
Abstract-- We explore the use of compression methods to improve the 
middleware-based exchange of information in interactive or 
collaborative distributed applications. In such applications, good 
compression factors must be accompanied by compression speeds 
suitable for the data transfer rates sustainable across network links. 
Our approach combines methods that continuously monitor current 
network and processor resources and assess compression effectiveness, 
with techniques that automatically choose suitable compression 
techniques. By integrating these techniques into middleware, there 
is little need for end user involvement, other than expressing the 
target rates of data transmission. The resulting network- and user-
aware compression methods are evaluated experimentally across a 
range of network links and application data, the former ranging 
from low end links to homes, to wide-area Internet links, to high 
end links in intranets, the latter including both scientific (binary 
molecular dynamics data) and commercial (XML) data sets. Results 
attained demonstrate substantial improvements of this adaptive 
technique for data compression over non-adaptive approaches, 
where better compression methods are used when CPU loads are low 
and/or network links are slow, and where less effective and typically, 
faster compression techniques are used in high end network 
infrastructures.  
 
Index terms-- communication lines, compression 
 

I. INTRODUCTION 
 
The amounts of data transported in modern grid applications 
can be substantial, often stressing even high performance 
communication infrastructures. For instance, in applications 
like DOE’s Supernova Initiative[1], estimated data production 
rates by the simulations running on supercomputers exceed 1 
GB/sec throughout a run. Similar data volumes are produced 
by remote sensors or instruments, such as earth observation 
satellites, specialized data sources (e.g., at nuclear research 
centers) and even in modern business applications like the 
operational information systems described in [2]. Coping with 
such data volumes typically requires users to devise and 
deploy application-specific methods to filter and select data, to 
ensure that the right data is received by the right end user at 
the right time[3,4].  
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In this paper, we explore the utility and limitations of using 
general, compression-based methods for reducing data 
volumes. In contrast to the lossy compression methods[5] 
used in previous work, for voice[6], image[7] and video[8] 
applications, this paper explores lossless compression 
techniques. This is because we are interested in integrating 
compression into the data exchange middleware used in 
today’s grid computing infrastructures, where data loss would 
not be generally acceptable. The idea is to provide the levels of 
performance in data exchange end users require, with little or 
no involvement on their parts. 
 
Our research focuses on interactive or collaborative, 
distributed applications, examples including remote 
collaboration via scientific or engineering data[4], remote 
visualization and graphics, and large-scale commercial codes 
like the operational information systems described in our 
previous research[2]. For such applications, as with the 
computational codes run across today’s wide area grid 
infrastructures, compression methods cannot be applied 
blindly. Instead, their use must be dynamically configured to 
match current needs (e.g., desired transmission rates) with 
current platform resources (e.g., network bandwidth, CPU 
load). The techniques presented in this paper permits 
middleware to automatically configure compression. When 
sufficient network bandwidth is available, for instance, no 
compression is  applied, thereby reducing computational loads. 
When network bandwidth is insufficient for the data volumes 
being exchanged, compression is applied. The specific 
compression method used is selected automatically, using 
dynamic data sampling techniques to assess the effectiveness 
and current speed of compression (since both are data-
dependent). The intent is to ensure that the rate of data 
production (i.e., compression speed due to available CPU 
resources) and the effectiveness of compression (compression 
factor due to type of data) result in data volumes presented to 
the network at rates that match current network resources as 
well as application needs. 
 
This paper demonstrates the utility of configurable 
compression in multiple execution environments. In one 
environment, relatively fast machines (e.g., high end PCs) 
communicate via low-end links, such as international Internet 
links across university collaborators (e.g., US to Israel) or DSL 
links connecting researchers’ home machines with their 
institutions’ computers. In another environment, workstation 
class machines are linked via the 1GB or 100MB links now 
commonly used in the Intranets of companies or research 
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institutions. Figure 1 depicts the heterogeneous 
computation/communication infrastructure used to realize 
these two environments.  
 
The following are the results of our work. We first diagnose 
the effectiveness and performance of both standard and newer 
compression methods, using representative scientific and 
business data. The data sets used stem from a large-scale 
molecular dynamics simulation[4] and from the operational 
information system described in [2]. Given these data sets, the 
tradeoffs in compression speeds vs. reductions in required 
network bandwidth are assessed, in the two representative 
environments described in Figure 1. Second, based on these 
results, a table-driven, configurable approach to selecting 
suitable compression methods is developed. Method selection 
takes into account compression speed (dependent on current 
machine load), effectiveness (dependent on type of data), and 
available network bandwidth. Since platform resources change, 
method selection is performed repeatedly, throughout the 
lifetime of a data exchange between the parties the data 
exchange. Third, the resulting, configurable compression 
approach is integrated into middleware, resulting in a layered 
architecture that accommodates multiple compression 
methods, different network measurement 
techniques[9,10,11,12], and alternative communication 
protocols, including those well-suited for the large-data 
transfers[13].  
 
Experimental evaluations indicate substantial performance 
advantages from using configurable compression, particularly 
for highly heterogeneous wide-area collaborations in which 
international collaborators[14] interact in real-time to jointly 
understand complex data sets or simulation results. For 
instance, we were able to significantly improve the speeds of 
data exchange for links from the U.S. to an Israeli university 
machine, in both low-load and high-load usage scenarios. 
Similarly, for home -based machines, even when using 
broadband links like DSL, notable performance advantages are 
attained from the use of compression. In Intranets, however, 
the utility of compression is less evident, especially in our own 
environments in which we have overcapacitated (i.e., relatively 
unloaded) networks offering from 100MB to 1GB connectivity 
between communicating machines. Generalizing from the 
testbed results described here, we expect configurable 
compression to compete well in embedded systems, as well, 
where they are best deployed on `tethered' machines before 
data is transmitted to mobile machines linked via wireless 
connections. Results with application-specific data reduction 
methods attained for embedded systems are described in [15].  
In the remainder of the paper, we first briefly review the 
compression methods used in our work. In Section 2, we 
describe the various basic compression methods have been 
used by the configurable compression. Section 3 describes the 
software architecture of the IQ-ECho middleware into which 
configurable compression is being integrated. This  middleware 
is targeted at large-data interactive applications, and it offers 
runtime mechanisms for online network bandwidth 

measurement and for managing the quality of middleware -
based data exchanges (termed quality attributes), both of 
which will be used by the integrated version of configurable 
compression. The microbenchmarks discussed in Section 4 
evaluate the basic performance characteristics of alternative 
compression methods, on different machines and with different 
data sets, to characterize their effectiveness vs. running time. 
A decision table and algorithm based on these results  are used 
to dynamically and automatically select an appropriate 
compression technique for the data being streamed across 
distributed application components. Conclusions and future 
work appear in Section 5. 

 
II. COMPRESSION METHODS 

 

Compression methods reduce data size by applying 
compression and decompression techniques to data. This 
section briefly reviews the methods employed in our work, in 
order to permit the reader to better understand the tradeoffs in 
using these different techniques. 

A. Huffman Compression 
 
Huffman coding[16] - the first practical compression method - 
is used standalone[17] and within more complex compression 
techniques like JPEG[18,19]. The idea of Huffman coding is to 
assign a shorter codeword to a common item and a longer 
codeword to an uncommon item. Specifically, the following 
algorithm (shown in the recursive pseudo code below) finds 
codewords of minimum sizes for items  A1,...,An of lengths 
L1,...,Ln, where P1,...,Pn are the items' probabilities.  
 
If (n==2) then {0,1} 
Else  

Combine the 2 smallest probabilities Pn,Pn-1 
Solve for P1,P2,...,Pn-2,Pn-1+Pn 
If Pn-1+Pn is represented by α? then 

Pn-1 will be represented by α0 
Pn will be represented by α1 

 
“Solve for” means calling the function again with n-1 elements 
(Pn-1 and Pn become one element, as indicated by Pn-1+Pn). 
 
The main advantages of Huffman codes are their simplicity and 
speed. These codes work well for binary data when string 
repetition is rare. Huffman assumes that each character has no 
relation to the adjacent one; hence it usually does not perform 
well on texts. Huffman’s complexity is O(m+nlogn) where m is 
the size of the text and n is the size of the alphabet. Note that 
this is much better than the Burrows-Wheeler compression 
technique described below, which has a complexity of 
O(mlogm). 
 



B. Arithmetic Coding 
 
Huffman coding uses a string of bits for each item in the 
original file. The arithmetic coding method[20,21] improves on 
this by using fractions of bits as codewords, where one bit can 
be `owned' by multiple items. As a result, a codeword can be 
represented by a rational numbers of bits (e.g., by 3.25 bits). 
The arithmetic coding method is described by the following 
pseudocode:  
 
Let L be a set of items. 
Every item i∈L has a probability Pi∈[0,1], such that: 

Every item is represented by the interval: 

 
• Repeat until EOF: 

 
o The current interval is divided into sub-

intervals  according to the items‘ 
probabilities. 

 
o Replace the current interval by the sub-

interval of the items that were read. 
 

• Write into the compressed file the shortest binary 
fraction available in the current interval. 

 
C. Lempel-Ziv Methods 
 
The traditional dictionary compression method is Lempel-Ziv 
coding[22,23]. WINZIP[24] and gzip[25] use versions of 
Lempel-Ziv coding. While Huffman coding and Arithmetic 
coding don't consider an item's environment, the main 
advantage of Lempel-Ziv methods is that they consider 
previous appearances of strings, as follows: 
 
Let x1,...,xn be a sequence of items. 
We want to find a sub-sequence xk,...,xm which holds: 

For example p(qu)>p(q)×p(u). 
 
The Lempel-Ziv method puts a pointer into the place of each 
previewed string. We use a version of Lempel-Ziv that 
compresses these pointers by Huffman coding[26]. The 
pointers of Lempel-Ziv look like (100,7), which means go 
backward 100 bytes and copy 7 characters. Most pointers 
point to close destinations, and a copy of just a few bytes is 
done, so both of the numbers tend to be small. These numbers 
are represented by Huffman codes, which give shorter 
representation for small numbers. 
 
 

D. The Burrows-Wheeler transformation 
 
The Burrows -Wheeler transformation[27,28] is a dictionary 
compression method. The method utilizes repetitions of words' 
sequences in order to improve compression. No information is 
lost in the compression procedure. The procedure outperforms 
Lempel-Ziv coding, resulting in its use in a variety of 
compression utilities, but its execution time can be high. The 
method has multiple steps: 
 
The first step creates pointers to all character of the file being 
compressed. The pointers are sorted according to the 
characters to which they are pointing. The preceding 
characters of each of the pointers are sent to the next step 
according to the order of the sorted pointers. Actually, this 
sequence of characters in the output has the same characters 
as in the original file, but the order of the characters is 
different. 
 
The second step performs a "move to front" algorithm. This 
algorithm keeps all 256 possible characters in a list. When a 
character is to be sent to the next step, its position in the list 
will be sent. After the character is `sent', it is moved from its 
current position in the list to the front of the list (i.e., to 
position 0). 
 
The next step applies a run-length coding to the output of the 
previous step. The output of the run-length coding is 
compressed by using either Huffman or Arithmetic coding.  
 
The main disadvantage of the Burrows Wheeler transform is its 
slow execution speed, due to the need to sort the file. In order 
to reduce this speed, files are split into blocks, at some loss in 
compression factors, because shorter files are less effectively 
compressed. This paper uses the SGI version of the Burrows -
Wheeler Transform[ 29]. 
 
In order to enable us to decompress the file when the order of 
blocks received does not exactly correspond to the order in 
which it is sent, we have adapted the Burrows-Wheeler 
method, as described next. 
 
Each file is split into chucks of several lines. The Burrows -
Wheeler Transform compresses each chunk. Then, chunks are 
processed by the move to front procedure, followed by run-
length coding. The run-length coding is changed to use a run-
length of at most 254 characters, so that the 255th character 
never appears. Instead, the 255th character is placed at the end 
of each compressed chunk. Next, all of the chunks are 
compressed jointly using Huffman coding. Huffman can be 
synchronized easily, as shown in [30]. This implies that if a 
Huffman-encoded file is read from any arbitrary point, it may 
have a few erroneous characters in the beginning, but the 
other characters will be correct. So, we can decode the 
compressed file from any arbitrary point, since Huffman will 
keep track of character positions, and when we see position 
255, we have found the new chunk. 
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E. Method Comparison 
 
We next assess the characteristics of these compression 
methods, so that it then becomes possible to choose the most 
appropriate one for any given characteristic of the data, the 
available communication bandwidth, and available CPU cycles. 
These characteristics are established in microbenchmarks 
described in Section 4. 
 
Figure 1 qualitatively ranks  compressions methods, scaled as: 

o Excellent 
o Good 
o Satisfactory 
o Poor 

 
Given these method assessments, the following selection 
algorithm chooses the compression method most suitable for 
the current execution environment. In this algorithm, we use 
the term `reducing speed’ to capture the speed at which (given 
currently available CPU cycles) a certain method is able to 
compress data. This speed is measured continually, as 
subsequent blocks of data are compressed. Also continually 
measured is the speed with which compressed blocks are 
accepted by receivers, thereby assessing both current network 
bandwidth and receiver speed. These end-to-end 
measurements are more relevant than knowledge of actual 
network bandwidth, since decompression requires the use of 
receivers’ CPU cycles.  
 
Assume the reducing size speed of first block is infinity. 
While not EOF 
Take a block of 128KB. 
 If (sending time) > 0.83*(the reducing size speed of 
Lempel-Ziv) 
  If sampling has been compressed into less than 
48.78% 
   If (sending time) > 3.48*(the reducing size speed 
of Lempel-Ziv) 
    Use Burrows -Wheeler 
   Else 
    Use Lempel-Ziv 
  Else 
   Use Huffman 
 Else 
  Don’t Compress 
 Fork a sampling process to compress the first 4KB of the 
next block by Lempel-Ziv and use its output to determine the 
reducing speed size and the compression ratio for the next 
128KB block. 
 Send the block. 
 Wait for child process. 
 
The sizes of the blocks have been chosen according to the 
efficiency of compression methods based on [31,32]. The ratios 
between the sending time and the reducing speed size have 
been set according to the statistics  detailed in Figure 4. The 

efficiency of the sampling has been set according to the 
numbers of Figure 2. Obviously, this information is specific to 
the particular data used on section IV. However, these 
numbers can be tuned easily by sampling even a small piece of 
data[31] extracted from the original file and send this  piece of 
data over an unloaded line employing unloaded CPUs. Usually, 
the numbers being used are very close to the constants details 
here, so we put these constants to give the reader an 
impression what the scope of the numbers is. 
 

 Burrows-
Wheeler 

Lempel-Ziv  Arithmetic  Huffman 

Compress files 
with string 
repetitions 

Excellent Excellent Poor  Poor 

Compress files 
with low entropy  

Excellent Poor  Excellent Excellent 

Compression 
Efficiency 

Excellent Good Poor Poor 

Time of 
Compression 

Poor  Satisfactory Poor  Excellent 

Time of 
Decompression 

Satisfactory Excellent Poor  Excellent 

Global Time Poor Good Poor Excellent 
Figure 1 

 
III. MIDDLEWARE INTEGRATION  
 
It is unrealistic to expect end users to explicitly use the various 
compression techniques described in this paper. This section 
describes the mechanisms and architecture of middleware that 
permits end users to take advantage of configurable 
compression for a wide range of applications and platforms. 
The specific middleware used is ECho, an event-based 
communication system targeting large-data applications [33].  
 
A. The ECho Middleware 
 
Several attributes of ECho distinguish it from other middleware 
systems. First, ECho transports distributed data with 
performance similar to that achieved by systems like MPI.  This 
allows it to support the large data flows on which our 
compression algorithms operate. Second, since ECho supports 
the publish/subscribe model of communication, new 
participants in event exchanges can be introduced by simply 
registering them with appropriate sets of events, without need 
for re-compilation or re-linking and without affecting other 
components, thereby facilitating system evolution.  As 
improved compression algorithms are developed, or as ones 
more suitable for application needs are defined, this 
middleware capability allows applications to take advantage of 
such methods without any associated re-engineering costs. 
Third, ECho supports the definition and use of globally named 
and interpreted quality attributes. Using attributes, ECho can 
transport performance information and/or dynamic change 
instructions, across end users and address spaces and across 
different implementation layers, including the application level, 



the operating system kernel, and the network level. This 
functionality is useful with online compression, since 
attributes can transport information about network or 
processor state to compression methods and/or to the 
algorithm that selects the compression methods to be used. 
 
Event subscription utilizes event channels, which are the 
mechanisms through which event producers and consumers 
are matched.  Producers submit events to a specific channel, 
and only consumers subscribed to that channel are notified of 
those events.  Conceptually, event channels exist in the space 
`between’ processes, but in practice they are distributed 
entities, with bookkeeping shared between all processes where 
they are referenced. Since channel implementations are 
distributed, it is straightforward for ECho to apply 
computations - termed handlers - to events, at any point in the 
data path between event producer and consumer.  Handlers 
may transform events, reduce their sizes or enhance the 
information they contain, and they can even prevent events 
from being transported, if needed. They are the key to the 
integration of compression methods, discussed next. 
 
B. Integrating Compression Methods 
 
 Since compression methods are integrated into ECho as 
event handlers, they can control the amount of data sent by 
producers and thereby also control the network bandwidth 
used by ECh o applications. Moreover, with handlers as 
execution vessels for data compression, a new compression 
method can be introduced at any time during a system’s 
operation. In ECho, such dynamic handler instantiation is 
known as deriving a new event channel from an existing one; it 
is an action taken by event consumers (event producers 
cannot take the responsibility of customizing event delivery for 
all or some subset of their consumers since event channel 
subscription is anonymous).   
 
Section 2.5 describes a decision process, which selects a 
compression method that will perform best in the current 
execution environment.  This decision method is integrated 
into ECho middleware by adding it the actions taken at event 
consumers. When the method determines that a consumer 
should change its compression method, it informs the 
appropriate source of this change via attributes. If the source 
does not yet have the suitable compression method, the 
consumer deploys a new method by simply deriving the 
appropriate event channel with that method. Having done so, 
the consumer can then unsubscribe from the original channel 
and subscribe to the new one, thereby connecting to an event 
stream with newly embedded data compression.  Since the 
consumer selected the specific new data compression method, 
it knows which decompression method to apply to any 
received event to correctly reconstruct the application data.  
ECho channels utilize a transport encapsulation layer that 
efficiently multiplexes multiple connections from a single 
address space, so maintaining a small number of open 

channels and switching among them as the operating 
environment changes does not adversely affect performance. 
 
C. Other Middleware Approaches 
 
While we have integrated compression methods into the ECho 
middleware, the approach of dynamically changing 
compression algorithms and degrees of compression in 
response to execution conditions is equally valid with other 
systems.  For example, middleware built on top of the Java RMI 
package could introduce these computations as Java code in 
the classes implementing communication.  Similarly, in .NET, 
compression could be integrated into its `remoting’ methods. 
CORBA-based systems could deploy compression codes as 
Interceptor modules, which are placed just before data is 
transmitted from the sender and just after data is received at 
the receiver. The ECho middleware system provides higher 
performance than either RMI or CORBA-based systems, but 
the overall integration approaches are similar. 
 

IV. EXPERIMENTAL RESULTS 
 
A. Microbenchmarks.  
 
The compression methods used in our work (i.e. Huffman, 
Arithmetic, Lempel-Ziv and Burrows-Wheeler) have been 
tested with multiple datasets, including scientific data and a 
dataset of a large commercial company. The binary data sets 
used are represented in an efficient format developed by our 
group, termed PBIO[34]. For the commercial data, the 
compression ratios achieved are shown  in Figure 2. 
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The corresponding times of compression and decompression 
appear in Figure 3. These times were measured on a Sun-Fire-
280R with UltraSPARC-III processor running Solaris 5.8. The 
machine had 4GB of internal memory. 
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The key insight from these experiments is the speed with which 
a CPU compresses  some  large amount of data. Figure 4 
summarizes the test results attained with two Sun machines , 
one being the same Sun-fire as the one in  Figure 3, the other an 
Ultra-Sparc machine with an UltraSPARC-II processor running 
Solaris 5.8 and having 128MB of main memory. 
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Figure 4 depicts what we term the `reducing speed’ of different 
CPU, which is the number of bytes per second by which a CPU 
can reduce data. If such space reduction can be performed 
faster than the transfer time for a given amount of data, it is  
worth (time-wise) to compress the data. If the CPU is fast, but 
the communication line is slow, even a complicated 
compression method can be chosen. In the reverse case, i.e. 
the CPU is slow and the communication line is fast, no 
compression method will be assigned. Between those two 
extremes , the use of a fast and uncomplicated compression 
method is indicated. 
 
Experimental results were attained with 1GB/s , 100MB/s, and 
1MB/s  links. We also used an international Internet link 
between the Georgia Institute of Technology, Atlanta, GA and 
Bar-Ilan University, Ramat-Gan, Israel. Figure 5 shows the 
speed of these communication lines. All of the measurements 
were taken on warm lines. The standard deviation of the 

transfer speed were 0.782%, 8.95%, 1.17% and 46.02% on the 
1GB, 100MB, 1MB and the international links, respectively.  
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The conclusion from the above figures is that if the CPU is 
very fast, then Burrows-Wheeler is the best method. Burrows-
Wheeler has a bad ratio of reducing MBs per second, but if the 
CPU is fast enough, the CPU can pay back any lost time. If the 
communication line is very fast, Huffman will be the best 
method. Huffman has a bad compression ratio, but 
compression is quite fast. When an intermediate case is to be 
used, Lempel-ZIV realizes a good compromise between 
compression time and transfer time. Arithmetic coding does 
not appear useful for the class of applications considered in 
our work. On a local fast communication link (e.g., a 1GB link) 
or on a lightly loaded 100MB link, compression appears  too 
expensive in general. This suggests that compression should 
not be used at all. 
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We tried our methods on scientific data sets. The specific data 
used is from a molecular dynamics application; it contains the 
coordinates of atoms, their velocities and their types. The 
compression ratios of the different data items are quite 
different from each other, as can be seen in Figure 6. However, 



the compression times across these data sets do not differ 
much. 

 

The conclusion from Figure 6 is that decisions about suitable 
compression techniques should be based not only on data 
sizes or link speeds, but also on data characteristics. Huffman 
codes and Arithmetic codes are suitable for low entropy data, 
while Lempel-Ziv methods are good at handling data with 
string repetitions. Burrows-Wheeler handles both of these 
cases .  

 

The consequent approach taken in our work is one that 
samples data as it is being produced and transported, to detect 
whether data has low entropy, string repetitions, or both. The 
results of such sampling are used to choose a suitable  
compression method. With ECho, such sampling can be 
integrated into the producer-side actions taken on events, 
much like we are currently integrating network measurement 
methods into the enhanced IQ-ECho implementation targeted 
at Internet links[13]. 

 

B. Experimentation with applications.  

In order to evaluate the behavior of compression with realistic 
scenarios, we created an environment in which network load is 
varied artificially, using load traces captured for the MBone 
multicast infrastructure. These commonly used traces track the 
number of end users that connect to MBone sessions over 
time, thereby indirectly describing the network load implied by 
MBone use [35]. Consequently, in Figure 7, load is stated as 
the number of connections over time.  
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The experiments presented below employ the MBone trace by 
creating network loads with it, using the raw MBone numbers 
multiplied by a factor of 4 in order to adjust it to the capacities 
of the 100MB links used in our experimentation. The data being 

compressed, transported, and decompressed is a set of 
transactions captured from the operational information system 
of a large company with whom we are working. This data set 
has a high rate of strings repetitions, so the best methods to be 
used were Lempel-Ziv and Burrows-Wheeler. These comments 
explain the automatic decision-making depicted in Figure 8 
(experiments are conducted on the same machine as the one 
used in Figure 3). Initially, with no network load, no 
compression is performed (labeled as `1’ in the figure). With 
increasing network load, the first compression method used is 
Lempel-Ziv (see `2’ in the figure), followed by Burrows -
Wheeler (see `3’) under high network loads.  
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Figure 8 depicts the choices of compression method over time, 
given the MBone-based network load. Figures 9 and 10 depict 
the compression times and the sizes of the compressed blocks, 
respectively, attained by these methods. From these figures, it 
is clear that the relatively small gains in data reduction attained 
from the use of Burrows -Wheeler justify its use only under 
very high network loads. 
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The next set of experiments is based on the same network load 
behavior, but uses the molecular data introduced earlier. In 
particular, our microbenchmarks (see Figure 6) show that the 
data containing atom coordinates does not compress very well. 
When applying configurable compression to this data set, the 
results depicted in Figures 11 and 12 are attained. These 
results are explained next. 
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Most of the data cannot be compressed well, as was shown in 
Figure 6. However, there are some small portions of the data 
that have strings repetitions. Those portions are recognized by 
configurable compression, which applies Lempel-Ziv (to the 
string portions) or Burrows-Wheeler (to the other data) in 
order to improve the compression ratio. As can be seen in 
Figure 11, most of the data was compressed by Huffman. In 
Figure 11, `1’ indicates no compression, while `2’, `3’ and `4’ 
indicate Lempel-Ziv, Burrows-Wheeler, and Huffman 
compression, respectively. 

 
V. CONCLUSIONS AND FUTURE WORK 

 
This paper evaluates multiple general, lossless compression 
methods, in terms of their effectiveness of use in distributed 
transactional or streaming data applications, in heterogeneous 
distributed systems and for datasets that include both 
commercial transactional and scientific data. The paper also 
describes how to integrate compression into modern 
middleware, thereby removing from end users the potentially 
onerous task of choosing suitable compression methods. This 
is important because in typical distributed systems and 
applications, the choice of compression should be dynamic, 
depending on currently available network bandwidth, 
computational load on end user machines, and the kind of data 
(i.e., its compressability) being transported.  
 
Initial results are encouraging. The notion of `quality 
attributes’ in middleware enables the end-to-end and cross-
layer interactions needed to transport the monitoring and 
configuration data across systems that is needed (1) for 
sampling the data being streamed and (2) for continuously 
capturing network and machine loads, thereby deciding upon 
the suitable compression method to be used for middleware -
level data transmission. (3) By permitting end users to 
dynamically change the parameters used by compression 
methods, they can also explicitly affect compression behavior. 
Most interestingly, (4) end users can also `derive’ from an 
existing middleware -based interaction a new interaction, new 
compression methods can be deployed into systems at 
runtime, permitting them to take advantage of new methods or 
of methods more suited to their application domains and data 
sets. 
 
Configurable compression was evaluated with both scientific 
and commercial data sets. Using configurable compression, we 
could transport the transactional data of a large company with 
which we are working on a 100MB network link under variable 
load in 10.7142 seconds (where compression took slightly more 
than 60% of total time) rather than in the 29.1388 seconds it 
took without compression. 
 
In comparison to the commercial data set, some of our 
scientific data is not easily compressed. Specifically, the 
random characteristic of that data requires us to use the 



`strongest’ compression methods available, such as Burrows -
Wheeler. Due to the overheads of using such methods, 
dynamic data compression actually increases the total time 
required for data streaming, from roughly 29 to 30.5 seconds. 
Cases like these indicate the importance of permitting end 
users to integrate their own, application-specific, lossy 
compression techniques into data streaming middleware. This 
is a topic of our current work, to make it easy and efficient for 
middleware to execute high performance compression methods 
and to instrument such methods to vary their dynamic 
behavior based on current platform resources[4]. 
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