
Abstract-- We explore the use of compression methods to improve the
middleware-based exchange of information in interactive or
collaborative distributed applications. In such applications, good
compression factors must be accompanied by compression speeds
suitable for the data transfer rates sustainable across network links.
Our approach combines methods that continuously monitor current
network and processor resources and assess compression effectiveness,
with techniques that automatically choose suitable compression
techniques. By integrating these techniques into middleware, there
is little need for end user involvement, other than expressing the
target rates of data transmission. The resulting network- and user-
aware compression methods are evaluated experimentally across a
range of network links and application data, the former ranging
from low end links to homes, to wide-area Internet links, to high
end links in intranets, the latter including both scientific (binary
molecular dynamics data) and commercial (XML) data sets. Results
attained demonstrate substantial improvements of this adaptive
technique for data compression over non-adaptive approaches,
where better compression methods are used when CPU loads are low
and/or network links are slow, and where less effective and typically,
faster compression techniques are used in high end network
infrastructures.

Index terms-- communication lines, compression

I. INTRODUCTION

The amounts of data transported in modern grid applications
can be substantial, often stressing even high performance
communication infrastructures. For instance, in applications
like DOE’s Supernova Initiative[1], estimated data production
rates by the simulations running on supercomputers exceed 1
GB/sec throughout a run. Similar data volumes are produced
by remote sensors or instruments, such as earth observation
satellites, specialized data sources (e.g., at nuclear research
centers) and even in modern business applications like the
operational information systems described in [2]. Coping with
such data volumes typically requires users to devise and
deploy application-specific methods to filter and select data, to
ensure that the right data is received by the right end user at
the right time[3,4].

1 Corresponding Author. Address:
The Computer Science Department, Bar-Ilan University,
Ramat-Gan 52900, Israel, Tel: 972-3-5317529, Fax: 972-
3-5353325,
http://www.cs.biu.ac.il/~wiseman, wiseman@cs.biu.ac.il

In this paper, we explore the utility and limitations of using
general, compression-based methods for reducing data
volumes. In contrast to the lossy compression methods[5]
used in previous work, for voice[6], image[7] and video[8]
applications, this paper explores lossless compression
techniques. This is because we are interested in integrating
compression into the data exchange middleware used in
today’s grid computing infrastructures, where data loss would
not be generally acceptable. The idea is to provide the levels of
performance in data exchange end users require, with little or
no involvement on their parts.

Our research focuses on interactive or collaborative,
distributed applications, examples including remote
collaboration via scientific or engineering data[4], remote
visualization and graphics, and large-scale commercial codes
like the operational information systems described in our
previous research[2]. For such applications, as with the
computational codes run across today’s wide area grid
infrastructures, compression methods cannot be applied
blindly. Instead, their use must be dynamically configured to
match current needs (e.g., desired transmission rates) with
current platform resources (e.g., network bandwidth, CPU
load). The techniques presented in this paper permits
middleware to automatically configure compression. When
sufficient network bandwidth is available, for instance, no
compression is applied, thereby reducing computational loads.
When network bandwidth is insufficient for the data volumes
being exchanged, compression is applied. The specific
compression method used is selected automatically, using
dynamic data sampling techniques to assess the effectiveness
and current speed of compression (since both are data-
dependent). The intent is to ensure that the rate of data
production (i.e., compression speed due to available CPU
resources) and the effectiveness of compression (compression
factor due to type of data) result in data volumes presented to
the network at rates that match current network resources as
well as application needs.

This paper demonstrates the utility of configurable
compression in multiple execution environments. In one
environment, relatively fast machines (e.g., high end PCs)
communicate via low-end links, such as international Internet
links across university collaborators (e.g., US to Israel) or DSL
links connecting researchers’ home machines with their
institutions’ computers. In another environment, workstation
class machines are linked via the 1GB or 100MB links now
commonly used in the Intranets of companies or research

EFFICIENT END TO END DATA EXCHANGE USING CONFIGURABLE COMPRESSION

Yair Wiseman1
Georgia Institute of Technology

and Bar-Ilan University
wiseman@cs.biu.ac.il

Karsten Schwan
Georgia Institute of Technology

Patrick Widener
Georgia Institute of Technology

schwan,pmw@cc.gatech.edu

institutions. Figure 1 depicts the heterogeneous
computation/communication infrastructure used to realize
these two environments.

The following are the results of our work. We first diagnose
the effectiveness and performance of both standard and newer
compression methods, using representative scientific and
business data. The data sets used stem from a large-scale
molecular dynamics simulation[4] and from the operational
information system described in [2]. Given these data sets, the
tradeoffs in compression speeds vs. reductions in required
network bandwidth are assessed, in the two representative
environments described in Figure 1. Second, based on these
results, a table-driven, configurable approach to selecting
suitable compression methods is developed. Method selection
takes into account compression speed (dependent on current
machine load), effectiveness (dependent on type of data), and
available network bandwidth. Since platform resources change,
method selection is performed repeatedly, throughout the
lifetime of a data exchange between the parties the data
exchange. Third, the resulting, configurable compression
approach is integrated into middleware, resulting in a layered
architecture that accommodates multiple compression
methods, different network measurement
techniques[9,10,11,12], and alternative communication
protocols, including those well-suited for the large-data
transfers[13].

Experimental evaluations indicate substantial performance
advantages from using configurable compression, particularly
for highly heterogeneous wide-area collaborations in which
international collaborators[14] interact in real-time to jointly
understand complex data sets or simulation results. For
instance, we were able to significantly improve the speeds of
data exchange for links from the U.S. to an Israeli university
machine, in both low-load and high-load usage scenarios.
Similarly, for home -based machines, even when using
broadband links like DSL, notable performance advantages are
attained from the use of compression. In Intranets, however,
the utility of compression is less evident, especially in our own
environments in which we have overcapacitated (i.e., relatively
unloaded) networks offering from 100MB to 1GB connectivity
between communicating machines. Generalizing from the
testbed results described here, we expect configurable
compression to compete well in embedded systems, as well,
where they are best deployed on `tethered' machines before
data is transmitted to mobile machines linked via wireless
connections. Results with application-specific data reduction
methods attained for embedded systems are described in [15].
In the remainder of the paper, we first briefly review the
compression methods used in our work. In Section 2, we
describe the various basic compression methods have been
used by the configurable compression. Section 3 describes the
software architecture of the IQ-ECho middleware into which
configurable compression is being integrated. This middleware
is targeted at large-data interactive applications, and it offers
runtime mechanisms for online network bandwidth

measurement and for managing the quality of middleware -
based data exchanges (termed quality attributes), both of
which will be used by the integrated version of configurable
compression. The microbenchmarks discussed in Section 4
evaluate the basic performance characteristics of alternative
compression methods, on different machines and with different
data sets, to characterize their effectiveness vs. running time.
A decision table and algorithm based on these results are used
to dynamically and automatically select an appropriate
compression technique for the data being streamed across
distributed application components. Conclusions and future
work appear in Section 5.

II. COMPRESSION METHODS

Compression methods reduce data size by applying
compression and decompression techniques to data. This
section briefly reviews the methods employed in our work, in
order to permit the reader to better understand the tradeoffs in
using these different techniques.

A. Huffman Compression

Huffman coding[16] - the first practical compression method -
is used standalone[17] and within more complex compression
techniques like JPEG[18,19]. The idea of Huffman coding is to
assign a shorter codeword to a common item and a longer
codeword to an uncommon item. Specifically, the following
algorithm (shown in the recursive pseudo code below) finds
codewords of minimum sizes for items A1,...,An of lengths
L1,...,Ln, where P1,...,Pn are the items' probabilities.

If (n==2) then {0,1}
Else

Combine the 2 smallest probabilities Pn,Pn-1
Solve for P1,P2,...,Pn-2,Pn-1+Pn
If Pn-1+Pn is represented by α? then

Pn-1 will be represented by α0
Pn will be represented by α1

“Solve for” means calling the function again with n-1 elements
(Pn-1 and Pn become one element, as indicated by Pn-1+Pn).

The main advantages of Huffman codes are their simplicity and
speed. These codes work well for binary data when string
repetition is rare. Huffman assumes that each character has no
relation to the adjacent one; hence it usually does not perform
well on texts. Huffman’s complexity is O(m+nlogn) where m is
the size of the text and n is the size of the alphabet. Note that
this is much better than the Burrows-Wheeler compression
technique described below, which has a complexity of
O(mlogm).

B. Arithmetic Coding

Huffman coding uses a string of bits for each item in the
original file. The arithmetic coding method[20,21] improves on
this by using fractions of bits as codewords, where one bit can
be `owned' by multiple items. As a result, a codeword can be
represented by a rational numbers of bits (e.g., by 3.25 bits).
The arithmetic coding method is described by the following
pseudocode:

Let L be a set of items.
Every item i∈L has a probability Pi∈[0,1], such that:

Every item is represented by the interval:

• Repeat until EOF:

o The current interval is divided into sub-

intervals according to the items‘
probabilities.

o Replace the current interval by the sub-

interval of the items that were read.

• Write into the compressed file the shortest binary
fraction available in the current interval.

C. Lempel-Ziv Methods

The traditional dictionary compression method is Lempel-Ziv
coding[22,23]. WINZIP[24] and gzip[25] use versions of
Lempel-Ziv coding. While Huffman coding and Arithmetic
coding don't consider an item's environment, the main
advantage of Lempel-Ziv methods is that they consider
previous appearances of strings, as follows:

Let x1,...,xn be a sequence of items.
We want to find a sub-sequence xk,...,xm which holds:

For example p(qu)>p(q)×p(u).

The Lempel-Ziv method puts a pointer into the place of each
previewed string. We use a version of Lempel-Ziv that
compresses these pointers by Huffman coding[26]. The
pointers of Lempel-Ziv look like (100,7), which means go
backward 100 bytes and copy 7 characters. Most pointers
point to close destinations, and a copy of just a few bytes is
done, so both of the numbers tend to be small. These numbers
are represented by Huffman codes, which give shorter
representation for small numbers.

D. The Burrows-Wheeler transformation

The Burrows -Wheeler transformation[27,28] is a dictionary
compression method. The method utilizes repetitions of words'
sequences in order to improve compression. No information is
lost in the compression procedure. The procedure outperforms
Lempel-Ziv coding, resulting in its use in a variety of
compression utilities, but its execution time can be high. The
method has multiple steps:

The first step creates pointers to all character of the file being
compressed. The pointers are sorted according to the
characters to which they are pointing. The preceding
characters of each of the pointers are sent to the next step
according to the order of the sorted pointers. Actually, this
sequence of characters in the output has the same characters
as in the original file, but the order of the characters is
different.

The second step performs a "move to front" algorithm. This
algorithm keeps all 256 possible characters in a list. When a
character is to be sent to the next step, its position in the list
will be sent. After the character is `sent', it is moved from its
current position in the list to the front of the list (i.e., to
position 0).

The next step applies a run-length coding to the output of the
previous step. The output of the run-length coding is
compressed by using either Huffman or Arithmetic coding.

The main disadvantage of the Burrows Wheeler transform is its
slow execution speed, due to the need to sort the file. In order
to reduce this speed, files are split into blocks, at some loss in
compression factors, because shorter files are less effectively
compressed. This paper uses the SGI version of the Burrows -
Wheeler Transform[29].

In order to enable us to decompress the file when the order of
blocks received does not exactly correspond to the order in
which it is sent, we have adapted the Burrows-Wheeler
method, as described next.

Each file is split into chucks of several lines. The Burrows -
Wheeler Transform compresses each chunk. Then, chunks are
processed by the move to front procedure, followed by run-
length coding. The run-length coding is changed to use a run-
length of at most 254 characters, so that the 255th character
never appears. Instead, the 255th character is placed at the end
of each compressed chunk. Next, all of the chunks are
compressed jointly using Huffman coding. Huffman can be
synchronized easily, as shown in [30]. This implies that if a
Huffman-encoded file is read from any arbitrary point, it may
have a few erroneous characters in the beginning, but the
other characters will be correct. So, we can decode the
compressed file from any arbitrary point, since Huffman will
keep track of character positions, and when we see position
255, we have found the new chunk.

∑
∈

=
Li

iP 1

),[∑∑
≤< ij

j
ij

j PP

∏
=

>
m

ki
imk xPxxP)(),...,(

E. Method Comparison

We next assess the characteristics of these compression
methods, so that it then becomes possible to choose the most
appropriate one for any given characteristic of the data, the
available communication bandwidth, and available CPU cycles.
These characteristics are established in microbenchmarks
described in Section 4.

Figure 1 qualitatively ranks compressions methods, scaled as:

o Excellent
o Good
o Satisfactory
o Poor

Given these method assessments, the following selection
algorithm chooses the compression method most suitable for
the current execution environment. In this algorithm, we use
the term `reducing speed’ to capture the speed at which (given
currently available CPU cycles) a certain method is able to
compress data. This speed is measured continually, as
subsequent blocks of data are compressed. Also continually
measured is the speed with which compressed blocks are
accepted by receivers, thereby assessing both current network
bandwidth and receiver speed. These end-to-end
measurements are more relevant than knowledge of actual
network bandwidth, since decompression requires the use of
receivers’ CPU cycles.

Assume the reducing size speed of first block is infinity.
While not EOF
Take a block of 128KB.
 If (sending time) > 0.83*(the reducing size speed of
Lempel-Ziv)
 If sampling has been compressed into less than
48.78%
 If (sending time) > 3.48*(the reducing size speed
of Lempel-Ziv)
 Use Burrows -Wheeler
 Else
 Use Lempel-Ziv
 Else
 Use Huffman
 Else
 Don’t Compress
 Fork a sampling process to compress the first 4KB of the
next block by Lempel-Ziv and use its output to determine the
reducing speed size and the compression ratio for the next
128KB block.
 Send the block.
 Wait for child process.

The sizes of the blocks have been chosen according to the
efficiency of compression methods based on [31,32]. The ratios
between the sending time and the reducing speed size have
been set according to the statistics detailed in Figure 4. The

efficiency of the sampling has been set according to the
numbers of Figure 2. Obviously, this information is specific to
the particular data used on section IV. However, these
numbers can be tuned easily by sampling even a small piece of
data[31] extracted from the original file and send this piece of
data over an unloaded line employing unloaded CPUs. Usually,
the numbers being used are very close to the constants details
here, so we put these constants to give the reader an
impression what the scope of the numbers is.

 Burrows-
Wheeler

Lempel-Ziv Arithmetic Huffman

Compress files
with string
repetitions

Excellent Excellent Poor Poor

Compress files
with low entropy

Excellent Poor Excellent Excellent

Compression
Efficiency

Excellent Good Poor Poor

Time of
Compression

Poor Satisfactory Poor Excellent

Time of
Decompression

Satisfactory Excellent Poor Excellent

Global Time Poor Good Poor Excellent
Figure 1

III. MIDDLEWARE INTEGRATION

It is unrealistic to expect end users to explicitly use the various
compression techniques described in this paper. This section
describes the mechanisms and architecture of middleware that
permits end users to take advantage of configurable
compression for a wide range of applications and platforms.
The specific middleware used is ECho, an event-based
communication system targeting large-data applications [33].

A. The ECho Middleware

Several attributes of ECho distinguish it from other middleware
systems. First, ECho transports distributed data with
performance similar to that achieved by systems like MPI. This
allows it to support the large data flows on which our
compression algorithms operate. Second, since ECho supports
the publish/subscribe model of communication, new
participants in event exchanges can be introduced by simply
registering them with appropriate sets of events, without need
for re-compilation or re-linking and without affecting other
components, thereby facilitating system evolution. As
improved compression algorithms are developed, or as ones
more suitable for application needs are defined, this
middleware capability allows applications to take advantage of
such methods without any associated re-engineering costs.
Third, ECho supports the definition and use of globally named
and interpreted quality attributes. Using attributes, ECho can
transport performance information and/or dynamic change
instructions, across end users and address spaces and across
different implementation layers, including the application level,

the operating system kernel, and the network level. This
functionality is useful with online compression, since
attributes can transport information about network or
processor state to compression methods and/or to the
algorithm that selects the compression methods to be used.

Event subscription utilizes event channels, which are the
mechanisms through which event producers and consumers
are matched. Producers submit events to a specific channel,
and only consumers subscribed to that channel are notified of
those events. Conceptually, event channels exist in the space
`between’ processes, but in practice they are distributed
entities, with bookkeeping shared between all processes where
they are referenced. Since channel implementations are
distributed, it is straightforward for ECho to apply
computations - termed handlers - to events, at any point in the
data path between event producer and consumer. Handlers
may transform events, reduce their sizes or enhance the
information they contain, and they can even prevent events
from being transported, if needed. They are the key to the
integration of compression methods, discussed next.

B. Integrating Compression Methods

 Since compression methods are integrated into ECho as
event handlers, they can control the amount of data sent by
producers and thereby also control the network bandwidth
used by ECh o applications. Moreover, with handlers as
execution vessels for data compression, a new compression
method can be introduced at any time during a system’s
operation. In ECho, such dynamic handler instantiation is
known as deriving a new event channel from an existing one; it
is an action taken by event consumers (event producers
cannot take the responsibility of customizing event delivery for
all or some subset of their consumers since event channel
subscription is anonymous).

Section 2.5 describes a decision process, which selects a
compression method that will perform best in the current
execution environment. This decision method is integrated
into ECho middleware by adding it the actions taken at event
consumers. When the method determines that a consumer
should change its compression method, it informs the
appropriate source of this change via attributes. If the source
does not yet have the suitable compression method, the
consumer deploys a new method by simply deriving the
appropriate event channel with that method. Having done so,
the consumer can then unsubscribe from the original channel
and subscribe to the new one, thereby connecting to an event
stream with newly embedded data compression. Since the
consumer selected the specific new data compression method,
it knows which decompression method to apply to any
received event to correctly reconstruct the application data.
ECho channels utilize a transport encapsulation layer that
efficiently multiplexes multiple connections from a single
address space, so maintaining a small number of open

channels and switching among them as the operating
environment changes does not adversely affect performance.

C. Other Middleware Approaches

While we have integrated compression methods into the ECho
middleware, the approach of dynamically changing
compression algorithms and degrees of compression in
response to execution conditions is equally valid with other
systems. For example, middleware built on top of the Java RMI
package could introduce these computations as Java code in
the classes implementing communication. Similarly, in .NET,
compression could be integrated into its `remoting’ methods.
CORBA-based systems could deploy compression codes as
Interceptor modules, which are placed just before data is
transmitted from the sender and just after data is received at
the receiver. The ECho middleware system provides higher
performance than either RMI or CORBA-based systems, but
the overall integration approaches are similar.

IV. EXPERIMENTAL RESULTS

A. Microbenchmarks.

The compression methods used in our work (i.e. Huffman,
Arithmetic, Lempel-Ziv and Burrows-Wheeler) have been
tested with multiple datasets, including scientific data and a
dataset of a large commercial company. The binary data sets
used are represented in an efficient format developed by our
group, termed PBIO[34]. For the commercial data, the
compression ratios achieved are shown in Figure 2.

0
5

10
15
20
25
30
35
40
45
50

Burrows-
Wheeler

Lempel-Ziv Arithmetic Huffman

method of compression

p
re

ce
n

ts
 o

f
co

m
p

re
ss

io
n

Figure 2

The corresponding times of compression and decompression
appear in Figure 3. These times were measured on a Sun-Fire-
280R with UltraSPARC-III processor running Solaris 5.8. The
machine had 4GB of internal memory.

0

1

2

3

4

5

6

7

8

9

Burrows-
Wheeler

Lempel-Ziv Arithmetic Huffman

compression method

ti
m

e
(i

n
 s

ec
o

n
d

s)

compression

decompression

Figure 3

The key insight from these experiments is the speed with which
a CPU compresses some large amount of data. Figure 4
summarizes the test results attained with two Sun machines ,
one being the same Sun-fire as the one in Figure 3, the other an
Ultra-Sparc machine with an UltraSPARC-II processor running
Solaris 5.8 and having 128MB of main memory.

reducing size speed

0
0.5

1
1.5

2
2.5

3
3.5

4

Burrows-
Wheeler

Lempel-Ziv Arithmetic Huffman

compression method

M
b

yt
es

 p
er

 s
ec

o
n

d

Sun-Fire

Ultra-Sparc

 Figure 4

Figure 4 depicts what we term the `reducing speed’ of different
CPU, which is the number of bytes per second by which a CPU
can reduce data. If such space reduction can be performed
faster than the transfer time for a given amount of data, it is
worth (time-wise) to compress the data. If the CPU is fast, but
the communication line is slow, even a complicated
compression method can be chosen. In the reverse case, i.e.
the CPU is slow and the communication line is fast, no
compression method will be assigned. Between those two
extremes , the use of a fast and uncomplicated compression
method is indicated.

Experimental results were attained with 1GB/s , 100MB/s, and
1MB/s links. We also used an international Internet link
between the Georgia Institute of Technology, Atlanta, GA and
Bar-Ilan University, Ramat-Gan, Israel. Figure 5 shows the
speed of these communication lines. All of the measurements
were taken on warm lines. The standard deviation of the

transfer speed were 0.782%, 8.95%, 1.17% and 46.02% on the
1GB, 100MB, 1MB and the international links, respectively.

transfer speed

7.520270348

0.146907607 0.10891426

26.32094622

0

1

2

3

4

5

6

7

8

1GB 100MB 1MB international

line

M
b

yt
es

 p
er

 s
ec

o
n

d

Figure 5

The conclusion from the above figures is that if the CPU is
very fast, then Burrows-Wheeler is the best method. Burrows-
Wheeler has a bad ratio of reducing MBs per second, but if the
CPU is fast enough, the CPU can pay back any lost time. If the
communication line is very fast, Huffman will be the best
method. Huffman has a bad compression ratio, but
compression is quite fast. When an intermediate case is to be
used, Lempel-ZIV realizes a good compromise between
compression time and transfer time. Arithmetic coding does
not appear useful for the class of applications considered in
our work. On a local fast communication link (e.g., a 1GB link)
or on a lightly loaded 100MB link, compression appears too
expensive in general. This suggests that compression should
not be used at all.

0

10

20

30

40

50

60

70

80

90

100

type velocity coordinates

kind of data

p
re

ce
n

ts
 o

f
co

m
p

re
ss

io
n

original

Huffman

Arithmetic

Lempel-Ziv

Burrows-Wheeler

Figure 6

We tried our methods on scientific data sets. The specific data
used is from a molecular dynamics application; it contains the
coordinates of atoms, their velocities and their types. The
compression ratios of the different data items are quite
different from each other, as can be seen in Figure 6. However,

the compression times across these data sets do not differ
much.

The conclusion from Figure 6 is that decisions about suitable
compression techniques should be based not only on data
sizes or link speeds, but also on data characteristics. Huffman
codes and Arithmetic codes are suitable for low entropy data,
while Lempel-Ziv methods are good at handling data with
string repetitions. Burrows-Wheeler handles both of these
cases .

The consequent approach taken in our work is one that
samples data as it is being produced and transported, to detect
whether data has low entropy, string repetitions, or both. The
results of such sampling are used to choose a suitable
compression method. With ECho, such sampling can be
integrated into the producer-side actions taken on events,
much like we are currently integrating network measurement
methods into the enhanced IQ-ECho implementation targeted
at Internet links[13].

B. Experimentation with applications.

In order to evaluate the behavior of compression with realistic
scenarios, we created an environment in which network load is
varied artificially, using load traces captured for the MBone
multicast infrastructure. These commonly used traces track the
number of end users that connect to MBone sessions over
time, thereby indirectly describing the network load implied by
MBone use [35]. Consequently, in Figure 7, load is stated as
the number of connections over time.

number of connections

0

5

10

15

20

0 20 40 60 80 100 120 140 160

time (seconds)

nu
m

be
r

of
 c

on
ne

ct
io

ns

Figure 7

The experiments presented below employ the MBone trace by
creating network loads with it, using the raw MBone numbers
multiplied by a factor of 4 in order to adjust it to the capacities
of the 100MB links used in our experimentation. The data being

compressed, transported, and decompressed is a set of
transactions captured from the operational information system
of a large company with whom we are working. This data set
has a high rate of strings repetitions, so the best methods to be
used were Lempel-Ziv and Burrows-Wheeler. These comments
explain the automatic decision-making depicted in Figure 8
(experiments are conducted on the same machine as the one
used in Figure 3). Initially, with no network load, no
compression is performed (labeled as `1’ in the figure). With
increasing network load, the first compression method used is
Lempel-Ziv (see `2’ in the figure), followed by Burrows -
Wheeler (see `3’) under high network loads.

Method of compression

0

1

2

3

0 20 40 60 80 100 120 140 160

time (seconds)

m
et

h
o

d
 o

f
co

m
p

re
ss

io
n

Figure 8

Figure 8 depicts the choices of compression method over time,
given the MBone-based network load. Figures 9 and 10 depict
the compression times and the sizes of the compressed blocks,
respectively, attained by these methods. From these figures, it
is clear that the relatively small gains in data reduction attained
from the use of Burrows -Wheeler justify its use only under
very high network loads.

time of compression

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 20 40 60 80 100 120 140 160

time (seconds)

co
m

pr
es

io
n

tim
e

(m
ic

ro
se

co
nd

s)

 Figure 9

size of compressed blocks

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160

time (seconds)

si
ze

 o
f

b
lo

ck
 (

in
 b

yt
es

)

Figure 10

The next set of experiments is based on the same network load
behavior, but uses the molecular data introduced earlier. In
particular, our microbenchmarks (see Figure 6) show that the
data containing atom coordinates does not compress very well.
When applying configurable compression to this data set, the
results depicted in Figures 11 and 12 are attained. These
results are explained next.

Method of compression

0

1

2

3

4

0 20 40 60 80 100 120 140 160

time (seconds)

m
et

h
o

d
 o

f
co

m
p

re
ss

io
n

Figure 11

size of compressed blocks

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100 120 140 160

time (seconds)

si
ze

 o
f b

lo
ck

 (i
n

by
te

s)

Figure 12

Most of the data cannot be compressed well, as was shown in
Figure 6. However, there are some small portions of the data
that have strings repetitions. Those portions are recognized by
configurable compression, which applies Lempel-Ziv (to the
string portions) or Burrows-Wheeler (to the other data) in
order to improve the compression ratio. As can be seen in
Figure 11, most of the data was compressed by Huffman. In
Figure 11, `1’ indicates no compression, while `2’, `3’ and `4’
indicate Lempel-Ziv, Burrows-Wheeler, and Huffman
compression, respectively.

V. CONCLUSIONS AND FUTURE WORK

This paper evaluates multiple general, lossless compression
methods, in terms of their effectiveness of use in distributed
transactional or streaming data applications, in heterogeneous
distributed systems and for datasets that include both
commercial transactional and scientific data. The paper also
describes how to integrate compression into modern
middleware, thereby removing from end users the potentially
onerous task of choosing suitable compression methods. This
is important because in typical distributed systems and
applications, the choice of compression should be dynamic,
depending on currently available network bandwidth,
computational load on end user machines, and the kind of data
(i.e., its compressability) being transported.

Initial results are encouraging. The notion of `quality
attributes’ in middleware enables the end-to-end and cross-
layer interactions needed to transport the monitoring and
configuration data across systems that is needed (1) for
sampling the data being streamed and (2) for continuously
capturing network and machine loads, thereby deciding upon
the suitable compression method to be used for middleware -
level data transmission. (3) By permitting end users to
dynamically change the parameters used by compression
methods, they can also explicitly affect compression behavior.
Most interestingly, (4) end users can also `derive’ from an
existing middleware -based interaction a new interaction, new
compression methods can be deployed into systems at
runtime, permitting them to take advantage of new methods or
of methods more suited to their application domains and data
sets.

Configurable compression was evaluated with both scientific
and commercial data sets. Using configurable compression, we
could transport the transactional data of a large company with
which we are working on a 100MB network link under variable
load in 10.7142 seconds (where compression took slightly more
than 60% of total time) rather than in the 29.1388 seconds it
took without compression.

In comparison to the commercial data set, some of our
scientific data is not easily compressed. Specifically, the
random characteristic of that data requires us to use the

`strongest’ compression methods available, such as Burrows -
Wheeler. Due to the overheads of using such methods,
dynamic data compression actually increases the total time
required for data streaming, from roughly 29 to 30.5 seconds.
Cases like these indicate the importance of permitting end
users to integrate their own, application-specific, lossy
compression techniques into data streaming middleware. This
is a topic of our current work, to make it easy and efficient for
middleware to execute high performance compression methods
and to instrument such methods to vary their dynamic
behavior based on current platform resources[4].

References

[1] DOE-TSI. Terascale supernova initiative.
http://www.phy.ornl.gov/tsi.

[2] V. Oleson, K. Schwan, D. Amin, G. Eisenhauer, B. Plale, C.

Pu, and P. Widener, Operational Information Systems , An
Example from the Airline Industry, Workshop on
Industrial Experiences with System Software (WIESS
2000), in conjunction with OSDI 2000, November 2000.

.
[3] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Martin,

and J. Vetter. From interactive applications to distributed
laboratories. IEEE Concurrency, 6(3), 1998.

[4] M. Wolf, Z. Cai, W. Huang, and K. Schwan. Smart Pointers:

Personalized Scientific Data Portals in Your Hand, In Proc.
of Supercommputing 2002, Nov. 2002.

[5] M. Beigl , MODBC - A Middleware for Accessing

Databases from Mobile Computers. 3rd Cabernet Plenary
Workshop, Rennes, France, 1997

[6] MMEV voice compression/decompression middleware,

http://www.asahikasei.co.jp/vorero/en/onsei2/mmev1.html.

[7] INNOTECH Corporation, IMPress Version 2.0, Image

compression and decompression middleware system for
embedded systems.
http://www.innotech.co.jp/english/news/contents/news02
1029e.html.

[8] Envivio Corporation, H.264 Live Solution for Cost-Effective

Delivery of Broadcast-Quality Video Over Satellite
Networks In Proc. of NAB 2003, Apr. 2003.

[9] M. Mathis. Web100 and the End-to-End problem.

http://www.web100.org/docs/jtech/.

[10] N. S. Rao, Y.-C. Bang, S. Radhakrisnan, Q. Wu, S. S.

Iyengar, and H. Choo. NetLets: measurement-based.

[11] M. Jain and C. Dovrolis. End-to-end available Bandwidth:

Measurement methodology, Dynamics, and Relation with

TCP throughput. In Proceedings of ACM SIGCOMM,
Aug. 2002.

[12] M.Jain and C. Dovrolis. End-to-End Available Bandwidth:

Measurement methodology, Dynamics, and Relation with
TCP Throughput. IEEE/ACM Transactions in
Networking, August, 2003.

[13] Q. He and K. Schwan. IQ-RUDP: Coordinating Application

Aaptation with Network Transport. In High Performance
Distributed Computing, July 2002.

[14] GriPhyN. The grid physics network.

http://www.griphyn.org.

[15] Y. Chen, K. Schwan, and D. Zhou. Opportunistic channels:

Mobility-aware event delivery. In Proceedings of the
ACM/USENIX International Middleware Conference,
2003.

[16] Huffman D. A method for the Construction of Minimum

Redundancy Codes Proc. of the IRE 40, pp.1098-1101
1952.

[17] Bookstein A., Klein S.T., Is Huffman coding dead?,

Journal of Computing 50, pp. 279-296, 1993.

[18] Wallace G. K. The JPEG Still Picture Compression

Standard Communication of the ACM 34, pp. 3-44, 1991.

[19] Information Technology Digital Compression and

Coding of Continuous-Tone Still Images Requirements
and Guidelines International Standard ISO/IEC 10918-1,
1993.

[20] Witten I. H., Neal R. M. and Cleary J. G. Arithmetic

Coding for Data Compression, Communication of the
ACM 30, pp. 520-540 1987.

[21] Howard P. G. and Vitter J. S., Arithmetic Coding for Data

Compression, Proceedings of the IEEE, 82(6), pp. 857-
865, 1994.

[22] Ziv J., Lempel A., A universal algorithm for sequential

data compression, IEEE Transactions on Information
Theory, IT-23, pp. 337-343, 1977.

[23] Ziv J., Lempel A., Compression of individual sequences

via variable-rate coding, IEEE Transactions Information
Theory, IT-24, pp. 530-536, 1978.

[24] WinZip, Nico Mak Computing, Inc., Mansfield, CT, USA

1998.

[25] gzip, Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA, USA 1991

[26] Brent. R. P., A linear algorithm for data compression .

Australian Computer Journal, 19(2) pp. 64-68, May 1987.

[27] Burrows M. and Wheeler D. Block sorting Lossless Data

Compression Algorithm, System research center, research
report 124, Digital System research Center, Palo Alto,
CA 1994.

[28] Nelson M. R. Data Compression with the Burrows Wheeler

Transformation, Dr. Dobb's Journal, pp. 46-50 1996.
[29] SGI® IRIX® Freeware distribution, 1600 Amphitheatre

Pkwy. Mountain View, CA, USA, Edition of February 2003.

[30] Klein S. T. and Wiseman Y. Parallel Huffman Decoding

with Applications to JPEG Files, The Computer Journal,
Swindon, UK, 2003.

[31] Wiseman Y., Parallel Compression, Ph.D. Thesis, Bar-Ilan

University, Ramat-Gan, Israel, 2000.

[32] Klein S. T. and Wiseman Y., Parallel Lempel Ziv Coding,

The Journal of Discrete Applied Mathematics , 2003.

[33] Eisenhauer G. and Schwwan K., The ECho Event Delivery

System, Technical Report GIT-CC-99-08, College of
Computing, Georgia Institute of Technology, Atlanta, GA
30332-0280, 1999.

[34] Plale B., Eisenhauer G., Daley L. K., Widener P. and

Schwan K., Fast Heterogenous Binary Data Interchange
for Event-based Monitoring, Proceedings of the
International Conference on Parallel and Distributed
Computing Systems (PDCS2000), 2000.

[35] Cai Z., He Q., Eisenhauer G., Schwan K. and Wolf M., IQ-

services: Network-Aware Middleware for Interactive
Large-Data Application , submitted to Supercomputing
(SC2003), May 2003.

