
0387

Circumspectly Crash of Autonomous Vehicles

Yair Wiseman
Computer Science Department
Holon Institue of Technology

Holon, Israel
wiseman@cs.biu.ac.il

Abstract-Sometimes an autonomous vehicle realizes that

unfortunately a crash will come about; however there are several
possible crashes and the autonomous vehicle can still make a
decision what the least destructive option is. In this paper a
technique for a real-time assessment of crash potential damages

is presented with the aim of facilitating the vehicle's embedded
computer to come to the best decision.

Keywords- Autonomous Vehicle; Car Accident; Embedded
Real-Time System

I. INTRODUCTION

Moral dilemmas similar to the well-known "Trolley
Problem"[1] can take place in circwnstances where an
autonomous vehicle should decide and select between several
damaging actions in the course of an inescapable crash. Such
morals questions like "Who should die the driver of the car or a
pedestrian in the vicinity of the car?" have been debated by
many philosophers, religions and law makers.

In this paper we do not intend to find the answers for these
moral dilemmas. We would like to focus in the eminent subject
of the passenger safety [2]; accordingly, we would strive for
giving techniques for assessing the potential damages that
possibly will happen in each course of action.

One of the most widespread techniques for effectively
employing computational geometry functions is creating an
intelligent simulation model for each geometry structure
consists of simple polygons. Fig. 1 b is an example for such a
simulation model for a vehicle after a crash. The right picture is
the original picture of the damaged vehicle. The left picture is
the simulation model consists of simple polygons.

Spatial Data Structures are employed in two main
approaches. The first approach is diminishing the nwnber of
intersection detections of vehicle models in a given scenario
[3,4]. For n structures, there will be 0(n2) possible structures
that possibly will be intersected. This number is clearly too
high; therefore diminishing the number of intersection checks
achieved by Spatial Data Structures is imperative.

The second approach is diminishing the number of
intersection checks of pair of simple polygons in a crash probe
of two vehicle models. In this approach, the Spatial Data
Structures are generated in a preprocessing step and remain
static because the vehicles are rigid and their models do not
changed.

Han Grinberg
Vice President

3DOR Simulations
Or-Yehuda, Israel

ilangrinberg3@gmail.com

Fig. la: Original image of the vehicle

Fig. 1 b: Simulation Model of a geometry shape consists of
basic polygons

978-1-4673-9985-2/16/$31.00 ©2016 IEEE

0388

Spatial Data Structures are often employed for Space
Partitioning [5] and Bounding volumes [6]. Space Partitioning
is a sub-partitioning of a space into convex regions called cells.
Each cell keeps a list of objects that it contains. Using these
structures, a computer can sifted out numerous pairs of objects.

Bounding volume is generated by a split of an object set
into several subsets and finding for each one of the subsets
tight bounding volume; so as a result when the computer
checks intersections of each of the subsets, it will
straightforwardly sifted out these subsets because it will only
have to find out which bounding volumes are not overlapping.
Hardware-software codesign [7] can perform this even better.

Some research have been conducted on approaches of
representing Bounding volumes like Bounding Spheres [8], K
DOPs - Discrete orientation polytopes [9], OBB - Oriented
Bounding Boxes [10], AABB - Axis Aligned Bounding Boxes
[11] and Hierarchical Spherical Distance Fields [12].

We will employ the most widespread approach, the AABB
approach. In this approach the bounding volume is denoted by
minimum and maximum values of the vehicle model in each
one of the axes. More details about these values can be found
at [13]. The disadvantage of the AABB approach is that its
representation is more memory consuming than the "Bounding
Sphere" approach; however, nowadays memory chips are
much larger and much more inexpensive and furthermore
AABB has an important advantage - its objects can more
tightly enclose the vehicle model than Bounding Spheres can,
which will generate less intersection checks.

Another advantage of AABB is the quick construction of
bounding volumes [14]. This advantage is very important in a
case of an autonomous vehicle accident when the vehicle's
computer does not have much time to make its decisions. The
computer just needs to check each element of the basic
elements that the bounding volume consists of and projecting it
on each of the axes. After that, just finding the minimum value
and the maximum value for each axis and the construction is
done.

In view of that, we employed the AABB approach. The
creation of the bounding box tree has been recursive. First, the
computer computes a bounding box for the set of the remaining
triangles. Then, the computer splits the set of the triangles into
two sub-meshs. At last, the computer executes the recursive
process on the two new split sub-meshs.

two sub-meshes. If a sub-mesh contains at least two triangles,
then the process will be rerun on that sub-mesh.

The creation of the bounding volume algorithms and the
triangle split algorithms have an important effect on the
bounding volume tree creation algorithm and its performance.
We use "Fitting points with Gaussian distribution" to create the
bounding volumes as described in [15]

The motivation for the split of the triangles into two sub
meshes is creating bounding volumes with minimal dimensions
for the sub-meshes.

Fig. 2 depicts an example of four triangles split in two
different ways. The number within each triangle represents the
sub-mesh the triangle belongs to after the split. This figure
demonstrates that a hierarchical intersection checking with a
specific segment may create less triangle intersection checks in
the left side of the figure because the bounded volume has a
smaller dimension. This feature was the major motivation to
use the split algorithm described in the next section.

'� '

! 0 i
i 1
.�i i
I 0 i . .

Fig. 2: Example of triangle split

III. TRIANGLES SPLIT ALGORITHM

Each triangular mesh with a corresponding bounding box
can be split into two sub-meshes. The triangles split algorithm
is described herein below:

• Let min sum be the maximum value that a float
variable can represent.

• For each of the box axes:

o Select a positive direction for the axis.

• For each triangle

o Find the maximal valued vertex on the projected

II. BOUNDING VOLUME TREE GENERATION axis.

Our methodology to constructing bounding volume tree has
been recursive. The process has been split into three major
steps:

• Create a bounding volume for the set of remained
triangles.

• Split the set of triangles into two submeshs.

• Execute the recursive process on the two new split sub
meshes.

The two new split sub-meshes of triangles represent the
child nodes of the triangles' initial group node that contains the

• Sort the triangles by their maximal vertex value.

• For each triangle from the minimum to the maximum:

o Tag the triangle as a "split triangle" (This tag
indicates that the first sub-mesh will contain the
triangles from the minimal to the split triangle;
whereas the second sub-mesh will contain the
rest of the triangles).

o Calculate the sum of the relative segments of the
two sub-meshes. (A relative segment is the
length of the projection of a sub-mesh onto the

0389

box axis divided by the original mesh projection
length).

o If the relative segments sum is less than the
min sum:

• Let min_sum be the new relative segments.

• Tag the current axis as the split axis.

• Tag the current triangle index as the split
index.

o Split the triangles according to the latest split
axis and the latest split triangle index.

Splitting Index 4

I ... �I
Original Segment Length

Fig. 3: triangles' set arranged from left to right on the
projecting axis with splitting index 4

Splitting index 2 � Length of the right segment I ... ��
Length ofU,e left 1

I... se2JIlent � 1
1 1 1
i /\ I ��I
� 1 /\ �-I
1 : I �� I\ I

: fu;l i l i . � :
1 : .: :: 0 'I
1 : II::::: 1

· · · · · .:. · · ·0· · · ·�·0 · GXD • 0' • � �:I��d�x�s. �

I ...
Original Segment LengOl

Fig. 4: triangles' set arranged from left to right on the
projecting axis with splitting index 2

The incentive of the algorithm is guaranteeing that there is
the smallest possible overlapping between the two sub-meshes'
bounding boxes.

Fig. 3 and Fig. 4 show a paradigm of two different split
indices. Fig. 3 shows a possible split at triangle index 4. Such a
split will generate a larger overlapping between the two
divided segments than a split in triangle index 2. Fig. 4 shows
this possible split in triangle index 2 and actually this explains
why the algorithm would select triangle index 2 to be the split
triangle if this was the case.

IV. RESULTS

We used Intel® Pentium® Processor N3540 which is a
very common quad-core processor with 2. 16GZ. We aimed at
gauging the efficiency of the triangle scheme we have used in
this paper.

The triangles were processed by the four cores of the
processor. We compared the following schemes:

• Best Match - Select the core with the highest number
of similar geometry parts.

• Random Match - For each check, a random
unclaimed core will be selected.

• Lowest Match - Select the core with the lowest
number of similar geometry parts.

• Best Match-Load - The motivation of this scheme is
not to load cores with many checks. Loaded cores
should not be selected to make the next checks if a less
loaded core is available, even if the less loaded core's
geometry is less similar. The load on a core is
calculated by dividing the buffered checks in the core
by its buffer maximal size. We took into consideration
both the load and the geometry similarity to the core's
checks with the aim of obtaining the best possible
performance.

There are several factors that we should take into account
when distribution depth of the bounding volumes is selected. If
a small depth is selected, the geometry will be split into large
overlapping bounding volumes, which will cause a retrieval of
many node collision pairs. On the other hand, if a large depth is
selected, the main process will waste more time in analyzing
the first step of the collision detection and as a result it may
possibly generate a bottleneck.

We have examined the influence of several depths on the
performance. We have used the image of the car in Fig. lb and
the image of the car Fig. 5b.

The results are shown in Fig. 6 and Fig. 7. It can be clearly
seen that the Best Match scheme gives better performance,
both in speedup and relative data transfer.

Fig. 6 and Fig. 7 show in addition that different geometry
models have different optimal distribution depth, specifically,
In Fig. 6 the optimal distribution depth is 12 and in Fig. 7 the
optimal distribution depth is 10.

0390

It can be also concluded from Fig. 6 and Fig. 7 that if the
given geometry model is bigger, the relative performance of
the Best Match algorithm will be better.

Fig. 5b: Another simulation Model of a geometry shape
consists of basic polygons

-- Best Match
-- Best Match-Load

Random Match
-- Lowest Match

17
�
� 15
Q)
Q) �
11113

11

9

6 8 10 12

d De pth
14 16

Fig. 6a: Distribution depth analysis of speedup of the car in
Fig lb.

25

23 ...
Q)

21 'tn
c:
III

19 ...
�
III ... 17 III
Q
Q) 15 >

..
-- Best Match III 13 a; -- Best Match-Load

a:: Random Match 11
-- Lowest Match

9

6 8 10 12 14 16
d Depth

Fig. 6b: Distribution depth analysis of relative data transfer
of the car in Fig lb.

We can see in Fig. 6 and Fig. 7 trimmed lines in the low
distribution depth of Lowest Match and Random Match
algorithms. This missing information has been ensued as a
result of a lack of memory.

At the initial stage, when the first jobs are sent, all the
calculations wait for relocation to other cores in the processor.
If a memory wasteful algorithm like Lowest Match or Random
Match is used, the processor can quickly run out of memory
and will be unable to handle the task.

The buffer size of the cores has a noticeable effect on the
performance of the algorithms. The buffer gives a core the
option of collecting several jobs and sending them en masse to
another core. Therefore, the main process has more time for
setting up tasks for other cores.

0391

16

15

14
Q.

13 ::J
"tl
eu 12 eu
Q.

V'I 11

10

9

8

6

-- Best M <Itch
-- Best Match-Load

Random Match
-- Lowest Match

8 10

d Depth

12 14

Fig. 7a: Distribution depth analysis of speedup of the car in Fig
5b.

23

22
L-
eu -\I) 21 c
ns ..
� 20 ns
ns
C 19
eu
:>

'';: 18 .!2 -- Best Match
eu -- Best Match-Load a::

17 Random Match
-- Lowest Match

16

6 8 10 12 14

d Depth

Fig. 7b: Distribution depth analysis of relative data transfer of
the car in Fig 5b.

V. CONCLUSIONS AND FUTURE WORK

The emerging concept of autonomous vehicles gave a boost
to the embedded vehicular and transportation computing
systems [16,17,18]. The autonomous vehicles motivated many
researchers to revisit well-known subjects of computer science
[19,20,21].

Primitive intersection is a well-known technique for real
time computer graphics implementations like 3D game engine
[22]. We suggested in this paper how to adapt this very general
concept into a specific assessment tool for potential vehicle
crash damage.

Such a tool's aim is an automatic decision maker for
autonomous vehicles that will decide in an inescapable
accident scenario, which sort of accident is the least hannful
crash.

REFERENCES

[1] J. J. Thomson, "Killing, letting die, and the trolley problem", Ethical
Theory - An Anthology, Second Edition, John Wiley & Sons, Inc.
Publication, pp. 204-217,1976.

[2] Y. Wiseman and Y. Giat, "Multi-modal passenger security in Israel
Multimodal Security in Passenger and Freight Transportation:
Frameworks and Policy Applications, Edward Elgar Publishing Limited,
Chapter 16, pp. 246-260, 2016.

[3] Y. Wiseman and E. Fredj, "Contour Extraction of Compressed JPEG
Images", Journal of Graphic Tools, Vol. 6, No. 3, pp. 37-43, 2001.

[4] E. Fredj and Y. Wiseman, "An O(n) Algorithm for Edge Detection in
Photos Compressed by JPEG Format", Proceedings of lASTED
International Conference on Signal and Image Processing SIP-2001,
Honolulu, Hawaii, pp. 304-308,200 I.

[5] A. V. Husselmann, A. Hawick, "Spatial Data Structures, Sorting and
GPU Parallelism for Situated-agent Simulation and Visualisation", In
Proceedings of International Conference on Modelling, Simulation and
Visualization Methods, pp. 14-20, Las Vegas, USA 2012.

[6] C. Stein, M. Limper, and A. Kuijper, "Spatial data structures for
accelerated 3D visibility computation to enable large model
visualization on the web" In Proceedings of the 19th International ACM
Conference on 3D Web Technologies, pp. 53-61,2014.

[7] Y. Wiseman, "A Pipeline Chip for Quasi Arithmetic Coding", IEICE
Journal - Transactions Fundamentals, Tokyo, Japan, Vol. E84-A No.4,
pp. 1034-1041,2001.

[8] S. Pabst, A. Koch and W. StraBer, "Fast and scalable cpu/gpu collision
detection for rigid and deformable surfaces", In Computer Graphics
Forum, vol. 29(5), pp. 1605-1612,2010.

[9] T. Ning, L. J., Wang, B. Li, "A Novel Method Based on K_DOPs and
Hybrid Bounding Box to Optimize Collision Detection", Journal of
Convergence Information Technology, Vol. 7, No. 12, pp. 389-397,
2012.

[10] J. W. Chang, W. Wang and M. S. Kim. "Efficient collision detection
using a dual OBB-sphere bounding volume hierarchy", Computer-Aided
Design, Vol. 42(1), pp. 50-57,2010.

[II] I. Grinberg and Y. Wiseman, "Scalable Parallel Collision Detection
Simulation", In Proceedings of Signal and Image Processing, Honolulu,
Hawaii, pp. 380-385, 2007.

[12] R. Weller, "New Geometric Data Structures for Collision Detection and
Haptics", Springer Science & Business Media, 2013.

[13] M. Teschner, B. Heidelberger, M. MUller, D. Pomerantes, and M. H.
Gross. "Optimized Spatial Hashing for Collision Detection of
Deformable Objects." In VMV, Vol. 3, pp. 47-54. 2003.

[14] I. Grinberg and Y. Wiseman, "Scalable Parallel Simulator for Vehicular
Collision Detection", International Journal of Vehicle Systems
Modelling and Testing, Vol. 8, No. 2, pp. 119-144,2013.

[15] L. Maarten, and J. M. Phillips, "Shape fitting on point sets with
probability distributions" In Algorithms-ESA 2009, pp. 313-324.
Springer Berlin Heidelberg, 2009.

[16] R. Ben Yehuda and Y. Wiseman, "The Oftline Scheduler for Embedded
Vehicular Systems", International Journal of Vehicle Information and
Communication Systems, Vol. 3, No. 1, pp. 44-57, 2013.

[17] R. Ben Yehuda and Y. Wiseman, "The Offline Scheduler for Embedded
Transportation Systems" In Proceedings of IEEE Conference on
Industrial Electronics (IEEE IClT-2011), Auburn, Alabama, pp. 449-
454,2011.

[18] P. Weisberg and Y. Wiseman, "Efficient Memory Control for Avionics
and Embedded Systems", International Journal of Embedded Systems,
Vol. 5(4), pp. 225-238, 2013.

0392

[19] Y. Wiseman, "Take a Picture of Your Tire!", Proceedings of IEEE
Conference on Vehicular Electronics and Safety (IEEE ICVES-201O)
Qingdao, ShanDong, China, pp. 151-156,2010.

[20] Y. Wiseman, "The Effectiveness of JPEG Images Produced By a
Standard Digital Camera to Detect Damaged Tyres", World Review of
Intermodal Transportation Research, Vol. 4, No. I, pp. 23-36, 2013.

[21] Y. Wiseman, "Camera That Takes Pictures of Aircraft and Ground
Vehicle Tires Can Save Lives", Journal of Electronic Imaging, Vol. 22,
No. 4, 041104, 2013.

[22] D. H. Eberly, "3D Game Engine Design: A Practical Approach to Real
Time Computer Graphics", CRC Press, 2006.

