.
Later versions of VxWorks implemented the best-fit
allocation policy that according to some benchmarking
causes less memory fragmentation and a better time
response.

• µC/OS-II[4]: Each task creates a pool of memory
partitions. Each partition is planned for block allocations
of a specific size. When a task requests to allocate a
specific size of blocks the allocation should be done from
the planned partition. This fixed block size allocation
scheme helps to avoid fragmentation, because available
memory is typically small in embedded applications.
Allocations and deallocations of these fixed-sized
memory blocks are done in a constant time and thus
deterministic.

• Nucleus[5]: The dynamic allocation is made out of the
memory pool that is defined by the application. The
dynamic allocation policy is a standard linear "first-fit".
A block split mechanism will be applied if the first fitted
block is significantly larger than the requested size. An
application can allocate any number of pools. Due to a
possible external fragmentation, the first-fit based block
allocation process is not deterministic, but the
deallocation is deterministic.

• FreeRTOS[6]: The memory allocation algorithm simply
subdivides a single array into smaller blocks as a
dynamic memory allocator does and uses the best-fit
allocation policy. An allocation of a block is always
deterministic i.e. it always takes the same time to allocate
a block).

• RT-Linux[7]: The original version of RT-Linux did not
provide any mechanism for dynamic memory allocation,
because RT-Linux is non-determinism, but later versions
of RT-Linux 2.2 have some dynamic memory allocation
facilities which are based on predefined pools of blocks
with fixed size (the size is configurable). The RT-Linux

T

memory allocator searches for the most appropriate
preallocated block with a size that is not bigger than
twice of the requested size. If all the preallocated blocks
are bigger than twice of the requested size, the big block
is splitted into pieces sized as the requested block and the
first piece is returned for this request. This approach is
pretty fast and reliable but is not deterministic. Also this
approach is not suitable for the stack [8]. There was
another try to implement dynamic memory management
in RT-Linux based on the TLSF [1] algorithm with worst
case allocation complexity of O(1) [9].

All the above methods have no cache mechanism for freed
blocks.

III. CBDMM

It can be concluded from the above survey that usually
RTOSes almost do not use virtual memory mechanism
because its resource consumption is quite high and it requires
a storage device that in most of the systems does not exist,
and as a result there is no memory caching on memory
management level. Even Operating Systems that implement a
virtual memory approach have an internal cache logic that
works on the memory pages level and manages application
pages but does not involve in the application logic. The
common concept is that the application logic is out of scope
of OSes and particularly RTOSes.

Figure 1 demonstrates the separation of application and

RTOS. When an application reads data from any
asynchronous read only source (IP, DVB Broadcast, DSM-
CC carousels, etc.) dynamic memory allocation may be
required. The application requires the data using a data
acquisition manager. In some system the data cycle-time is
too long, so when some data is received, the application will
try to save the currently unnecessary portions of data in the
memory (if possible) for a later use, because most embedded
systems do not have any storage device as was mentioned
before or the storage device is too slow and the overlapping
suggested in [10] will not be suitable. When there is no more
room in the RAM for additional allocations, the application

will free the data i.e. it is removed from memory until the
next application access. It means that always when a new
dynamic memory allocation fails, the application should
release a data block which is part of some unused blocks list
that the application needs to manage, and try to do the new
allocation again.

Another problem is that the data download manager is not
aware of the application logic, so when an application
requests some data, the application should translate its request
into the download manager language that works on
packets/module level. So even if the dynamic memory
manager is able to cache the unnecessary application, the data
download manager must be aware of this caching so it will
not reread the data from the source.

The main idea of the paper is adapting application logic to
the dynamic memory management. Thus application can
choose/provide an allocation policy for its dynamic memory
allocation and also choose/provide the caching mechanism
for caching/releasing allocated memory blocks. The new
proposed dynamic memory management preferably should be
the part of the RTOS and not a part of the application.
Besides, the proposed scheme suggests making use of some
kind of data acquisition layers that will manage cached
memory blocks upon an application data request. The
acquisition manager is only a sample of how the proposed
system can work. It shows in the best way the advantages of
the new approach and can be either a part of the application
or fully integrated entity in the OS.

The following new components are defined:
Data acquisition manager (DAM) – is a client of the

CBDMM and also an application client, the responsibilities of
DAM are:
• Receiving data requests from an application and

translating it into download manager requests.
• Managing application data requests with its statuses.

When application decides to release the requested data it
is done also using the DAM. In this case DAM marks the
released data as cached and keeps it till the next
allocation request.

• DAM is responsible for the dynamic memory allocations
required for the data download, here DAM interacts with
CBDMM

• DAM serves as repository for all downloaded data.
Cache based dynamic memory manager (CBDMM) –

Memory manager. At each memory allocation request the
CBDMM receives from DAM several figures: the list of
required allocations, allocation policy, application callback,
cache block list and cache policy application callback. After
allocation transaction is succeeded, CBDMM will return to
DAM the status of the cache list. Allocations and cache
policies are managed by the application.

Figure 1 demonstrates this model.
How does it actually work?

• The Application requires the data from DAM using a
predefined protocol or a wild card/regular expression

mechanism. For example download file with name
“account_info.xml” from the remote server using tcp/ip
protocol.

• If the data is already loaded (in cache), DAM takes it
from the cache and returns the requested data
immediately (in synchronous way), otherwise builds new
download request. Sequence diagrams on figure 2, 3, 4
describe these cases.

• New download request contains the following steps:
o Allocation of the new memory blocks for the

request – here DAM is responsible to notify
CBDMM about all unused (cached) by
application memory blocks that CBDMM can
free in case of need, so during the Dynamic
memory allocation request DAM passes the list
of all cached memory blocks to the CBDMM
and waits for result.

o After memory allocation transaction is
succeeded DAM updates the its cache list (some
of the cached modules could be freed during
new allocation request) and sends request to the
download manager to download requested
content into preallocated memory.

• DAM waits until all data's modules/parts are loaded and
notifies the application that download transactions are
done.

• If the application frees the data, DAM will keep it in the
cache. Figure 4 shows the sequence diagram for this use
case.

The CBDMM system includes two sub-systems:
• MM - Subsystem for memory allocation. Implements a

number of allocation policies that application can choose

from and/or uses allocation policies provided by an
application.

• MC - Subsystem for caching the memory blocks. The
cache policy is implemented by CBDMM client (DAM,
Application) and can be chosen by an application.

Both sub-systems, together with the API user system,
provide the following functionality:
• Efficient memory allocation— reducing the likelihood of

memory fragmentation, by increasing the number of
modules resident in the memory (MM).

• Efficient module acquisition—reducing the time required
to fetch a module by caching redundant modules in
memory when possible (MC).

Both MM and MC should reduce the module request time
by reusing the cached modules. MC is effective only when
the CBDMM user is aware of the need to release unused
modules as soon as possible. If the allocation function cannot
allocate the memory that is required, it will begin to release
cached modules. In order to prevent an arbitrary release of
cache modules, (or when there is a higher probability that
certain cached modules will be in use in the future than
others) each cached module contains special cache data that
defines the rank of the module with regard to release.
Modules will be released according to their rank, in low to
high order.

In order to determine which module has the lowest rank,
the CBDMM queries the cache policy and, according to the
module’s rank, releases the module. If releasing some

non-required modules does not assist in providing the
required space for the new module allocation, the release
process will continue until all cache modules are released. If
sufficient space is not freed the allocation transaction will roll
back (i.e. will be cancelled). If sufficient space is freed, the
module will be allocated and the next allocation transaction
begins. Figure 5 demonstrates this flow.

Figure 5. Block diagram for allocation transaction

IV. BENEFITS

The benefits of the proposed model are obvious:
Applications have accessibility to their data in a maximal
optimized way, because all the allocation policies and the
cache policies are provided/can be choosen by the application
that can predict the memory map better. This way the
application can optimize the data accessibility. It should be
noted that this approach can be combined with predictive
cache mechanism, but this is out of scope of this proposal.
Both DAM and CBDMM can be either a part of
RTOS/Middleware [11] (preferable) or fully integrated into
the application.

The survey above shows that nowadays there is no RTOS
that has a cache mechanism for the dynamically allocated
block scheme. In addition, the allocation policies that are
used by RTOSes are not changeable or configurable by the

application. So applications cannot be tuned to produce the
minimal external fragmentation. In our suggested system if an
application runs on different platforms, the tuning process can
be done only once.

Some other interesting approaches have been developed
during the years e.g. [12,13], where a particular cache
mechanism is applied to the memory block size level, without
any relation to the data that the memory block contains.
These approaches try to use some heuristics to find which
block size is more frequently used. The disadvantage of these
approaches vs. CBDMM proposal is that the cached data of
the cache blocks is usually irrelevant for further allocation
requests and as a result new download request is required
even in case the returned cached block already contains the
requested data. In this case only time for memory allocation
is saved and not time for downloading the data.

V. POSSIBLE DISADVANTAGES

The main disadvantage of this proposal is the overhead.
According to this proposal the application can manage the
memory allocation policy, so if the policy is not implemented
by the RTOS, it should be implemented by the application
itself. It can be less reliable than an OS implementation and
may not meet performance requirements. The same relates to
the cache policy which is also might be implemented either
by an application or by DAM, but managing the cache block
list still remains in DAM that can be part of an OS like [14]
that handles page lists in the OS.

Another issue is the concept of application and OS logic
separation. CBDMM breaks the border between the OS and
the application and passes some OS logic to the application.
Hopefully this feature will not place problems like an
application which tries to handle some OS functionality that
actually cannot be passed to the application even
theoretically.

VI. EVALUATION

The benchmarking of system is based on some web
browser like applications that have multiple presentation
pages and links. Each page requires downloading a data. Page
presentation (on the screen) time will be a benchmarking
parameter. The benchmarking has been made on a GPS, but
even a PC simulation could be enough. The simulation
compares application performance based on the original
RTOS and the RTOS with the described DAM/CBDMM
model.

Some servers broadcast the data using IP multicast. Data is
broadcasted with some predefined cycle time (depends on
type of data and target application). There are handy
embedded devices that receive data using a WIFI receiver and
process it by certain applications. This function is fully
portable [15,16]. The device does not have any internal
storage unit and a browser application can consume only
512k RAM for its internal needs.

On the device site there is a browser using “Weather
forecast” application which has to present 4 different screens
with the forecast information. Each screen will be presented
when the application enters a proper state. There are 4
equivalent states for 4 screens. Figure 6 shows the acceptable
state switch.

Figure 6. Application states

Each state requires a data for presentation. Table 1 shows

the dependency between state and data modules:

State Data modules

1 resources.mod presentation_1.mod text.mod
ads.mod

2 resources.mod presentation_2.mod
metadata_2.mod text.mod

3 resources.mod presentation_3.mod
metadata_2.mod text.mod presentation_2.mod

4 resources.mod presentation_3.mod
metadata_2.mod text.mod

presentation_2.mod ads.mod
Table 1: Dependency between state and data modules

Table 2 defines data modules cycle time:

Module name Cycle Time
(ms)

Size
(bytes)

resources.mod 1000 128000
presentation_1.mod 1000 128000

text.mod 1000 25000
ads.mod 1000 35000

presentation_2.mod 1000 130000
metadata_2.mod 1000 100000

presentation_3.mod 1000 30000
Table 2: Data modules cycle time

Application Test Plan (ATP) is a document that provides
QC team the rules for testing the application. There is a test
from the “Weather Forecast Application”. The ATP that has
been used for benchmarking is “Weather Forecast
Application” PC simulator based on CBDMM.

Test description Time
(ms)

1 Launch the Whether application 4087
2 Using the yellow button navigate to screen 2 2168
3 Using the arrows navigate to screen 3 1154
4 Using the arrows navigate to screen 4 2184
5 Using the arrows navigate to screen 3 47
6 Using the arrows navigate to screen 2 31
7 Using the arrows navigate to screen 3 31
8 Using the arrows navigate to screen 4 47

Table 3: Performance results of the first test

Test description Number

of
Requests

Cache
hit
count

1 Launch the Whether application 4 0
2 Using the yellow button navigate

to screen 2
4 2

3 Using the arrows navigate to
screen 3

5 4

4 Using the arrows navigate to
screen 4

6 5

5 Using the arrows navigate to
screen 3

5 5

6 Using the arrows navigate to
screen 2

4 4

7 Perform steps 3,4,5,6 20 times 400 400
Table 4: Cache hit ratio of the first test

Test description Time

(ms)
1 Launch the Whether application 4134
2 Using the yellow button navigate to screen

2
4134

3 Using the arrows navigate to screen 3 5132
4 Using the arrows navigate to screen 4 7191
5 Using the arrows navigate to screen 3 5148
6 Using the arrows navigate to screen 2 4119

7 Using the arrows navigate to screen 3 5132
8 Using the arrows navigate to screen 4 7191
Table 5: Performance results of the second test

Test description Number

of
Requests

Cache
hit
count

1 Launch the Whether application 4 0
2 Using the yellow button navigate to

screen 2
4 0

3 Using the arrows navigate to screen 3 5 0
4 Using the arrows navigate to screen 4 6 0
5 Using the arrows navigate to screen 3 5 0
6 Using the arrows navigate to screen 2 4 0
7 Perform steps 3,4,5,6 20 times 400 0
Table 6: Cache hit ratio of the first test

The first test uses CBDMM approach and an OS simulator
which implements the test. The OS has been configured to
use WorstFit allocation policy and LRF cache policy. When a
new screen is requested all previous screen modules are
moved to the cache list automatically and released (if
required) using LRF policy. The data is requested
correspondently to the specific state.

The results of the first test are shown in Table 3 and Table
4. The cache hit ratio for all the test steps is 420/428 = 0.981.

Figure 7. Cache hit ratio graph

Figure 8. Performance graph

The second test uses only the Operating System dynamic

memory management system calls. When a new screen is
requested all previous screen data will be deleted using
system free and a new memory space will be allocated with
malloc(BestFit). The data is requested correspondently to the
state. The results of the second test are shown in Table 5 and
Table 6. The cache hit ratio of all the test steps is 0/428 = 0.

Figure 7 compares cache hit ratio results for general OS
memory management and CBDMM. Certainly, a high cache
hit ratio affects the data request's performance. Figure 8
compares performance results in milliseconds for general OS
data requests and CBDMM.

VII. CONCLUSION

Memory management of navigation systems is typically
done in the application level [17,18]. We showed in this paper
that moving components of the memory management to the
Operating System can enhance the performance of a
conventional GPS. Particularly, we showed that the caching
management mechanism should be the part of the RTOS and
not part of the application. Benchmarking tests (Figure 7 and
Figure 8) explicitly demonstrate that the CBDMM approach

obtains a higher cache hit ratio and as a result a significant
increase of data request's performance by choosing proper
allocation and caching policies. In addition, the manipulation
of allocation policies generates a better fragmentation of the
heap. This flexibility will not be available when using
standard Operating System memory management and data
acquisition mechanisms which are completely separated in an
all-purpose Operating System. In the future we consider
adapting parallel approaches [19,20] so as to make the
suggested system suitable for parallel processing.

REFERENCES
[1] P. Hongyan, H. Hong, J. Hengtian, "Drive design for ship GPS

navigation equipment based on Linux operating system", International
Conference on Educational and Network Technology (ICENT), pp.
384-388, Qinhuangdao, China, June, 2010.

[2] N. Chadil, A. Russameesawang, P. Keeratiwintakorn, "Real-time
tracking management system using GPS, GPRS and Google earth", 5th
International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, pp. 393-
396, 2008.

[3] Z. Laszlo, "Memory Allocation in VxWorks 6.0", Wind River Systems,
pp. 2-3, 2005.

[4] J. J. Labrosse, "µC/OS-II The Real-Time Kernel, Published by CMP
books", pp. 273-285, 2002.

[5] Nucleus PLUS Reference Manual, Accelerated Technology, Inc., pp.
39-52, 1999.

[6] http://www.freertos.org, October 2007.
[7] V. Yodaiken, and M. Barabanov, "A real-time Linux", Proceedings of

the Linux Applications Development and Deployment Conference,
1997.

[8] Y. Wiseman, J. Isaacson and E. Lubovsky, "Eliminating the Threat of
Kernel Overflows", Proc. IEEE Conference on Information Reuse and
Integration (IEEE IRI-2008), Las Vegas, Nevada, pp. 116-121, 2008.

[9] L. Wang, C. Yang, X. Wang, "RTL-IO: An Extension of RTLinux I/O",
Eighth Real-Time Linux Workshop, Lanzhou, Gansu, China, Oct. 2006.

[10] Y. Wiseman and D. G. Feitelson, "Paired Gang Scheduling", IEEE
Transactions on Parallel and Distributed Systems, Vol. 14(6), pp. 581-
592, 2003.

[11] Y. Wiseman, K. Schwan and P. Widener, "Efficient End to End Data
Exchange Using Configurable Compression", Proc. The 24th IEEE
Conference on Distributed Computing Systems (ICDCS 2004), Tokyo,
Japan, pp. 228-235, 2004.

[12] S. G. Meier, "Dynamic memory allocation suitable for stride-based
prefetching", Advanced Micro Devices., US Patent 6,295,594, 2000.

[13] Christopher Cyll, Williams College, Advisor: Duane Bailey, Cache
conscious dynamic memory allocation, Consortium for Computing
Sciences in Colleges, pp. 1-2, 2004.

[14] M. Itshak and Y. Wiseman, "AMSQM: Adaptive Multiple SuperPage
Queue Management", International Journal of Information and Decision
Sciences (IJIDS), Vol. 1, No. 3, pp. 323-341, 2009.

[15] I. Grinberg and Y. Wiseman, "Scalable Parallel Collision Detection
Simulation", Proc. Signal and Image Processing (SIP-2007), Honolulu,
Hawaii, pp. 380-385, 2007.

[16] M. Geva and Y. Wiseman, "Distributed Shared Memory Integration",
Proc. IEEE Conference on Information Reuse and Integration (IEEE
IRI-2007), Las Vegas, Nevada, pp. 146-151, 2007.

[17] J. Courbon, Y. Mezouar, L. Lequievre, L. Eck, "Navigation of urban
vehicle: An efficient visual memory management for large scale
environments", IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2008), pp. 1817-1822, Nice, France, 2008.

[18] P. Crowley, J. Jaugilas, A. Nash, S. Natesan and D. S. Lampert,
"Memory management for navigation system", US Patent 6,073,076,
2000.

[19] S. T. Klein and Y. Wiseman, "Parallel Lempel Ziv Coding", Journal of
Discrete Applied Mathematics, Vol. 146(2), pp. 180-191, 2005.

[20] S. T. Klein and Y. Wiseman, "Parallel Huffman Decoding with
Applications to JPEG Files", The Computer Journal, Oxford University
Press, Swindon, UK, Vol. 46(5), pp. 487-497, 2003.

