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Abstract-Sometimes an autonomous vehicle realizes that 

unfortunately a crash will come about; however there are several 
possible crashes and the autonomous vehicle can still make a 
decision what the least destructive option is. In this paper a 
technique for a real-time assessment of crash potential damages 

is presented with the aim of facilitating the vehicle's embedded 
computer to come to the best decision. 
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I. INTRODUCTION 

Moral dilemmas similar to the well-known "Trolley 
Problem"[ 1 ]  can take place in circwnstances where an 
autonomous vehicle should decide and select between several 
damaging actions in the course of an inescapable crash. Such 
morals questions like "Who should die the driver of the car or a 
pedestrian in the vicinity of the car?" have been debated by 
many philosophers, religions and law makers. 

In this paper we do not intend to find the answers for these 
moral dilemmas. We would like to focus in the eminent subject 
of the passenger safety [2]; accordingly, we would strive for 
giving techniques for assessing the potential damages that 
possibly will happen in each course of action. 

One of the most widespread techniques for effectively 
employing computational geometry functions is creating an 
intelligent simulation model for each geometry structure 
consists of simple polygons. Fig. 1 b is an example for such a 
simulation model for a vehicle after a crash. The right picture is 
the original picture of the damaged vehicle. The left picture is 
the simulation model consists of simple polygons. 

Spatial Data Structures are employed in two main 
approaches. The first approach is diminishing the nwnber of 
intersection detections of vehicle models in a given scenario 
[3,4]. For n structures, there will be 0(n2) possible structures 
that possibly will be intersected. This number is clearly too 
high; therefore diminishing the number of intersection checks 
achieved by Spatial Data Structures is imperative. 

The second approach is diminishing the number of 
intersection checks of pair of simple polygons in a crash probe 
of two vehicle models. In this approach, the Spatial Data 
Structures are generated in a preprocessing step and remain 
static because the vehicles are rigid and their models do not 
changed. 
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Fig. la: Original image of the vehicle 

Fig. 1 b: Simulation Model of a geometry shape consists of 
basic polygons 
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Spatial Data Structures are often employed for Space 
Partitioning [5] and Bounding volumes [6]. Space Partitioning 
is a sub-partitioning of a space into convex regions called cells. 
Each cell keeps a list of objects that it contains. Using these 
structures, a computer can sifted out numerous pairs of objects. 

Bounding volume is generated by a split of an object set 
into several subsets and finding for each one of the subsets 
tight bounding volume; so as a result when the computer 
checks intersections of each of the subsets, it will 
straightforwardly sifted out these subsets because it will only 
have to find out which bounding volumes are not overlapping. 
Hardware-software codesign [7] can perform this even better. 

Some research have been conducted on approaches of 
representing Bounding volumes like Bounding Spheres [8], K
DOPs - Discrete orientation polytopes [9], OBB - Oriented 
Bounding Boxes [10], AABB - Axis Aligned Bounding Boxes 
[11] and Hierarchical Spherical Distance Fields [ 12]. 

We will employ the most widespread approach, the AABB 
approach. In this approach the bounding volume is denoted by 
minimum and maximum values of the vehicle model in each 
one of the axes. More details about these values can be found 
at [ 13]. The disadvantage of the AABB approach is that its 
representation is more memory consuming than the "Bounding 
Sphere" approach; however, nowadays memory chips are 
much larger and much more inexpensive and furthermore 
AABB has an important advantage - its objects can more 
tightly enclose the vehicle model than Bounding Spheres can, 
which will generate less intersection checks. 

Another advantage of AABB is the quick construction of 
bounding volumes [14]. This advantage is very important in a 
case of an autonomous vehicle accident when the vehicle's 
computer does not have much time to make its decisions. The 
computer just needs to check each element of the basic 
elements that the bounding volume consists of and projecting it 
on each of the axes. After that, just finding the minimum value 
and the maximum value for each axis and the construction is 
done. 

In view of that, we employed the AABB approach. The 
creation of the bounding box tree has been recursive. First, the 
computer computes a bounding box for the set of the remaining 
triangles. Then, the computer splits the set of the triangles into 
two sub-meshs. At last, the computer executes the recursive 
process on the two new split sub-meshs. 

two sub-meshes. If a sub-mesh contains at least two triangles, 
then the process will be rerun on that sub-mesh. 

The creation of the bounding volume algorithms and the 
triangle split algorithms have an important effect on the 
bounding volume tree creation algorithm and its performance. 
We use "Fitting points with Gaussian distribution" to create the 
bounding volumes as described in [15] 

The motivation for the split of the triangles into two sub
meshes is creating bounding volumes with minimal dimensions 
for the sub-meshes. 

Fig. 2 depicts an example of four triangles split in two 
different ways. The number within each triangle represents the 
sub-mesh the triangle belongs to after the split. This figure 
demonstrates that a hierarchical intersection checking with a 
specific segment may create less triangle intersection checks in 
the left side of the figure because the bounded volume has a 
smaller dimension. This feature was the major motivation to 
use the split algorithm described in the next section. 
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Fig. 2: Example of triangle split 

III. TRIANGLES SPLIT ALGORITHM 

Each triangular mesh with a corresponding bounding box 
can be split into two sub-meshes. The triangles split algorithm 
is described herein below: 

• Let min sum be the maximum value that a float 
variable can represent. 

• For each of the box axes: 

o Select a positive direction for the axis. 

• For each triangle 

o Find the maximal valued vertex on the projected 

II. BOUNDING VOLUME TREE GENERATION axis. 

Our methodology to constructing bounding volume tree has 
been recursive. The process has been split into three major 
steps: 

• Create a bounding volume for the set of remained 
triangles. 

• Split the set of triangles into two submeshs. 

• Execute the recursive process on the two new split sub
meshes. 

The two new split sub-meshes of triangles represent the 
child nodes of the triangles' initial group node that contains the 

• Sort the triangles by their maximal vertex value. 

• For each triangle from the minimum to the maximum: 

o Tag the triangle as a "split triangle" (This tag 
indicates that the first sub-mesh will contain the 
triangles from the minimal to the split triangle; 
whereas the second sub-mesh will contain the 
rest of the triangles). 

o Calculate the sum of the relative segments of the 
two sub-meshes. (A relative segment is the 
length of the projection of a sub-mesh onto the 
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box axis divided by the original mesh projection 
length). 

o If the relative segments sum is less than the 
min sum: 

• Let min_sum be the new relative segments. 

• Tag the current axis as the split axis. 

• Tag the current triangle index as the split 
index. 

o Split the triangles according to the latest split 
axis and the latest split triangle index. 

Splitting Index 4 
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Fig. 3: triangles' set arranged from left to right on the 
projecting axis with splitting index 4 
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Fig. 4: triangles' set arranged from left to right on the 
projecting axis with splitting index 2 

The incentive of the algorithm is guaranteeing that there is 
the smallest possible overlapping between the two sub-meshes' 
bounding boxes. 

Fig. 3 and Fig. 4 show a paradigm of two different split 
indices. Fig. 3 shows a possible split at triangle index 4. Such a 
split will generate a larger overlapping between the two 
divided segments than a split in triangle index 2. Fig. 4 shows 
this possible split in triangle index 2 and actually this explains 
why the algorithm would select triangle index 2 to be the split 
triangle if this was the case. 

IV. RESULTS 

We used Intel® Pentium® Processor N3540 which is a 
very common quad-core processor with 2. 16GZ. We aimed at 
gauging the efficiency of the triangle scheme we have used in 
this paper. 

The triangles were processed by the four cores of the 
processor. We compared the following schemes: 

• Best Match - Select the core with the highest number 
of similar geometry parts. 

• Random Match - For each check, a random 
unclaimed core will be selected. 

• Lowest Match - Select the core with the lowest 
number of similar geometry parts. 

• Best Match-Load - The motivation of this scheme is 
not to load cores with many checks. Loaded cores 
should not be selected to make the next checks if a less 
loaded core is available, even if the less loaded core's 
geometry is less similar. The load on a core is 
calculated by dividing the buffered checks in the core 
by its buffer maximal size. We took into consideration 
both the load and the geometry similarity to the core's 
checks with the aim of obtaining the best possible 
performance. 

There are several factors that we should take into account 
when distribution depth of the bounding volumes is selected. If 
a small depth is selected, the geometry will be split into large 
overlapping bounding volumes, which will cause a retrieval of 
many node collision pairs. On the other hand, if a large depth is 
selected, the main process will waste more time in analyzing 
the first step of the collision detection and as a result it may 
possibly generate a bottleneck. 

We have examined the influence of several depths on the 
performance. We have used the image of the car in Fig. lb and 
the image of the car Fig. 5b. 

The results are shown in Fig. 6 and Fig. 7. It can be clearly 
seen that the Best Match scheme gives better performance, 
both in speedup and relative data transfer. 

Fig. 6 and Fig. 7 show in addition that different geometry 
models have different optimal distribution depth, specifically, 
In Fig. 6 the optimal distribution depth is 12 and in Fig. 7 the 
optimal distribution depth is 10. 
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It can be also concluded from Fig. 6 and Fig. 7 that if the 
given geometry model is bigger, the relative performance of 
the Best Match algorithm will be better. 

Fig. 5b: Another simulation Model of a geometry shape 
consists of basic polygons 
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Fig. 6a: Distribution depth analysis of speedup of the car in 
Fig lb. 

25 

23 ... 
Q) 

21 'tn 
c: 
III 

19 ... 
� 
III ... 17 III 
Q 
Q) 15 > 

.. 
-- Best Match III 13 a; -- Best Match-Load 

a:: Random Match 11 
-- Lowest Match 

9 

6 8 10 12 14 16 
d Depth 

Fig. 6b: Distribution depth analysis of relative data transfer 
of the car in Fig lb. 

We can see in Fig. 6 and Fig. 7 trimmed lines in the low 
distribution depth of Lowest Match and Random Match 
algorithms. This missing information has been ensued as a 
result of a lack of memory. 

At the initial stage, when the first jobs are sent, all the 
calculations wait for relocation to other cores in the processor. 
If a memory wasteful algorithm like Lowest Match or Random 
Match is used, the processor can quickly run out of memory 
and will be unable to handle the task. 

The buffer size of the cores has a noticeable effect on the 
performance of the algorithms. The buffer gives a core the 
option of collecting several jobs and sending them en masse to 
another core. Therefore, the main process has more time for 
setting up tasks for other cores. 
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Fig. 7a: Distribution depth analysis of speedup of the car in Fig 
5b. 
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Fig. 7b: Distribution depth analysis of relative data transfer of 
the car in Fig 5b. 

V. CONCLUSIONS AND FUTURE WORK 

The emerging concept of autonomous vehicles gave a boost 
to the embedded vehicular and transportation computing 
systems [16,17,18]. The autonomous vehicles motivated many 
researchers to revisit well-known subjects of computer science 
[19,20,21]. 

Primitive intersection is a well-known technique for real 
time computer graphics implementations like 3D game engine 
[22]. We suggested in this paper how to adapt this very general 
concept into a specific assessment tool for potential vehicle 
crash damage. 

Such a tool's aim is an automatic decision maker for 
autonomous vehicles that will decide in an inescapable 
accident scenario, which sort of accident is the least hannful 
crash. 
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