
 1

Advanced Non-Distributed Operating Systems Course

Yair Wiseman
Computer Science Department

Bar-Ilan University
Ramat-Gan 52900, Israel

Tel: 972-3-5317015, Fax: 972-3-7360498
http://www.cs.biu.ac.il/~wiseman

wiseman@cs.huji.ac.il

Keywords: Operating Systems, Graduate Course, Operating System Kernel, Non-Distributed Operating Systems.

Abstract
 The use of Non-Distributed Operating Systems is very common and old. Many researchers feel that this field of
research is outmoded, and therefore put their efforts into Distributed Operating Systems. Advanced Operating Systems
courses generally include an overview of the topical issues of research in the Operating System field. Many instructors prefer
using Distributed Operating Systems subjects in order to give their students the contemporary research atmosphere. This
encourages graduate students to research Distributed Operating Systems topics. We suggest that Non-Distributed Operating
Systems is still an important field worthy of being expanded in graduate courses. An example for such a course is given. This
course has been successfully taught in Bar-Ilan University during 2004.

1. Introduction

Advanced operating systems courses are common in
many Computer Science departments all over the world.
Naturally, academic freedom does not dictate the material
taught in such courses. Most courses contain various
Distributed Operating Systems materials; e.g. [1,2,3,4].
This induces graduate students to research Distributed
Operating Systems. We suggest devising separate courses
for Non-Distributed Operating Systems, alongside the
existing courses in Distributed Operating Systems. One-
processor machines are still the majority of the computing
power far and wide. Therefore, a Non-Distributed
Operating Systems course can be beneficial for
encouraging more graduate students to research this field
and to contribute their aptitude. Indeed, some former
students of this course have begun researching the subjects
described below.

The Non-Distributed Operating Systems is still a vital
and dynamic field. A probe of recent operating systems
conferences focusing on the “pure” Operating Systems
subjects (i.e. Kernel’s task) has produced 3 main categories
of study in Non- Distributed Operating Systems:

• New and enhanced techniques
• Algorithm improvements
• Statistical studies
We introduce subjects in each category and elaborate

on the course material within each subject. The technical
depth of this paper will be superficial, because our object
does not include specifying technicalities. Instructors who
wish to probe into the suggested subjects may look into the
cited references. The suggested course integrating these 3
categories has been taught in Bar-Ilan University during
2004. The students were required to do preparatory reading

which was followed by a discussion in class. The course
was supported by a web site [5].

2. New and Enhanced Techniques

This category contains the enhancements for old and
familiar techniques that any Operating System has. The
main concepts of the technique are usually taught in the
undergraduate Operating System course. In the advanced
Operating System course suggested, the up-to-date
enhanced techniques are introduced.

2.1. Micro-Kernel
Micro-Kernel [6] is a controversial enhancement for

the old concept of the operating system kernel. The first
Micro-Kernels were first presented at the beginning of the
70’s, but there many implications and ramifications are still
being researched nowadays.

The conception of Micro-Kernel is to implement
outside the kernel as many functions as possible. This
induces a discussion of the advantages and the
disadvantages of such an implementation [7,8], of which
the main issues are:

• Fault isolation and independence. Kernel
malfunction can cause a reboot. With Micro-
Kernels less code is executed in Kernel Mode.

• Flexibility. Different strategies and APIs
(Application Programming Interface) can coexist
when using Micro-Kernels.

• Kernel recompilation is less needed when changes
are done in the operating system, because more
sections of the operating system are not
implemented within the kernel.

• Performance. When using Micro-Kernels, there
will be more context switches to the new

 2

operating systems processes (The processes that
perform the functions of the Monolithic Kernel).

Another important discussion is which sections of the
kernel can be taken out and which sections are essential
within the Micro-Kernel. The classic examples of sections
that can be taken out are the paging mechanism and the
device drivers. Showing the students how this was
previously implemented [9,10,11] may offer material for
further research.

The opposite approach is to implement inside the
kernel whatever possible. This raises the question what
definitely should be outside the kernel, or maybe there is no
such a component outside the kernel as was suggested in
[12]. Such an approach makes the kernel transactions very
long. This feature brings up more questions to be discussed
in class; e.g. can the kernel be interrupted and if so, when
will it be interrupted and by which interrupts [13].

2.2. Super-Pages
Super-Pages is an enhancement of the well-known

paging concept. Super-Pages are larger pages that are
referenced by the TLB. The internal memory of modern
computers has been significantly increased during the last
decade. However, the TLB coverage (i.e. the size of the
memory that can be referenced directly by the TLB) has
been increased by a much lower factor during the same
period [14,15]. Therefore, several new architectures like
Itanium, MIPS R4x00, Alpha, SPARC and HP PA RISC
support multiple page size of the frames referenced by the
TLB. In that way the memory size referenced directly by
the TLB is higher and the overhead of the page table access
time is reduced. In addition, many modern operating
systems support Super-Paging.

The Super-Paging concept brings up several questions
to discuss in class. First, when should the Operating System
upgrade some base pages into a large Super-Page? This
dilemma is even more complicated when the processor
supports several sizes of Super-Pages; e.g. the Itanium has
10 sizes of Super-Pages. Second, where should the location
of the small pages in the memory be? One possibility is
placing them in a location that spares the need for
relocation of the base page, once the Operating System
upgrades base pages into a Super-Page [16]. Another
policy is placing the base page in the first vacant location in
the memory and relocating it when the Operating System
upgrades [17]. Thirdly, who handles the relocation, the
hardware or the software [18]?

Some processors and Operating Systems have
addressed these questions [19,20,21]. The course shows the
students what decisions the specific processors and
Operating Systems have taken and what their
considerations were. The students are encouraged to
express their view and come up with suggestions for
improved performance.

2.3. Desktop Scheduling
The schedulers of most of the contemporary operating

systems are based on the old well-known schedulers that
have been used during the years by the traditional Unixes
and other popular operating systems. These schedulers do
not always perform well with the new and different
characteristic of processes that are used by the new desktop
machines.

One of the most notable changes is the multi-media
processes that rarely appeared on the old machines and
very common nowadays [22]; e.g. Etsion et al. [23,24]
explore the effectiveness of the Linux scheduler when
using multi-media processes like movie players or games.
They show that the Linux scheduler is not tuned well for
such processes and they suggest a technique to improve the
scheduler in order to get better performance.

Usually, in the undergraduate operating systems course
the students are taught about the common schedulers used
by the popular operating systems. In the operating systems
graduate course they should be able to criticize the timing
of those schedulers [25]. Furthermore, they are expected to
suggest methods to improve the effectiveness of the
original schedulers.

2.4. Versioning File Systems
In 1995, for $200 you could purchase a 0.54GB disk,

whereas Slackware Linux 2.2 (Basic Applications+X
window) had 0.15Gbytes that make up 28% of the disk
capacity. In 2004, for $200 you can purchase a 300GB
disk, whereas RedHat Linux Advanced Workstation 2.1
(Basic Applications+X window) for the Itanium Processor
has 4.2GB that make up 1.4% of the disk capacity. These
facts support the conclusion that nowadays the space
pressure on the disk is not high and a portion of the disk
can be reserved for backup.

Versioning File Systems are file systems that do not
remove the files that have been deleted. The disk retains the
blocks of the deleted files and they can be restored if
needed. The concept had been previously used by some
versions of VMS [26]. However, some new File Systems
have been proposed recently e.g. Elephant [27,28] and
Moraine [29], which have different policies for different
types of files and a better interface for the user.

The students are called upon to explore new deleting
timing of the blocks in such a file system [30]. There are
some suggestions in the current file systems for this timing.
Techniques yielding optimal results should be discussed. In
addition, should the policy offered by the file systems be
selected by the user or should be automatically selected by
the operating system? There is a dispute among the
researchers in this field what is better [31] and the students
are called upon to take a stand.

3. Algorithms Improvements

Many known algorithms are utilized by the operating
system. In this section we suggest showing the students

 3

how these algorithms are adapted by the operating system
encouraging improvements on these algorithms.

3.1. ARC
In 1946 Von-Neumann suggested a hierarchy of

memories. This concept has been accepted by almost all of
the computer manufacturers. In such a hierarchy each of
the memories has a greater capacity than the preceding but
it is less quickly accessible. When there is no more room in
the faster memory, the selecting of the "victim" to be taken
out of the faster memory has been traditionally done for
decades by the LRU algorithm. The LRU is fast and easy
for implementation and has been utilized by many
operating systems, but is there a better algorithm?

We suggest introducing new techniques previously
suggested such as LRU-K [32], 2Q [33], LRFU [34]. The
students should be able to criticize the techniques in several
parameters:

• The complexity of the algorithm and time
overhead.

• How fast the algorithm can identify “stale” block
• How fast the algorithm recognizes that a block is

frequently used and should be in the faster
memory.

• The space overhead needed by the algorithm.
ARC is a recently invented method [35,36,37]

considered the best known yet. The students may be
encouraged to attempt to challenge the method.

4. Statistical studies

Some of the research in the field of operating systems
applies to the statistical properties of the operating systems,
which can detect common flaws of operating systems and
help solve them. In turn we may infer which sections of the
operating system are more essential.

4.1. Operating System Bugs
Operating Systems like many other softwares are not

bug-free. Some studies have been conducted over the years
to analyze bugs on common operating systems like Linux
[38,39] and WindowsNT [40]. These studies can help us
enumerate the number of bugs an ordinary operating
system has. Windows generally has more bugs than Linux.
The students may come up with reasons for this.

Another important question is where most of the bugs
emerge. The studies show that the device drivers are
usually the buggiest section in the kernel. Many
developers, who are more familiar with the devices than the
kernel, will usually write the Device Drivers. In addition
only a few users may have a given device; hence it will be
less “battle-tested” than the other sections of the kernel.

The students are shown how this information can help
them and how they can improve their products [41]. In
complex software systems such information is essential
[42]. They may be shown which sections are less
trustworthy. In addition, they may be shown common

reasons for bugs; e.g. Cut-and-Paste in code writing can be
harmful sometimes [43]. Bug lifetime is also an interesting
parameter that may show students the standards in the
operating system market.

4.2. Benchmarking
Typically, when a product needs to show its

performance, it will demonstrate the results by
benchmarking. The same usage of benchmarks is done
when writing a scientific paper. The benchmarking is
selected by the author. This gives the author a wide
spectrum of subjective representation of the paper results
[44,45].

The Operating Systems field is not different [46].
There are several common benchmarking standards like
SPEC [47], but researchers do not tend to take the
standards seriously. Many papers contain just partial results
and sometimes even results of just one program out of the
benchmark suite [48,49]. Moreover, usually authors of
papers with the partial results neglect to explain the
omission of the missing measurements.

This subject is very important for students who are
going to be the next generation of the research community.
They should study how to test their ideas with integrity.
Hiding the drawbacks and the limitations sets a bad
example for students. Honest benchmarking is an essential
part of a good paper.

5. Conclusions

The undergraduate course of Operating Systems
usually focuses on Non-Distributed Operating Systems,
while the graduate Operating Systems course focuses in
many universities on Distributed Operating Systems. Many
instructors feel that the advanced subjects can be found in
the Distributed Operating Systems field, and that the Non-
Distributed Operating Systems has very little to offer. This
paper has shown that there are enough topics to teach in the
Non-Distributed Operating Systems course; thus the
conclusion of this paper is that there should be two
advanced courses - one on Non-Distributed Operating
Systems and one on Distributed Operating Systems.
Ignoring the Non-Distributed Operating Systems is actually
ignoring most of the computers in the world which are not
distributed.

6. Acknowledgments

The author would like to thank Fabin E. Bustamante of
Georgia Institute of Technology, Dharmendra Modha of
IBM Almaden Research Center, Juan Navarro of Rice
University, Yoav Etsion of the Hebrew University,
Nicholas Rizzolo of University of Illinois, Daniel Citron of
IBM Research Lab in Haifa and Tetsuo Yamamoto of
Osaka University.

 4

7. References

[1] K. Schwan, “CS 6210 Advanced Operating Systems”,
http://www.cc.gatech.edu/classes/AY2004/cs6210_spring/,
2004.
[2] D. Engler, “CS240: Advanced Topics in Operating
Systems”, http://www.stanford.edu/class/cs240/, 2004.
[3] V. Pai, “COS 518, Advanced Operating Systems”,
http://www.cs.princeton.edu/courses/archive/fall04/cos518/
, 2004.
[4] B. Miller, “CS 736 - Advanced Operating Systems”,
http://www.cs.wisc.edu/~bart/cs736.html , 2004.
[5] Y. Wiseman, “The Home Page of Advanced Operating
Systems Course”, http://www.cs.biu.ac.il/~wiseman/2os,
2004.
[6] T. P. Scheuermann, "Evolution in Microkernel Design",
Computer Science Department, University of North
Carolina, Chapel Hill, NC, 2002.
[7] J. Liedtke, "Toward Real MicroKernels",
Communications of the ACM, Vol. 39(9), September 1996.
[8] J. Liedtke, "On Micro-Kernel Construction",
Proceedings of the 15th ACM Symposium on Operating
System Principles, ACM, December 1995.
[9] D. Golub, R. Dean, A. Forin and Richard Rashid. "Unix
as an Application Program", Proceedings of the USENIX
Summer Conference, June 1990.
[10] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D.
McNamee, P. Pardyak, S. Savage and E. Gun Sirer, "SPIN
- An Extensible Microkernel for Application-specific
Operating System Services", ACM Operating Systems
Review, Vol. 29(1), January 1995.
[11] The L4 MicroKernel,
http://www.cse.unsw.edu.au/~disy/L4/
[12] T. Maeda, "Safe Execution of User Programs in
Kernel Mode Using Typed Assembly Language", Master
Thesis, The Graduate School of The University of Tokyo,
February, 2002.
[13] G. Anzinger and N. Gamble, "Design of a Fully
Preemptable Linux Kernel", MontaVista Software,
September 2000.
[14] J. Navarro. Transparent operating system support for
superpages, Ph.D. Thesis, Department of Computer
Science, Rice University, April 2004.
[15] J. Navarro, S. Iyer, P. Druschel and A. Cox. Practical,
Transparent Operating System Support for Superpages,
Fifth Symposium on Operating Systems Design and
Implementation (OSDI '02), Boston, MA, December 9-11,
2002.
[16] M. Talluri and M. D. Hill, Surpassing the TLB
Performance of Superpages with Less Operating System
Support, Sixth International Symposium on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, California, pp. 171-182,
October 4-7, 1994.

[17] T. H. Romer, W. H. Ohllrich, A. R. Karlin, and B. N.
Bershad, Reducing TLB and memory overhead using
online superpage promotion, In Proceedings of the 22nd
International Symposium on Computer Architecture
(ISCA), pp. 87-176, Santa Margherita Ligure, Italy, June
1995.
[18] Z. Fang, L. Zhang, J. Carter, S. McKee, and W. Hsieh.
Re-evaluating Online Superpage Promotion with Hardware
Support. In Proceedings of the Seventh International
Symposium on High Performance Computer Architecture,
pp. 63-72, January 2001.
[19] I. Subramanian, C. Mather, K. Peterson, and B.
Raghunath. Implementation of multiple pagesize support in
HP-UX, In Proceedings of the USENIX, New Orleans,
Louisiana, June 15-19, 1998.
[20] N. Ganapathy and C. Schimmel, General Purpose
Operating System Support for Multiple Page Sizes, In
Proceedings of the USENIX, New Orleans, Louisiana, June
15-19, 1998.
[21] S. Winwood, Y. Shuf, H. Franke, Multiple Page Size
Support in the Linux Kernel, Ottawa Linux Symposium,
Ottawa, Ont, Canada, June 2002.
[22] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall,
"SVR4 UNIX Scheduler Unacceptable for Multimedia
Applications", Proceedings of the Fourth International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, Lancaster, UK, pp. 35-48,
November 1993.
[23] Y. Etsion, D. Tsafrir, and D. G. Feitelson, "Desktop
Scheduling: How Can We Know What the User Wants?".
In the 14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV), June 2004.
[24] Y. Etsion, D. Tsafrir, and D. G. Feitelson, "Human-
Centered Scheduling of Interactive and Multimedia
Applications on a Loaded Desktop". Technical Report
2003-3, School of Computer Science and Engineering, The
Hebrew University of Jerusalem, March 2003.
[25] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole,
"Supporting Time-Sensitive Applications on a Commodity
OS", Fifth Symposium on Operating Systems Design and
Implementation (OSDI '02), Boston, MA, December 9-11,
2002.
[26] M. D. Schroeder, D. K. Gifford and R. M. Needham,
"A Caching File System for a Programmer's Workstation",
Proceedings of the tenth ACM symposium on Operating
systems principles, Orcas Island, Washington, pp. 25-34,
1985.
[27] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton and J. Ofir, "Deciding When to
Forget in the Elephant File System", ACM Symposium on
Operating System Principles, Kiawah Island Resort, South
Carolina, pp. 110-123, December 12-15, 1999.

 5

[28] D. J. Santry, M. J. Feeley, N. C Hutchinson, and A. C.
Veitch, "Elephant: The File System That Never Forgets",
Proc. Workshop on Hot Topics in Operating Systems, Rio
Rico, Arizona, pages 2-7, 1999.
[29] T. Yamamoto, M. Matsushita and K. Inoue,
"Accumulative Versioning File System Moraine and Its
Application to Metrics Environment MAME", Proceedings
of the 8th ACM SIGSOFT international symposium on
Foundations of software engineering, pp. 80-87, Shelter
Island, San Diego, California, USA, November 6-10, 2000.
[30] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G.
R. Ganger, "Metadata Efficiency in Versioning File
Systems," in Proceedings of the Second USENIX
Conference on File and Storage Technologies (FAST
2003), pp. 43-58, San Francisco, California, March 31-
April 2, 2003.
[31] K. Muniswamy-Reddy, C. P. Wright, A. Himmer and
E. Zadok, "A Versatile and User-Oriented Versioning File
System", in Proceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 2004), pp. 115-
128, San Francisco, California, March 31-April 2, 2004.
[32] E. O'Neil, P. O'Neil and G. Weikum, "The LRU-K
Page Replacement Algorithm for Database Disk
Buffering", Proceedings of SIGMOD `93, Washington,
DC, May 1993.
[33] T. Johnson and D. Shasha, "2Q: a low overhead high
performance buffer management replacement algorithm",
Proceedings of the Twentieth International Conference on
Very Large Databases, VLDB' 94, Santiago, Chile, pp.
439-450, September 1994.
[34] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. S. Kim, "LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used
policies," IEEE Trans. Computers, vol. 50, no. 12, pp.
1352-1360, 2001.
[35] N. Megiddo and D. S. Modha, "ARC: A Self-Tuning,
Low Overhead Replacement Cache," Proc. of the 2nd
USENIX Conference on File and Storage Technologies
(FAST'2003), San Francisco, pp. 115-130, March 31 -
April 2, 2003.
[36] N. Megiddo and D. S. Modha, "One Up on LRU"
;login: - The Magazine of the USENIX Association, vol.
28, no. 4, pp. 7-11, August 2003.
[37] N. Megiddo and D. S. Modha, "Outperforming LRU
with an Adaptive Replacement Cache Algorithm," IEEE
Computer, pp. 4-11, April 2004.
[38] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D.
Engler. "An Empirical Study of Operating Systems Errors",
In Proceedings of the 18th ACM Symposium on OS
Principles (SOSP), pp. 73-88, Lake Louise, Alta, Canada,
October 2001.
[39] D. G. Majors, "An Investigation of the Call Integrity
of the Linux System", 14th. IEEE International Symposium

on Software, Reliability Engineering ISSRE 2003, Denver,
Colorado November 17-20, 2003.
[40] J. Xu, Z. Kalbarczyk, and R. Iyer, "Networked
Windows NT System Field Failure Data Analysis," Proc.
1999 Pacific Rim Int'l Symp. Dependable Computing,
IEEE CS Press, Los Alamitos, CA, 1999.
[41] M. M. Swift, B. N. Bershad, and H. M. Levy,
"Improving the Reliability of Commodity Operating
Systems", Proceedings of the 19th ACM Symposium on
Operating Systems Principles, Bolton Landing, New York,
October 19-22, 2003.
[42] N. E. Fenton and N. Ohlsson, "Quantitative Analysis
of Faults and Failures in a Complex Software System,"
IEEE Transactions on Software Engineering, 26(8), pp.
797-814, August, 2000.
[43] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A
Tool for Finding Copy-paste and Related Bugs in
Operating System Code”, Sixth Symposium on Operating
Systems Design and Implementation (OSDI '04), San
Francisco, December 6-8, 2004.
[44] X. Zhang, "Application-Specific Benchmarking",
Ph.D. Thesis, Harvard University, May 2001.
[45] M. Seltzer, D. Krinsky, K. Smith, X. Zhang, "The
Case for Application-Specific Benchmarking", In Proc.
HotOS-VII, pp. 90-95. Rio Rico, AZ, March, 1999.
[46] J. C. Mogul. , "Brittle Metrics in Operating Systems
Research", In Proc. HotOS-VII, pp. 90-95. Rio Rico, AZ,
March, 1999.
[47] Standard Performance Evaluation Corporation
(SPEC), http://www.spec.org
[48] D. Citron, "MisSPECulation: partial and misleading
use of spec CPU2000 in computer architecture
conferences", Proceedings of the 30th Annual International
Symposium on Computer Architecture, pp. 52-59, June 9-
11, 2003.
[49] D. Citron, J. Hennessy, D. Patterson, G. Sohi, "The
Use and Abuse of SPEC", Proceedings of the 30th Annual
International Symposium on Computer Architecture, pp.
73-77, June 9-11, 2003.

