
The Offline Scheduler for Embedded Transportation Systems

Raz Ben-Yehuda
BitBand LTD

Netanya, Israel
e-mail: razb@bitband.com

Yair Wiseman
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

e-mail: wiseman@cs.biu.ac.il

Abstract—Nowadays, various transportation means use Linux
as the operating system for their embedded control systems;
however Linux uses all the processes in the hardware equally.
This motivates some designer to develop an entire new
Operating System for the vehicle; where a modification of
Linux can produce the same and even a better product. This
paper explains how this modification was designed and
implemented in a commercial transportation company.

I. INTRODUCTION
VER the last years, Linux has been becoming the
Operating system of choice for many transportation

systems. The Linux adaption incorporates a wide range of
transportation means from small cars [1] to long trains [2,3].
Also, new embedded systems of airplanes employ Linux [4]
and some of them even a Linux distributed system [5].

The adaptation of Linux has many advantages; however,
Linux like other current operating systems has no easy way
to assign a processor to do an individual service using an
undisturbed, accurate and fast way and still being a part of
the operating system address space as long as the processor
is an active part of an operating system. We suggest a
technique of dedicating one processor of a running machine
to a specific task.

Amdahl's Law asserts that a linear speed-up is not likely
to be practicable [6,7], so this can motivate in some cases
sparing a processor for certain tasks. That is to say we can
use the Linux kernel ability to virtually hot plug an (SMT)
processor [8]; instead of letting the processor mark time in
endless "halts", assign the processor a service. The offline
scheduler treats a processor as a device with computation
ability and this is why the processor can be offloaded.

II. RELATED WORKS

A. CPU Sets
Current common technologies for service oriented

systems are Linux CPU sets [9,10] and Solaris Resource
Pool association [11,12]. Both of these technologies refer to
assigning tasks to a set of processors, probably on the same
memory node (in the NUMA case). CPU sets are actually a
constraint on a (user space/kernel space) task to use
resources available only in its set. CPU sets are used mainly
in big systems, appliances, adapted to the client needs, where
performance is an important issue. Assigning tasks to a CPU
set is done using simple interfaces for maintaining memory
policies and there is a very small overhead for the
programmer. CPU sets was not designed to run Real-Time

tasks and do not intent to reduce the interrupts over-head.
This is unlike the offline scheduler who is a Real-Time
scheduler. The offline scheduler may act as an alternate to
softirqs and ISR. It is serialized, very accurate and provides a
controlled environment to the service. The offline scheduler
also protects the operating system in some cases. Therefore,
Linux CPU sets and Solaris Resource Pool association serve
different purposes than the offline scheduler.

B. INtime
INtime RTOS [13] for Microsoft windows is an

extension for Microsoft Windows running on any platform
that utilizes a standard Microsoft HAL: uniprocessor or
multiprocessor. INtime RTOS has many components similar
to the offline schdeuler. INtime and the offline scheduler
share this features:
• INtime is separated from Microsoft windows and

offsched is separated from Linux; however both of the
pairs share the same address space.

• Both INtime and offsched scheduler can allocate
processor cores for exclusive use of INtime/offsched
scheduler.

• Both INtime and offsched scheduler have high precision
system timer of 50µs.

In spite of these, there are some other features that just
one of the systems INtime or the offline scheduler maintains:
• INtime can identify user space tasks as real time

processes whereas the offline scheduler cannot.
• INtime has a RealTime TCP-IP stack whereas the

offline scheduler does not have.
• INTime can be used as a standalone RTOS whereas the

offline scheduler cannot.
• INtime does not access Windows address space directly,

whereas the offline scheduler accesses Linux address
space directly.

The offline scheduler supports dynamic allocation of
cores whereas INtime does not support.

C. IBM Logical partitions
IBM logical partitions [14,15] divide a server’s resources

into several logical units. The bus is shared; the memory and
the disk storage may be partitioned and some other resources
like communications can be also partitioned.

The partition model has a component similar to the
offline scheduler; however as a concept the model is not
relevant for the offline scheduler. In the offline scheduler
system all the resources except the processor are shared. The
offline scheduler can be depicted as a processor allocator;

O

there is no administrator. Each processor has an access to
some resources in the system, as long as it does not call
"schedule()".

The component that is similar to the offline scheduler is a
primary partition of IBM that may be depicted as CPU 0 and
if an offloaded processor fails, the system will continue to
run if the operating system memory is not corrupted.

D. RTOP
Any Linux machine may hang sometime. Hanging might

happen due to a Kernel crash or a System overload. What
can be done when a server is remote? To detect a kernel
crash "netconsole" can be used; however what can be done
when the system is overloaded? The server cannot be
accessed because it is so loaded that sshd (or any other
daemon) does not get any cpu time. Utilities, vmstat, sar, top
and so on, do provide details but under heavy load a user
cannot access the machine remotely, or even locally. A user
must be able to access the machine, and ask for the
monitoring tool.

RTOP (Remote top) is monitoring software that provides
top-like view of the system in any time. RTOP is based on
the offline technology. This means that you must offline a
processor (or enhance netconsole). RTOP is composed from
RTOP utility ran in a remote Linux server and a driver that is
invoked in the monitored server. RTOP driver pushes
information out from the server. RTOP pulls information
from the server.

III. THE OFFLINE SCHEDULER FOR REAL TIME
OPERATING SYSTEMS

Vehicular systems are more often than not Real-Time
systems [16]; nevertheless, there are also sometimes Non-
Real-Time tasks [17]. In [18] the author explains the
relationship between the new trend of SMP machines and the
boost of the use of Linux versions as a Real-Time operating
system. The offline scheduler suggests a new version of
Linux scheduler for Multiprocessors real time operating
system. The new scheduler splits the processes into two
groups - the processes of the traditional operating system and
processes of the offline scheduler. Actually, the offline
scheduler is a hybrid system, because the new system is both
real time and still a standard Linux server. The real time
property is mainly achieved by the nmi and the CPU
isolation characteristics; however the offline scheduler still
interacts with the operating system.

Caches typically maintain these properties: spatial
locality, temporal locality and sequentiality. Keeping these
properties in usual scheduling environments is not easy. In
the offline scheduler platform, they can be easily maintained.
The offline scheduler gives the programmer tools to control
the cache miss rate. Low cache miss rate has a harmful effect
on performance [19,20]; hence the offline scheduler adapts
some rules to handle the caching:

• Spatial locality
Accesses to same or near memory locations in the

lifetime of a program are very likely. The offline scheduler
abides this principle in its architecture. A user may assign a
task to a processor without setting a different program into
that cache. This way, the cache lines are not evacuated and
the program data set and code are highly available.

• Temporal locality
Given a sequence of references to n memory locations, it

is likely that following reference will be made into that
sequence. The offline scheduler abides this rule same as
spatial locality.

• Sequentiality
Given a reference to location n, it is likely that a

reference to location n+1 will be made in the near future.
Processors utilize this rule by pre-fetching data. Prefetching
can be done in software or by the hardware. There is no true
benefit in the offline scheduler but the fact that running nmi
make sure no undesirable prefetches happen.

Traditionally, programs' size has been increasing [21]
Nowadays, programs' execution code size usually exceeds
the L1i size. Most parts of a real time program are
characterized as non real time while a relatively small
portion of it is real time. When a real time code shares cache
storage with a management code, or IO code, it is flushed
from the instruction cache (L1i) as well as its data (L1d and
L2). The offline scheduler’s architecture enforces a
programmer to make the distinction between the real time
codes to the rest. This distinction maintains the real time
portion small.

If the working set is large enough, it is very likely that
several memory locations will refer to the same cache line
and cache flushes and misses may happen. The offline
scheduler has no need to maintain memory pools like in [22].
It has access to almost all the memory (exceptions are
vmalloc’ed/ioremap memory). A program having its own
memory pool might cause congestion in cache lines if
memory is not shuffled enough, but this will a fault of the
Operating System; not of the offline scheduler.

Branch prediction is one of the processor’s ways to speed
up code execution. Problem with branch prediction is that a
branch might get flushed too early. Brach flushing happens
mainly due to interrupts, exceptions, segments descriptor
loads [23]. The offline scheduler is running nmi so less
pipeline flushes happen.

Multiple processors systems are usually designed for two
reasons, faults tolerance and program speedup. Current
Linux versions have little respect to fault tolerance
processors Programs' speedup is achieved by a program
design and not enforced by the operating system. The offline
scheduler is a system where all processors share the same
memory. The offline scheduler architecture forces the
programmer to write a program with a better speedup
because concurrent instances of the sub units of the program
run in each processor. Fault tolerance is partially achieved by
the fact the even if the operating system stops (panics) or
hangs the offline scheduler can still run and vise versa, if an
offloaded processor failure does not corrupt the operating
system’s active memory the system will not stop. This is
obviously cannot be compared to a failure in some user space
task, so in this sense running a user space task is better.
Multiprocessors systems are subjected to the same
restrictions as a single processor system, such as cache size,
branch prediction, BUS speed, etc; which were discussed
previously.

Partitioning is the process of dividing a task into sub-
tasks, each of which can be assigned to a single processor.
Partitioning a process is done in compile time. Partitioning
objective is to reveal maximum amount of parallelism

possible without exceeding machine’s hardware limitation
[24,25].

A Partition analysis is preformed with some notion of a
program overhead [18]. A program overhead (o) is the added
time a task takes to be loaded into a processor prior to
beginning execution. The larger the size of the minimum
task, the smaller the partition overhead. The author of [21]
describes program P work as follows: If a single processor P1
program does operation O1, the parallel version of P1 does
operations Op where Op ≥ O1 . For each task Ti, there is an
associated number of overhead operations oi, so that Ti takes
Oi operations without overhead then:

OT
p=∑p

i(Oi+oi)≥Oi
Where Op is the total work that was done by Pp including

overhead, and oi+1 ≥ oi. So, on one hand a better
performance means maximizing parallelism and on the other
hand finer code blocks increase the program overhead.
Figure 1 depicts where the offline scheduler performs best.

Figure 1: effects of grain size

At the offline scheduler, oi → 0, so there is no program

overhead. This is because there is no stack manipulation, and
all tasks are in the processor’s cache. Load may be
imbalanced only if several processors handle different
resources and tasks. E. g., if one processor handles network
interface A and a second processor handles network interface
B, and the load on the two interfaces is not the same [26].
The offline scheduler cares less for load imbalance as long as
the service is being done. If not, there is something wrong
with the design. When load is well balanced, we can say that:

Oi≈O1⇒ OT
p=∑p

i(Oi+0)=O1p
Sometimes two tasks depends one on the other. In a

single processor a typical scenario is:
1. T1 put message on T2 queue.
2. T1 schedule
3. Do something
4. T2 gets processor time
5. T2 replies on for T1
6. T2 schedules
7. Do something
8. T1 gets processor time
9. T1 gets T2’s reply
The offline scheduler behaves very much the same. Yet,

when using the offline scheduler, T1 may decide to schedule
T2 directly, and only when T1 lets T2 will get a processor
time; i. e. T1 chooses when T2 get processor time. Phases 7

and 3 do not exist in the offline scheduler. This small
difference is extremely important when hard real time is
required

Scheduling can be performed either dynamically or
statically. Static scheduling is determined during compilation
and dynamic is performed in real time. Ngai [27] observes
that all major issues in runtime scheduling focus in insuring
performance and reduce overhead losses. In multiple
processors this is even a more important issue [28]. The
following four run time scheduling major overheads include:

• Gathering information
Gather system and programs real time information. This

includes, control structure, identification of critical paths and
dependencies. Dynamic information includes work loads and
resource availability. The offline scheduler has no need of
gathering information. It is up to the designer to decide what
information will be used. E. g. the offline scheduler timer
uses "rdtsc" counters and Rdtsc has a very small overhead.

• Scheduling
In the usual course of events, scheduling is performed as

shown in Table 1:
 Advantages Disadvantages

Compile
Time

Less overhead Lack of fault tolerance
Compiler lacks stall

information
Run time More efficient

execution
Higher overhead

Table 1

When using the offline scheduler, scheduling is

performed in run time and has a very little overhead. The
offline scheduler has a single stack context [29]. The offline
scheduler scheduling is a mere procedure invocation. There
are two scheduling procedure in the offline scheduler:

 offsched _schedule
A routine is a registered in the offline scheduler pending

queue. In the offline scheduler there is both fast scheduling,
simplicity and hardly any overhead.

 The offsched reschedule
A routine for assignment of a task into offsched run

queue (calendar). It is lockless and very simple.
• Dynamic execution control
This includes clustering and process creation at run time.

In the offline scheduler, A process creation is the actual
assignment to a designated processor (offsched schedule);
there is no creation of a context as in the familiar UNIX.
There are no pids, gids or similar features. There is no notion
of clustering of processes.

• Dynamic data management
This includes a minimization of memory overhead delay

when accessing data. Delay may improve by assigning tasks
by a policy of a minimum memory delay. In the offline
scheduler, memory access is matter good scheduling design.
Due to the offline scheduler serialized nature, memory low
latency scheduling policy can be easily achieved.

Consider the following scenario: Process A assigns a
message to process B. Process A schedules process B after
itself and exit. Process B runs right after and the memory is
in the processor cache. When process B is completed, it will
schedule process A and will exit. During this process, there
is no cache miss as long as the data working set is smaller
than the processor’s cache.

Overhead
limited

Load imbalance,
parallelism limited

Speed up

Fine
Coarse

Offline
scheduler

IV. COMMUNICATION AND SYNCHRONIZATION
A typical programmer does not program when the

processor cache or MESI (Illinois Protocol) in his mind. She
does not know even on what hardware her program will be
running on. So, her program is likely to have in-efficient
memory accesses. If the program is intended to be running
on multiprocessor machine, queues and synchronization
primitives will be used. So cache misses, locks (atomic
increment must seize the bus in a SMP system) and
preemption are likely to load the system. The offline
scheduler serialized nature reduces this contention.

One may ask, why not create a busy loop like:
While (can I do my thing)
 do my thing
This code will create a RCU starvation. RCU is a

synchronization technique which enables multiple readers
and multiple writers to access mostly accessed data
structures from multiple processors. RCU starvation happens
because each processor must walk through a quiescent state
[30]. A quiescent state is when one of the bellow happens:

1. A processor performs a context switch.
2. A processor executes user mode.
3. A Processor executes the idle loop.
And neither of these will happen in a busy loop. The

offline scheduler eliminates RCU starvation since the
processor does not have to walk through a quiescent state as
it is not part of the operating system.

Consider the following sequence of operations:
 INC RAX
ADD RCX, RBX
These instructions are independent. In regular pipelined

processors these two instructions are not likely to run
concurrently. Some commands might be associated with
interrupts and exceptions. If the interrupt service routine runs
in the initiating processor context, RCX and RBX content
will be lost unless some additional logic is added to the
processor [31]. Either case, a processor has to do additional
work that reduces performance. The NMI property of the
offline scheduler actually makes programs running in the
offline scheduler context faster than a in an active processor.
When designing multi-threaded software, one has to
understand the price of a context switch with respect to the
system requirements.

Moore Law presents us a simple statement, if in 2008 we
have 4 cores in a single die, in 2010 we will be having 8
cores, in 2012 16 cores, in 2014 32 cores etc. Does the
current Linux operating system design fits the Multi core
era? Should the operating system handle so many cores? As
this paper argues, the answer is: "not always". Having an
operating system balancing tasks between 16 processors is
not necessarily good. The Linux kernel migrate pages and
move tasks between processors repeatedly to achieve balance
in the system. The offline scheduler on other hand does not
care much for imbalance; it aims for responsiveness,
accuracy and simplicity. The offline scheduler can produce
linear speed-up as long as it is not bounded by BUS speed.

V. THE OFFLET
In the offline scheduler environment, we do not use the

terms threads, processes or softirqs. The offline scheduler
refers to a processor as a device running an offlet. Offlet is
the context of an offlined processor. When an offlined

processor is removed from the operating system, It is simply
set to the "halt" machine instruction while interrupts are
disabled. Right before the halt instruction is executed, the
offline scheduler is invoked. From now on, we are in an
offlet context. Offlet context has some restriction that a user
must be aware of:

1. A user may not cause any page fault, meaning he
cannot access vmalloc’ed memory (only by ”walking on the
pages”).

2. A user may not "STI".
3. A user may not invoke any code path that ends up in

"schedule".
This is why the author refers to the offline scheduler

context as an offlet; it is because it has more constraints than
any other kernel context. offlets may be scheduled in time T,
when T can be any time starting from now. Offlets may be
setup on the stack, schedule and released; very much like any
other kernel entity but much faster.

The offline scheduler is based on the notion that
processors are not an expensive resource. In general, when
task A is in kernel context and wishes to seize resource X all
it does:

Step 0) ..
Step 1) Lock
Step 2) ..
Step 3) Unlock
Step 4) ..
If Step 4 is not serialized with respect to the previous

steps then Offlet will suggest an asynchronous service,
instead of spinning in step 1, the offline processor is asked to
do steps 1 2 3 for the user. Offlet scheduling is very light so
the scheduling cost is negligible in term of computation.
Another added value of offlets is that a system may choose
to serialize access to a device through an offlet. A good
example is offline napi which is described below. This
serialization actually relieves the kernel from contention on
slow devices.

When any context enters the vmalloc area, it must
generate a page fault in each processor this if the referenced
address was not referenced before on the same processor.
This is because vmalloc area is a dynamic mapped area and
the processor’s MMU has no reference to it. kmalloc address
space is set on the kernel static page table that never change.
For an offlet to access vmalloc area, or user pages, it must
walk on the pages. Walking on the pages means dismantling
the address to pages and calling kmap atomic on each page.

VI. THE OFFLINE TIMER
The offline scheduler timer is a plain busy-pause loop

running at the frequency of the CPU (in our tests is has been
2 GHZ). Each time unit is divided into N slots; E.g. 1ms is
divided into slots of 1000us. There is still a need to adjust the
timer, because it uses the rdtsc mechanism which might be
inaccurate. If a 100us resolution meets the requirements,
HPET overhead will be quite small, about just 3% cpu usage
in our tests (Lenovo T61 laptop). So, in such a case the
offline scheduler timer will be redundant.

In cases when just few timer handlings are needed i.e.
few timer handlings every several hundreds milliseconds,
one can use TICKLESS [32] timer implementation.

However, since an operating system does other tasks, like
processing packets, an interrupt might be nested and thus be

behind schedule. In addition, when the amount of timers is
larger, the accuracy is less important.

VII. OFFLINE NAPI
Napi [33] stands for New API. Napi is a technique for

interrupts mitigation in networking in the Linux kernel.
NAPI technique is a simple polling over incoming packet
arrival queue; this eliminates the constant interrupt
processing. By default, Linux uses receive interrupt for
packet processing, and activate NAPI when a certain
threshold of number of incoming packets is reached. This
threshold is known as the network "weight". Only one
processor may call poll, this is because only a single
processor can get the initial interrupt. There are some flaws
of NAPI.

1. Latency. In some cases, NAPI may introduce
additional software IRQ latency.

2. IRQ Masking. On some devices, changing the IRQ
mask may be a slow operation, or requires additional
locking. This overhead may negate any performance benefits
observed with NAPI.

3. Rotting Packet. In some cases a packet may rot in the
RX ring of the device. This happens due to a race between
the time we decide we have no packet in the RX ring and the
time we are forced to enable interrupts.

The offline scheduler NAPI is aimed to solve the above
problems and provide infrastructure to other services for
packet processing.

• Latency
Very much like NAPI, the offline scheduler NAPI will

process incoming packets from RX ring. Unlike NAPI,
spinning processors will have very little latency (if any) so
disabling RX interrupts entirely is possible, this way we
eliminate both problems. In addition, since we have no initial
interrupt (an interrupt that triggers NAPI) we can have
several processors spinning over the same device.

• IRQ masking
The duration of the operation of IRQ masking is not a

problem because it is done only once. Once IRQ masking is
complete, the offline scheduler NAPI is not bothered with it
again.

• Rotting Packet
Because interrupts are never enabled and the operating

system continuously spins over the network devices, this
problem does no longer exist.

• SMP IRQ Affinity
Current IRQ affinity is in a device granularity. In offline

NAPI, granularity may be based on service affinity.
Meaning, instead of having all packets of a device routed to a
group of processors, packets of type A may be assigned to
processor X, type B to processor Y and so on. The rational
here is that there is no sense in putting together ARP queries
on the same processor as the user’s application’s processor.

VIII. EVALUATION
We have generated traffic through eth1 to eth1. Each

machine has been connected to two different network
segments. Traffic has been generated on the 10.9 segment.

Figure 2 depicts this test. The grey area is where the
offline firewall process runs. It controls all interfaces. The
test was conducted on a Supermicro PDMSI machine, with

an Intel Pentium 3.4GHZ, Hyper threading enabled.
Receiving interface was Intel 1Gbps 82546EB. e1000 and
Linux kernel version was 2.6.30. The Loader is generating
traffic Linux packet generator driver, also is known as
pktgen. Pktgen UDP port is 9, which is the discard port.

Figure 2: traffic configuration

Figure 3: Loading procedure

Figure 3 details the loading procedure. The test was first

conducted with Linux Native NAPI. Then CPU1 was
dropped and offsched was run.

Figure 4:native NAPI vs. offlsched

Linux
Machine

Loader
Packet

Generator

eth0
172.16.1.200

eth0
172.16.1.100

eth1
10.9.0.62

ifconfig eth1 10.9.0.62/24
ping 10.9.0.208 -I eth1 -c 3
insmod offsched.ko
mknod /dev/offschedctl c 252 0
offschedctl -a 1
offschedctl -p 1 --setservice napi
offschedctl -i
insmod offlet_napi.ko
insmod offletnet.ko ransmission driver
insmod filter.ko firewall driver
offschedctl --start napi
insmod offlet_srv.ko saddr=172.16.1.62
daddr=172.16.33.203 dport=7777
sport=7777 loads OFFSCHED
server on source address eth0 port 7777. The
destination address is not important; it is use
to get a routing interface pre-maturely.

eth1
10.9.0.208

Linux Native NAPI
Tasks: 66 total, 1 running, 65 sleeping, 0
stopped, 0 zombie
Cpu0 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%
wa, 0.0%hi, 0.0%si, 0.0%st
Cpu1 : 0.0%us, 0.0%sy, 0.0%ni,
65.3%id, 0.0%wa, 5.0%hi, 29.7%si, 0.0%st
Mem: 1025452k total, 153536k used, 871916k
free, 5084k buffers
Swap: 0k total, 0k used, 0k
free, 75568k cached

OFFLET SMT CPU1 is dropped and runs OFFSCHED.
Tasks: 58 total, 1 running, 57 sleeping, 0
stopped, 0 zombie
Cpu0 : 0.4%us, 0.4%sy, 0.0%ni,
92.9%id, 0.0%wa, 6.3%hi, 0.0%si, 0.0%st
Mem: 1025452k total, 194256k used, 831196k
free, 22528k buffers
Swap: 0k total, 0k used, 0k
free, 92808k cached

Figure 4 shows the result of native NAPI vs. the offline
scheduler. Using the offline scheduler, the hardware
interrupts was 6% because receiving interrupts has not been
disabled. When using Native NAPI, The consumption of
CPU1 was 35%, whereas cpu0 is mostly idle. In the offline
kernel CPU0 is 7% busy due to hardware interrupts.

The Intel network Interface was loaded with 1Gbps of
incoming traffic as observed by bmon. In terms of pure
processor consumption, 107/200 is the total processing
consumption of offline NAPI while in native NAPI it is
35/200. So, one may wonder, are not we wasting a
processor? The answer is actually yes, we do. But what we
do earn is an operating system running undisturbed. If this
machine has been loaded with more traffic, then the
operating system may be too loaded to even be accessed. In a
machine employing offline scheduler, this inaccessible state
will not occur, because a denied packet processing is
confined to the offloaded processor.

IX. CONCLUSION
Linux is a good platform for embedded systems [34,35].

Adding the offline scheduler will enhance the Linux abilities.
The offline scheduler joins two different system types in a
single machine, a Real Time system and a standard Linux
machine. This is very helpful for systems like [2] where the
authors use the embedded computer to monitor the train
speed (a real time task) and to make sure the driver never
opens the doors on the side without a passenger platform (a
non-real-time task). Offloading processors to serve as
dedicated engines might be very helpful in various real time
scenarios. Using the offline scheduler, there is no need to
buy expensive offloading network cards when the same
feature can be achieved by commodity hardware. Who does
need network processors for this feature, when every
standard processor can do the same thing?

X. REFERENCES

[1] D. Geer, "Survey: Embedded Linux Ahead of the Pack," IEEE
Distributed Systems Online, vol. 5, no. 10, pp. 3, Oct. 2004

[2] D. W. Carr, R. Ruelas, H. Salcedo-Becerra, and G. A. Ponce-Castaneda,
"A Linux-based System to Monitor Train Speed and Doors for a
Light-Rail System", Eight Real-Time Linux Workshop, Lanzhou,
Gansu, China, October, 2006.

[3] Z Jianhua, Design of Electrical Monitoring and Control Termnals for
Trains Based on Linux, Industrial Control Computer, 2005.

[4] V. Srovnal Jr, and J. Kotzian, Development of a Flight Control System
for an Ultralight Airplane, International Multiconference on
Computer Science and Information Technology, 745-750, 2008.

[5] Kepner, J. and Moore, M. and Travinin, N. and Kim, H. and Reuther, A.
and Currie, T. and McCabe, A. and Mathew, B. and Rabinkin, D. and
Rhoades, A. Deployment of SAR and GMTI signal processing on a
Boeing 707 aircraft using pMatlab and a bladed Linux cluster,
Technical Report, Massachusetts Institute of Technology, Lexington
Lincoln Lab, 2004.

[6] M. Hill and M. Marty, "Amdahl's Law in the Multicore Era" IEEE
Computer, vol. 41 no. 7) pp. 33-38, July 2008.

[7] D. Eadline, "Multi-Core Melee", Linux Magazine, Issue #80, pp 40-41,
July 2007.

[8] Dave Boutcher and Dave Engebretsen, "Linux Virtualization on IBM
POWER5", Ottawa Linux Symposium, pp. 113-120, July 2004.

[9] S. Derr, CPUSETS,
http://lxr.linux.no/linux+v2.6.26.3/Documentation/cpusets.txt, BULL
SA 2004.

[10] P. Shinde, P. Sharma, S. Guntupalli, "Automated Process
Classification Framework using SELinux Security Context," Third

International Conference on Availability, Reliability and Security,
2008. ARES 08, pp.592-596, March 2008.

[11] "Solaris dedicated CPU,
"http://docs.sun.com/app/docs/doc/8171592/gepsd?a=view

[12] W. Gentzsch, "Sun Grid Engine: Towards Creating a Compute Power
Grid", pp.35, First IEEE International Symposium on Cluster
Computing and the Grid (CCGrid'01), 2001.

[13] INtime, tenasys,http://www.tenasys.com/products/intime.php.
[14] ”IBM Logical Partition Concept”,

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.
[15] J. Jann, L. M. Browning, R.S. Burugula, "Dynamic reconfiguration:

Basic building blocks for autonomic computing on IBM pSeries
servers", IBM Systems Journal, Vol. 42(1), pp. 29-37, 2003.

[16] Y. Wiseman, "Take a Picture of Your Tire!", Proc. IEEE Conference
on Vehicular Electronics and Safety (IEEE ICVES-2010) Qingdao,
ShanDong, China, pp. 151-156, 2010.

[17] I. Grinberg and Y. Wiseman, "Scalable Parallel Collision Detection
Simulation", Proc. Signal and Image Processing (SIP-2007),
Honolulu, Hawaii, pp. 380-385, 2007.

[18] P. E. Mckenney, " SMP and embedded real-time", Linux Journal,
issue 153, p. 1, Jan 2007.

[19] H. Tomiyama, H. Yasuura, Code placement techniques for cache miss
rate reduction, ACM Transactions on Design Automation of
Electronic Systems, Volume 2 (4), pp. 410 - 429, Oct. 1997.

[20] U. Drepper. ”What every programmer should know about memory”
Red hat INC Copyrights 2007,
http://people.redhat.com/drepper/cpumemory.pdf

[21] M. J Flynn. ”Computer Architecture Pipelined and Parallel Processor
Design”, Jones and Bartlett Publishers Inc., 1995.

[22] M. Reuven and Y. Wiseman, Medium-Term Scheduler as a Solution
for the Thrashing Effect, The Computer Journal, Oxford University
Press, Swindon, UK, Vol. 49(3), pp. 297-309, 2006.

[23] ”IA-32 Intel Architecture Software Developer Manual Volume 3
System programming guide”,
http://pdos.csail.mit.edu/6.097/readings/intelv3.pdf. pp. 7-34, 2002.

[24] S. T. Klein and Y. Wiseman, "Parallel Lempel Ziv Coding", Journal of
Discrete Applied Mathematics, Vol. 146(2), pp. 180-191, 2005.

[25] S. T. Klein and Y. Wiseman, "Parallel Huffman Decoding with
Applications to JPEG Files", The Computer Journal, Oxford
University Press, Swindon, UK, Vol. 46(5), pp. 487-497, 2003.

[26] Y. Wiseman, K. Schwan and P. Widener, "Efficient End to End Data
Exchange Using Configurable Compression", Proc. The 24th IEEE
Conference on Distributed Computing Systems (ICDCS 2004),
Tokyo, Japan, pp. 228-235, 2004.

[27] T. F. Ngai, "run time resource management in concurrent systems",
PhD thesis, Department of Electric engineering, Stanford university,
January 1992.

[28] Y. Wiseman and D. G. Feitelson, Paired Gang Scheduling, IEEE
Transactions on Parallel and Distributed Systems, Vol. 14(6), pp.
581-592, 2003.

[29] Y. Wiseman, J. Isaacson and E. Lubovsky, “Eliminating the Threat of
Kernel Stack Overflows,” in Proceedings of IEEE International
Conference on Information Reuse and Integration (IRI 2008), pp.
116-121, Las Vegas, USA, July 2008.

[30] D. P.Bovet & M. Cesati. ”Understanding the Linux Kernel”. O’Reilly
Media Inc.Copyrights 2006.

[31] D. Harry, "Computer organization for multiple and out-of-order
execution of condition code testing and setting instructions", US
Patent 5630157,1997.

[32] "kerneltrap", http://kerneltrap.org
[33] R. Bolla and R. Bruschi, "high-end Linux based Open Router for IP

QoS networks: tuning and performance analysis with internal
(profiling) and external measurement tools of the packet forwarding
capabilities", Proc. International Workshop on Internet Performance,
Simulation, Monitoring and Measurements, pp. 203-214, 2005.

[34] J. Williams and N. Bergmann, Embedded Linux as a platform for
dynamically self-reconfiguring systems-on-chip, Proc. Int. Conf. on
Engineering of Reconfigurable Systems and Algorithms, 2004.

[35] K.Yaghmour, J. Masters, P. Gerum and G. Ben-Yossef, Building
embedded linux systems, O'Reilly Media, Inc., 2008.

