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Abstract—Nowadays, various transportation means use Linux 
as the operating system for their embedded control systems; 
however Linux uses all the processes in the hardware equally. 
This motivates some designer to develop an entire new 
Operating System for the vehicle; where a modification of 
Linux can produce the same and even a better product. This 
paper explains how this modification was designed and 
implemented in a commercial transportation company. 

I. INTRODUCTION 
VER the last years, Linux has been becoming the 
Operating system of choice for many transportation 

systems. The Linux adaption incorporates a wide range of 
transportation means from small cars [1] to long trains [2,3]. 
Also, new embedded systems of airplanes employ Linux [4] 
and some of them even a Linux distributed system [5]. 

The adaptation of Linux has many advantages; however, 
Linux like other current operating systems has no easy way 
to assign a processor to do an individual service using an 
undisturbed, accurate and fast way and still being a part of 
the operating system address space as long as the processor 
is an active part of an operating system. We suggest a 
technique of dedicating one processor of a running machine 
to a specific task. 

Amdahl's Law asserts that a linear speed-up is not likely 
to be practicable [6,7], so this can motivate in some cases 
sparing a processor for certain tasks. That is to say we can 
use the Linux kernel ability to virtually hot plug an (SMT) 
processor [8]; instead of letting the processor mark time in 
endless "halts", assign the processor a service. The offline 
scheduler treats a processor as a device with computation 
ability and this is why the processor can be offloaded. 

 
II. RELATED  WORKS 

A. CPU Sets 
Current common technologies for service oriented 

systems are Linux CPU sets [9,10] and Solaris Resource 
Pool association [11,12]. Both of these technologies refer to 
assigning tasks to a set of processors, probably on the same 
memory node (in the NUMA case). CPU sets are actually a 
constraint on a (user space/kernel space) task to use 
resources available only in its set. CPU sets are used mainly 
in big systems, appliances, adapted to the client needs, where 
performance is an important issue. Assigning tasks to a CPU 
set is done using simple interfaces for maintaining memory 
policies and there is a very small overhead for the 
programmer. CPU sets was not designed to run Real-Time 

tasks and do not intent to reduce the interrupts over-head. 
This is unlike the offline scheduler who is a Real-Time 
scheduler. The offline scheduler may act as an alternate to 
softirqs and ISR. It is serialized, very accurate and provides a 
controlled environment to the service.  The offline scheduler 
also protects the operating system in some cases. Therefore, 
Linux CPU sets and Solaris Resource Pool association serve 
different purposes than the offline scheduler. 

B. INtime 
INtime RTOS [ 13 ] for Microsoft windows is an 

extension for Microsoft Windows running on any platform 
that utilizes a standard Microsoft HAL: uniprocessor or 
multiprocessor. INtime RTOS  has many components similar 
to the offline schdeuler. INtime and the offline scheduler 
share this features: 
• INtime is separated from Microsoft windows and 

offsched is separated from Linux; however both of the 
pairs share the same address space. 

• Both INtime and offsched scheduler can allocate 
processor cores for exclusive use of INtime/offsched 
scheduler. 

• Both INtime and offsched scheduler have high precision 
system timer of 50µs. 

In spite of these, there are some other features that just 
one of the systems INtime or the offline scheduler maintains: 
• INtime can identify user space tasks as real time 

processes whereas the offline scheduler cannot. 
• INtime has a RealTime TCP-IP stack whereas the 

offline scheduler does not have. 
• INTime can be used as a standalone RTOS whereas the 

offline scheduler cannot. 
• INtime does not access Windows address space directly, 

whereas the offline scheduler accesses Linux address 
space directly.  

The offline scheduler supports dynamic allocation of 
cores whereas INtime does not support. 

C. IBM Logical partitions 
IBM logical partitions [14,15] divide a server’s resources 

into several logical units. The bus is shared; the memory and 
the disk storage may be partitioned and some other resources 
like communications can be also partitioned. 

The partition model has a component similar to the 
offline scheduler; however as a concept the model is not 
relevant for the offline scheduler. In the offline scheduler 
system all the resources except the processor are shared. The 
offline scheduler can be depicted as a processor allocator; 
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there is no administrator. Each processor has an access to 
some resources in the system, as long as it does not call 
"schedule()".  

The component that is similar to the offline scheduler is a 
primary partition of IBM that may be depicted as CPU 0 and 
if an offloaded processor fails, the system will continue to 
run if the operating system memory is not corrupted. 

D. RTOP 
Any Linux machine may hang sometime. Hanging might 

happen due to a Kernel crash or a System overload. What 
can be done when a server is remote? To detect a kernel 
crash "netconsole" can be used; however what can be done 
when the system is overloaded? The server cannot be 
accessed because it is so loaded that sshd (or any other 
daemon) does not get any cpu time. Utilities, vmstat, sar, top 
and so on, do provide details but under heavy load a user 
cannot access the machine remotely, or even locally. A user 
must be able to access the machine, and ask for the 
monitoring tool. 

RTOP (Remote top) is monitoring software that provides 
top-like view of the system in any time. RTOP is based on 
the offline technology. This means that you must offline a 
processor (or enhance netconsole). RTOP is composed from 
RTOP utility ran in a remote Linux server and a driver that is 
invoked in the monitored server. RTOP driver pushes 
information out from the server. RTOP pulls information 
from the server. 

III. THE OFFLINE SCHEDULER FOR REAL TIME 
OPERATING SYSTEMS 

Vehicular systems are more often than not Real-Time 
systems [16]; nevertheless, there are also sometimes Non-
Real-Time tasks [ 17 ]. In [ 18 ] the author explains the 
relationship between the new trend of SMP machines and the 
boost of the use of Linux versions as a Real-Time operating 
system. The offline scheduler suggests a new version of 
Linux scheduler for Multiprocessors real time operating 
system. The new scheduler splits the processes into two 
groups - the processes of the traditional operating system and 
processes of the offline scheduler. Actually, the offline 
scheduler is a hybrid system, because the new system is both 
real time and still a standard Linux server. The real time 
property is mainly achieved by the nmi and the CPU 
isolation characteristics; however the offline scheduler still 
interacts with the operating system. 

Caches typically maintain these properties: spatial 
locality, temporal locality and sequentiality. Keeping these 
properties in usual scheduling environments is not easy. In 
the offline scheduler platform, they can be easily maintained. 
The offline scheduler gives the programmer tools to control 
the cache miss rate. Low cache miss rate has a harmful effect 
on performance [19,20]; hence the offline scheduler adapts 
some rules to handle the caching: 

• Spatial locality 
Accesses to same or near memory locations in the 

lifetime of a program are very likely. The offline scheduler 
abides this principle in its architecture.  A user may assign a 
task to a processor without setting a different program into 
that cache. This way, the cache lines are not evacuated and 
the program data set and code are highly available. 

 

• Temporal locality 
Given a sequence of references to n memory locations, it 

is likely that following reference will be made into that 
sequence. The offline scheduler abides this rule same as 
spatial locality. 

• Sequentiality 
Given a reference to location n, it is likely that a 

reference to location n+1 will be made in the near future.  
Processors utilize this rule by pre-fetching data. Prefetching 
can be done in software or by the hardware.  There is no true 
benefit in the offline scheduler but the fact that running nmi 
make sure no undesirable prefetches happen. 

Traditionally, programs' size has been increasing [21] 
Nowadays, programs' execution code size usually exceeds 
the L1i size. Most parts of a real time program are 
characterized as non real time while a relatively small 
portion of it is real time. When a real time code shares cache 
storage with a management code, or IO code, it is flushed 
from the instruction cache (L1i) as well as its data (L1d and 
L2). The offline scheduler’s architecture enforces a 
programmer to make the distinction between the real time 
codes to the rest. This distinction maintains the real time 
portion small. 

If the working set is large enough, it is very likely that 
several memory locations will refer to the same cache line 
and cache flushes and misses may happen. The offline 
scheduler has no need to maintain memory pools like in [22]. 
It has access to almost all the memory (exceptions are 
vmalloc’ed/ioremap memory). A program having its own 
memory pool might cause congestion in cache lines if 
memory is not shuffled enough, but this will a fault of the 
Operating System; not of the offline scheduler. 

Branch prediction is one of the processor’s ways to speed 
up code execution. Problem with branch prediction is that a 
branch might get flushed too early. Brach flushing happens 
mainly due to interrupts, exceptions, segments descriptor 
loads [23]. The offline scheduler is running nmi so less 
pipeline flushes happen. 

Multiple processors systems are usually designed for two 
reasons, faults tolerance and program speedup.  Current 
Linux versions have little respect to fault tolerance 
processors Programs' speedup is achieved by a program 
design and not enforced by the operating system. The offline 
scheduler is a system where all processors share the same 
memory. The offline scheduler architecture forces the 
programmer to write a program with a better speedup 
because concurrent instances of the sub units of the program 
run in each processor. Fault tolerance is partially achieved by 
the fact the even if the operating system stops (panics) or 
hangs the offline scheduler can still run and vise versa, if an 
offloaded processor failure does not corrupt the operating 
system’s active memory the system will not stop.  This is 
obviously cannot be compared to a failure in some user space 
task, so in this sense running a user space task is better. 
Multiprocessors systems are subjected to the same 
restrictions as a single processor system, such as cache size, 
branch prediction, BUS speed, etc; which were discussed 
previously.  

Partitioning is the process of dividing a task into sub-
tasks, each of which can be assigned to a single processor. 
Partitioning a process is done in compile time. Partitioning 
objective is to reveal maximum amount of parallelism 



possible without exceeding machine’s hardware limitation 
[24,25]. 

A Partition analysis is preformed with some notion of a 
program overhead [18]. A program overhead (o) is the added 
time a task takes to be loaded into a processor prior to 
beginning execution. The larger the size of the minimum 
task, the smaller the partition overhead. The author of [21] 
describes program P work as follows: If a single processor P1 
program does operation O1, the parallel version of P1 does 
operations Op where Op ≥ O1 . For each task Ti, there is an 
associated number of overhead operations oi, so that Ti takes 
Oi operations without overhead then: 

OT
p=∑p

i(Oi+oi)≥Oi 
Where Op is the total work that was done by Pp including 

overhead, and oi+1 ≥ oi. So, on one hand a better 
performance means maximizing parallelism and on the other 
hand finer code blocks increase the program overhead. 
Figure 1 depicts where the offline scheduler performs best. 

 
Figure 1: effects of grain size 

 
At the offline scheduler, oi → 0, so there is no program 

overhead. This is because there is no stack manipulation, and 
all tasks are in the processor’s cache. Load may be 
imbalanced only if several processors handle different 
resources and tasks. E. g., if one processor handles network 
interface A and a second processor handles network interface 
B, and the load on the two interfaces is not the same [26]. 
The offline scheduler cares less for load imbalance as long as 
the service is being done. If not, there is something wrong 
with the design. When load is well balanced, we can say that: 

Oi≈O1⇒ OT
p=∑p

i(Oi+0)=O1p 
Sometimes two tasks depends one on the other. In a 

single processor a typical scenario is: 
1. T1 put message on T2 queue. 
2. T1 schedule 
3. Do something 
4. T2 gets processor time 
5. T2 replies on for T1 
6. T2 schedules 
7. Do something 
8. T1 gets processor time 
9. T1 gets T2’s reply 
The offline scheduler behaves very much the same. Yet, 

when using the offline scheduler, T1 may decide to schedule 
T2 directly, and only when T1 lets T2 will get a processor 
time; i. e. T1 chooses when T2 get processor time. Phases 7 

and 3 do not exist in the offline scheduler. This small 
difference is extremely important when hard real time is 
required 

Scheduling can be performed either dynamically or 
statically. Static scheduling is determined during compilation 
and dynamic is performed in real time. Ngai [27] observes 
that all major issues in runtime scheduling focus in insuring 
performance and reduce overhead losses. In multiple 
processors this is even a more important issue [28]. The 
following four run time scheduling major overheads include: 

• Gathering information 
Gather system and programs real time information. This 

includes, control structure, identification of critical paths and 
dependencies. Dynamic information includes work loads and 
resource availability. The offline scheduler has no need of 
gathering information. It is up to the designer to decide what 
information will be used. E. g. the offline scheduler timer 
uses "rdtsc" counters and Rdtsc has a very small overhead. 

• Scheduling 
In the usual course of events, scheduling is performed as 

shown in Table 1: 
 Advantages Disadvantages 

Compile 
Time 

Less overhead Lack of fault tolerance 
Compiler lacks stall 

information 
Run time More efficient 

execution 
Higher overhead 

Table 1 
 
When using the offline scheduler, scheduling is 

performed in run time and has a very little overhead. The 
offline scheduler has a single stack context [29]. The offline 
scheduler scheduling is a mere procedure invocation. There 
are two scheduling procedure in the offline scheduler: 

 offsched _schedule 
A routine is a registered in the offline scheduler pending 

queue. In the offline scheduler there is both fast scheduling, 
simplicity and hardly any overhead. 

 The offsched reschedule 
A routine for assignment of a task into offsched run 

queue (calendar). It is lockless and very simple. 
• Dynamic execution control 
This includes clustering and process creation at run time. 

In the offline scheduler, A process creation is the actual 
assignment to a designated processor (offsched schedule); 
there is no creation of a context as in the familiar UNIX. 
There are no pids, gids or similar features. There is no notion 
of clustering of processes. 

• Dynamic data management 
This includes a minimization of memory overhead delay 

when accessing data. Delay may improve by assigning tasks 
by a policy of a minimum memory delay. In the offline 
scheduler, memory access is matter good scheduling design. 
Due to the offline scheduler serialized nature, memory low 
latency scheduling policy can be easily achieved. 

Consider the following scenario: Process A assigns a 
message to process B. Process A schedules process B after 
itself and exit. Process B runs right after and the memory is 
in the processor cache. When process B is completed, it will 
schedule process A and will exit. During this process, there 
is no cache miss as long as the data working set is smaller 
than the processor’s cache. 

Overhead 
limited 

Load imbalance, 
parallelism limited 

Speed up 

Fine 
Coarse 

Offline 
scheduler 



IV. COMMUNICATION AND SYNCHRONIZATION 
A typical programmer does not program when the 

processor cache or MESI (Illinois Protocol) in his mind. She 
does not know even on what hardware her program will be 
running on. So, her program is likely to have in-efficient 
memory accesses. If the program is intended to be running 
on multiprocessor machine, queues and synchronization 
primitives will be used. So cache misses, locks (atomic 
increment must seize the bus in a SMP system) and 
preemption are likely to load the system. The offline 
scheduler serialized nature reduces this contention. 

One may ask, why not create a busy loop like: 
While (can I do my thing) 
 do my thing 
This code will create a RCU starvation. RCU is a 

synchronization technique which enables multiple readers 
and multiple writers to access mostly accessed data 
structures from multiple processors. RCU starvation happens 
because each processor must walk through a quiescent state 
[30]. A quiescent state is when one of the bellow happens: 

1. A processor performs a context switch. 
2. A processor executes user mode. 
3. A Processor executes the idle loop. 
And neither of these will happen in a busy loop. The 

offline scheduler eliminates RCU starvation since the 
processor does not have to walk through a quiescent state as 
it is not part of the operating system. 

Consider the following sequence of operations: 
 INC RAX 
ADD RCX, RBX 
These instructions are independent. In regular pipelined 

processors these two instructions are not likely to run 
concurrently. Some commands might be associated with 
interrupts and exceptions. If the interrupt service routine runs 
in the initiating processor context, RCX and RBX content 
will be lost unless some additional logic is added to the 
processor [31]. Either case, a processor has to do additional 
work that reduces performance. The NMI property of the 
offline scheduler actually makes programs running in the 
offline scheduler context faster than a in an active processor. 
When designing multi-threaded software, one has to 
understand the price of a context switch with respect to the 
system requirements.  

Moore Law presents us a simple statement, if in 2008 we 
have 4 cores in a single die, in 2010 we will be having 8 
cores, in 2012 16 cores, in 2014 32 cores etc. Does the 
current Linux operating system design fits the Multi core 
era? Should the operating system handle so many cores? As 
this paper argues, the answer is: "not always". Having an 
operating system balancing tasks between 16 processors is 
not necessarily good. The Linux kernel migrate pages and 
move tasks between processors repeatedly to achieve balance 
in the system. The offline scheduler on other hand does not 
care much for imbalance; it aims for responsiveness, 
accuracy and simplicity. The offline scheduler can produce 
linear speed-up as long as it is not bounded by BUS speed. 

V. THE OFFLET 
In the offline scheduler environment, we do not use the 

terms threads, processes or softirqs. The offline scheduler 
refers to a processor as a device running an offlet. Offlet is 
the context of an offlined processor. When an offlined 

processor is removed from the operating system, It is simply 
set to the "halt" machine instruction while interrupts are 
disabled. Right before the halt instruction is executed, the 
offline scheduler is invoked.  From now on, we are in an 
offlet context. Offlet context has some restriction that a user 
must be aware of: 

1. A user may not cause any page fault, meaning he 
cannot access vmalloc’ed memory (only by ”walking on the 
pages”). 

2. A user may not "STI". 
3. A user may not invoke any code path that ends up in 

"schedule". 
This is why the author refers to the offline scheduler 

context as an offlet; it is because it has more constraints than 
any other kernel context. offlets may be scheduled in time T, 
when T can be any time starting from now. Offlets may be 
setup on the stack, schedule and released; very much like any 
other kernel entity but much faster.  

The offline scheduler is based on the notion that 
processors are not an expensive resource. In general, when 
task A is in kernel context and wishes to seize resource X all 
it does: 

Step 0) .. 
Step 1) Lock 
Step 2) .. 
Step 3) Unlock 
Step 4) .. 
If Step 4 is not serialized with respect to the previous 

steps then Offlet will suggest an asynchronous service, 
instead of spinning in step 1, the offline processor is asked to 
do steps 1 2 3 for the user. Offlet scheduling is very light so 
the scheduling cost is negligible in term of computation. 
Another added value of offlets is that a system may choose 
to serialize access to a device through an offlet. A good 
example is offline napi which is described below. This 
serialization actually relieves the kernel from contention on 
slow devices. 

When any context enters the vmalloc area, it must 
generate a page fault in each processor this if the referenced 
address was not referenced before on the same processor. 
This is because vmalloc area is a dynamic mapped area and 
the processor’s MMU has no reference to it. kmalloc address 
space is set on the kernel static page table that never change. 
For an offlet to access vmalloc area, or user pages, it must 
walk on the pages. Walking on the pages means dismantling 
the address to pages and calling kmap atomic on each page. 

VI. THE OFFLINE TIMER 
The offline scheduler timer is a plain busy-pause loop 

running at the frequency of the CPU (in our tests is has been 
2 GHZ). Each time unit is divided into N slots; E.g. 1ms is 
divided into slots of 1000us. There is still a need to adjust the 
timer, because it uses the rdtsc mechanism which might be 
inaccurate.  If a 100us resolution meets the requirements, 
HPET overhead will be quite small, about just 3% cpu usage 
in our tests (Lenovo T61 laptop). So, in such a case the 
offline scheduler timer will be redundant. 

In cases when just few timer handlings are needed i.e. 
few timer handlings every several hundreds milliseconds, 
one can use TICKLESS [32] timer implementation. 

However, since an operating system does other tasks, like 
processing packets, an interrupt might be nested and thus be 



behind schedule. In addition, when the amount of timers is 
larger, the accuracy is less important. 

VII. OFFLINE NAPI 
Napi [33] stands for New API. Napi is a technique for 

interrupts mitigation in networking in the Linux kernel. 
NAPI technique is a simple polling over incoming packet 
arrival queue; this eliminates the constant interrupt 
processing. By default, Linux uses receive interrupt for 
packet processing, and activate NAPI when a certain 
threshold of number of incoming packets is reached. This 
threshold is known as the network "weight". Only one 
processor may call poll, this is because only a single 
processor can get the initial interrupt. There are some flaws 
of NAPI.  

1. Latency. In some cases, NAPI may introduce 
additional software IRQ latency. 

2. IRQ Masking. On some devices, changing the IRQ 
mask may be a slow operation, or requires additional 
locking. This overhead may negate any performance benefits 
observed with NAPI. 

3. Rotting Packet. In some cases a packet may rot in the 
RX ring of the device. This happens due to a race between 
the time we decide we have no packet in the RX ring and the 
time we are forced to enable interrupts. 

The offline scheduler NAPI is aimed to solve the above 
problems and provide infrastructure to other services for 
packet processing. 

• Latency 
Very much like NAPI, the offline scheduler NAPI will 

process incoming packets from RX ring. Unlike NAPI, 
spinning processors will have very little latency (if any) so 
disabling RX interrupts entirely is possible, this way we 
eliminate both problems. In addition, since we have no initial 
interrupt (an interrupt that triggers NAPI) we can have 
several processors spinning over the same device. 

• IRQ masking 
The duration of the operation of IRQ masking is not a 

problem because it is done only once. Once IRQ masking is 
complete, the offline scheduler NAPI is not bothered with it 
again. 

• Rotting Packet 
Because interrupts are never enabled and the operating 

system continuously spins over the network devices, this 
problem does no longer exist. 

• SMP IRQ Affinity 
Current IRQ affinity is in a device granularity. In offline 

NAPI, granularity may be based on service affinity. 
Meaning, instead of having all packets of a device routed to a 
group of processors, packets of type A may be assigned to 
processor X, type B to processor Y and so on. The rational 
here is that there is no sense in putting together ARP queries 
on the same processor as the user’s application’s processor. 

VIII. EVALUATION 
We have generated traffic through eth1 to eth1. Each 

machine has been connected to two different network 
segments. Traffic has been generated on the 10.9 segment. 

Figure 2 depicts this test. The grey area is where the 
offline firewall process runs. It controls all interfaces. The 
test was conducted on a Supermicro PDMSI machine, with 

an Intel Pentium 3.4GHZ, Hyper threading enabled. 
Receiving interface was Intel 1Gbps 82546EB. e1000 and 
Linux kernel version was 2.6.30. The Loader is generating 
traffic Linux packet generator driver, also is known as 
pktgen. Pktgen UDP port is 9, which is the discard port. 

Figure 2: traffic configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Loading procedure 
 
Figure 3 details the loading procedure. The test was first 

conducted with Linux Native NAPI. Then CPU1 was 
dropped and offsched was run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4:native  NAPI vs. offlsched 

Linux  
Machine 

 

Loader 
Packet 

Generator 
 

eth0 
172.16.1.200 

eth0 
172.16.1.100 

eth1 
10.9.0.62 

ifconfig eth1  10.9.0.62/24 
ping 10.9.0.208 -I eth1 -c 3 
insmod offsched.ko 
mknod /dev/offschedctl c 252 0 
offschedctl -a 1 
offschedctl -p 1  --setservice napi 
offschedctl -i 
insmod offlet_napi.ko 
insmod offletnet.ko  ransmission driver 
insmod filter.ko   firewall driver 
offschedctl --start napi   
insmod offlet_srv.ko saddr=172.16.1.62 
daddr=172.16.33.203 dport=7777 
sport=7777  loads OFFSCHED 
server on source address eth0 port 7777. The 
destination address is not important; it is use 
to get a routing interface pre-maturely.  

eth1 
10.9.0.208 

Linux Native NAPI 
Tasks:  66 total,   1 running,  65 sleeping,   0 
stopped,   0 zombie 
Cpu0  :  0.0%us,  0.0%sy,  0.0%ni,100.0%id,  0.0%
wa,  0.0%hi,  0.0%si,  0.0%st 
Cpu1  :  0.0%us,  0.0%sy,  0.0%ni, 
65.3%id,  0.0%wa,  5.0%hi, 29.7%si,  0.0%st 
Mem:   1025452k total,   153536k used,   871916k 
free,     5084k buffers 
Swap:        0k total,        0k used,        0k 
free,    75568k cached 
 
OFFLET SMT CPU1 is dropped and runs OFFSCHED. 
Tasks:  58 total,   1 running,  57 sleeping,   0 
stopped,   0 zombie 
Cpu0  :  0.4%us,  0.4%sy,  0.0%ni, 
92.9%id,  0.0%wa,  6.3%hi,  0.0%si,  0.0%st 
Mem:   1025452k total,   194256k used,   831196k 
free,    22528k buffers 
Swap:        0k total,        0k used,        0k 
free, 92808k cached 



Figure 4 shows the result of native NAPI vs. the offline 
scheduler. Using the offline scheduler, the hardware 
interrupts was 6% because receiving interrupts has not been 
disabled. When using Native NAPI, The consumption of 
CPU1 was 35%, whereas cpu0 is mostly idle. In the offline 
kernel CPU0 is 7% busy due to hardware interrupts. 

The Intel network Interface was loaded with 1Gbps of 
incoming traffic as observed by bmon. In terms of pure 
processor consumption, 107/200 is the total processing 
consumption of offline NAPI while in native NAPI it is 
35/200. So, one may wonder, are not we wasting a 
processor? The answer is actually yes, we do. But what we 
do earn is an operating system running undisturbed. If this 
machine has been loaded with more traffic, then the 
operating system may be too loaded to even be accessed. In a 
machine employing offline scheduler, this inaccessible state 
will not occur, because a denied packet processing is 
confined to the offloaded processor. 

IX. CONCLUSION 
Linux is a good platform for embedded systems [34,35]. 

Adding the offline scheduler will enhance the Linux abilities. 
The offline scheduler joins two different system types in a 
single machine, a Real Time system and a standard Linux 
machine. This is very helpful for systems like [2] where the 
authors use the embedded computer to monitor the train 
speed (a real time task) and to make sure the driver never 
opens the doors on the side without a passenger platform (a 
non-real-time task). Offloading processors to serve as 
dedicated engines might be very helpful in various real time 
scenarios. Using the offline scheduler, there is no need to 
buy expensive offloading network cards when the same 
feature can be achieved by commodity hardware. Who does 
need network processors for this feature, when every 
standard processor can do the same thing?   

X. REFERENCES 
 

[1] D. Geer, "Survey: Embedded Linux Ahead of the Pack," IEEE 
Distributed Systems Online, vol. 5, no. 10, pp. 3, Oct. 2004  

[2] D. W. Carr, R. Ruelas, H. Salcedo-Becerra, and G. A. Ponce-Castaneda, 
"A Linux-based System to Monitor Train Speed and Doors for a 
Light-Rail System", Eight Real-Time Linux Workshop, Lanzhou, 
Gansu, China, October, 2006. 

[3] Z Jianhua, Design of Electrical Monitoring and Control Termnals for 
Trains Based on Linux, Industrial Control Computer, 2005. 

[4] V. Srovnal Jr, and J. Kotzian, Development of a Flight Control System 
for an Ultralight Airplane, International Multiconference on 
Computer Science and Information Technology, 745-750, 2008.  

[5] Kepner, J. and Moore, M. and Travinin, N. and Kim, H. and Reuther, A. 
and Currie, T. and McCabe, A. and Mathew, B. and Rabinkin, D. and 
Rhoades, A. Deployment of SAR and GMTI signal processing on a 
Boeing 707 aircraft using pMatlab and a bladed Linux cluster, 
Technical Report, Massachusetts Institute of Technology, Lexington 
Lincoln Lab, 2004. 

[6] M. Hill and M. Marty, "Amdahl's Law in the Multicore Era" IEEE 
Computer, vol. 41 no. 7) pp. 33-38, July 2008. 

[7] D. Eadline, "Multi-Core Melee", Linux Magazine, Issue #80, pp 40-41, 
July 2007. 

[8] Dave Boutcher and Dave Engebretsen, "Linux Virtualization on IBM 
POWER5", Ottawa Linux Symposium, pp. 113-120, July 2004. 

[9] S. Derr,  CPUSETS, 
http://lxr.linux.no/linux+v2.6.26.3/Documentation/cpusets.txt, BULL 
SA 2004. 

[10] P. Shinde, P. Sharma, S. Guntupalli, "Automated Process 
Classification Framework using SELinux Security Context," Third 

 

 
International Conference on Availability, Reliability and Security, 
2008. ARES 08, pp.592-596, March 2008.  

[11] "Solaris dedicated CPU, 
"http://docs.sun.com/app/docs/doc/8171592/gepsd?a=view  

[12] W. Gentzsch, "Sun Grid Engine: Towards Creating a Compute Power 
Grid", pp.35, First IEEE International Symposium on Cluster 
Computing and the Grid (CCGrid'01), 2001. 

[13] INtime, tenasys,http://www.tenasys.com/products/intime.php. 
[14] ”IBM Logical Partition Concept”, 

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index. 
[15] J. Jann, L. M. Browning, R.S. Burugula, "Dynamic reconfiguration: 

Basic building blocks for autonomic computing on IBM pSeries 
servers", IBM Systems Journal, Vol. 42(1), pp. 29-37, 2003. 

[16] Y. Wiseman, "Take a Picture of Your Tire!", Proc. IEEE Conference 
on Vehicular Electronics and Safety (IEEE ICVES-2010) Qingdao, 
ShanDong, China, pp. 151-156, 2010. 

[17] I. Grinberg and Y. Wiseman, "Scalable Parallel Collision Detection 
Simulation", Proc. Signal and Image Processing (SIP-2007), 
Honolulu, Hawaii, pp. 380-385, 2007.  

[18] P. E. Mckenney, " SMP and embedded real-time",  Linux Journal, 
issue 153, p. 1, Jan 2007.  

[19] H. Tomiyama, H. Yasuura, Code placement techniques for cache miss 
rate reduction, ACM Transactions on Design Automation of 
Electronic Systems, Volume 2 (4), pp. 410 - 429, Oct. 1997.  

[20] U. Drepper.  ”What every programmer  should  know about memory”  
Red hat INC Copyrights   2007, 
http://people.redhat.com/drepper/cpumemory.pdf  

[21] M. J Flynn. ”Computer Architecture Pipelined and Parallel Processor 
Design”, Jones and Bartlett Publishers Inc., 1995. 

[22] M. Reuven and Y. Wiseman, Medium-Term Scheduler as a Solution 
for the Thrashing Effect, The Computer Journal, Oxford University 
Press, Swindon, UK, Vol. 49(3), pp. 297-309, 2006. 

[23] ”IA-32 Intel  Architecture  Software  Developer  Manual  Volume 3 
System  programming guide”, 
http://pdos.csail.mit.edu/6.097/readings/intelv3.pdf. pp. 7-34, 2002. 

[24] S. T. Klein and Y. Wiseman, "Parallel Lempel Ziv Coding", Journal of 
Discrete Applied Mathematics, Vol. 146(2), pp. 180-191, 2005. 

[25] S. T. Klein and Y. Wiseman, "Parallel Huffman Decoding with 
Applications to JPEG Files", The Computer Journal, Oxford 
University Press, Swindon, UK, Vol. 46(5), pp. 487-497, 2003.  

[26] Y. Wiseman, K. Schwan and P. Widener, "Efficient End to End Data 
Exchange Using Configurable Compression", Proc. The 24th IEEE 
Conference on Distributed Computing Systems (ICDCS 2004), 
Tokyo, Japan, pp. 228-235, 2004. 

[27]  T. F. Ngai, "run time resource management in concurrent systems", 
PhD  thesis, Department of Electric engineering, Stanford university, 
January 1992. 

[28] Y. Wiseman and D. G. Feitelson, Paired Gang Scheduling, IEEE 
Transactions on Parallel and Distributed Systems, Vol. 14(6), pp. 
581-592, 2003. 

[29] Y. Wiseman, J. Isaacson and E. Lubovsky, “Eliminating the Threat of 
Kernel Stack Overflows,” in Proceedings of IEEE International 
Conference on Information Reuse and Integration (IRI 2008), pp. 
116-121, Las Vegas, USA, July 2008.  

[30] D. P.Bovet & M. Cesati. ”Understanding the Linux Kernel”. O’Reilly 
Media Inc.Copyrights 2006. 

[31] D. Harry, "Computer organization for multiple and out-of-order 
execution of condition code testing and setting instructions", US 
Patent 5630157,1997. 

[32] "kerneltrap", http://kerneltrap.org 
[33] R. Bolla and R. Bruschi, "high-end Linux based Open Router for IP 

QoS networks: tuning and performance analysis with internal 
(profiling) and external measurement tools of the packet forwarding 
capabilities", Proc.  International Workshop on Internet Performance, 
Simulation, Monitoring and Measurements, pp. 203-214, 2005. 

[34] J. Williams and N. Bergmann, Embedded Linux as a platform for 
dynamically self-reconfiguring systems-on-chip, Proc. Int. Conf. on 
Engineering of Reconfigurable Systems and Algorithms, 2004.  

[35] K.Yaghmour, J. Masters, P. Gerum and G. Ben-Yossef, Building 
embedded linux systems, O'Reilly Media, Inc., 2008.  


