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Abstract: A simple parallel algorithm for decoding a Huffman encoded file is pre-
sented, exploiting the tendency of Huffman codes to resynchronize quickly in most
cases. An extention to JPEG decoding is mentioned.

1. Introduction

Huffman coding is still one of the popular compression techniques and is widely used
by itself [18, 2] or in connection with other methods such as JPEG [17]. Huffman’s
original method [11] is not adaptive and needs two passes over the data to be com-
pressed. This might be a disadvantage in certain applications, in which dynamic
algorithms, such as those based on the works of Lempel and Ziv [19, 20|, are the pre-
ferred choice. There are, however, situations, in which a static method is required:

e A large static Information Retrieval (IR) System [1] is compressed only once,
but many short passages have to be decompressed on demand in response to a
query; each such passage should therefore be decodable on its own, ruling out
compression methods which are based on the knowledge of earlier blocks.

e As more texts will be stored on the Web in compressed form, methods for
searching for patterns directly in the compressed text will gain importance [16].
The idea will then be to compress the pattern and then scan the compressed
text, rather than decompressing the text and search for the original pattern
within it. This form of compressed matching will be facilitated if every text
item is always compressed in the same way, which is not the case for dynamic
methods.

e When more than one processor is available, a static compression scheme may
allow the decoding of several data pieces in parallel.



It is on the third point that we shall concentrate in this paper. We shall ex-
plore a method allowing the parallel decoding of a file that has been compressed by
a static Huffman code, exploiting in particular the tendency of Huffman codes to
resynchronize quickly in case of an error.

Previous work on parallelizing compression includes [3, 4, 9], which deal with LZ
compression, and [10]. A parallel method for the construction of Huffman trees can be
found in [15]. Our focus is on decompression, because it may be more important than
compression in some cases. For instance, in IR applications as the one mentioned in
the first point above, compression is done only once and may therefore be as time
consuming as necessary, but decompression of short pieces is done on-line and ought
to be fast to allow a reasonable response time to a query.

In the next section we review the main problem faced by parallel decompression,
namely synchronization. Section 3 then presents the algorithm and Section 4 some
experimental results. Finally, we show how to apply the method also to lossy JPEG
compression.

2. Synchronization

When more than one processor is available at decompression time, the compressed
text can be split into blocks, and each processor can be assigned one of the blocks
for decompression. The problem is of course that the sizes of the blocks are fixed in
advance, and since Huffman codewords have variable length, a block-boundary does
not necessary coincide with a codeword boundary. But Huffman codes are complete,
which means that any binary sequence can be “decoded” as if it were the encoding
of some text, so that synchronization errors may go undetected. Consider for ex-
ample the simple Huffman code {00,010,011, 10,11} for the characters A,B,C,D,E,
respectively. The encoding of the string BACEAD would then be the binary string
01000011110010. Suppose that one of the processors would be assigned a block start-
ing at the third bit of this string. It would then decode the block as AAEEAD, the first
three characters of which are erroneous.

block boundary synchronization
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FIGURE 1:  Schematic representation of parallel decoding

The general situation is depicted in Figure 1. The upper line symbolizes the de-
coding which starts at the block boundary and might therefore produce an erroneous
decoding for several codewords. The line below shows the correct decoding: the block
boundary could have occurred within a codeword, so that the following block starts



with some proper suffix of a codeword. Typically, the correct and the erroneous de-
codings could then generate different output sequences, up to a position in the binary
string to be decoded, which, for both processes, holds a bit that completes a codeword
of the given code. This position is indicated as synchronization point, as subsequent
bits will be correctly decoded in any case.

Synchronization points do not always exist. A simple example would be a fixed
length code, for which every codeword has length k& bits. If the blocksize is not a
multiple of k, all the codewords of the second block will be out of synchronization.
But in the case of a fixed length code, the blocksize could be chosen a prior: as a
multiple of the codeword length. Moreover, fixed length codes are optimal, from the
compression point of view, only for nearly uniform distributions.

On the other hand, there are also variable length codes for which synchronization
will not be achieved. Refer again to Figure 1, and denote by = and y, respectively,
the last codeword before the synchronization point for the erroneous and the correct
decoding. Then either y has to be a suffix of z (as in the example in the figure), or
x is a suffix of y. In either case, the code cannot have the so-called suffiz-property,
asserting that no codeword can be the suffix of any other, similarly to the well-known
prefiz-property of all Huffman codes. Accordingly, codes having both the prefix and
the suffix property have been called never-self-synchronizing in [8]; they are called
affiz codes in [6]. There are infinitely many different complete variable-length affix
codes, e.g., {01,000,100,110,111,0010,0011,1010,1011}, but they are nonetheless
extremely rare [7]. For none of the real-life distributions we checked could an affix
code be constructed. For those rare artificial distributions for which it was possible,
the affix code had to be carefully designed; selecting the code in some systematic way
or using canonical codes [13] did not yield affix codes.

For certain distributions, a Huffman code may be constructed that includes syn-
chronizing codewords or sequences [5, 14]. These are codewords or sequences after the
occurrence of which decoding will be correct, regardless of any possible error before
them. The higher the probability of these codewords, the lower the expected number
of falsely decoded bits at the beginning of each block, so the techniques of [5] may be
applied to improve the performance of the parallel Huffman decoding. In practice,
however, synchronization is fast even without the help of synchronizing codewords.

3. Parallel Decoding

The basic idea of the parallel decoding algorithm is letting the processor ¢, which has
been assigned to decode block i, overflow and continue decoding in the consecutive
block i+ 1, until a synchronization point is reached. Assuming that the last codewords
in block ¢ are already correctly decoded, processor ¢ will give the correct decoding of
the first few codewords in block 7 + 1. Once a synchronization point in block 7 + 1
is detected, processor i can stop (or be reassigned to the decoding of another block),
since the remaining bits in block 7+ 1 have been correctly decoded by processor i + 1.
In particular, the synchronization point can be immediately at the block boundary,



in case the last codeword of the previous block happens to fit there in its entirety.

If the assumption that the last codewords in block ¢z have been correctly decoded
by processor i is not true, the synchronization point found in block 7 + 1 is worthless.
However, in this case, processor ¢ —1 has not been able to find a synchronization point
in block ¢, and did therefore continue working also on block ¢z 4+ 1. The correctness is
now based on the assumption that the last codewords in block :—1 have been correctly
decoded. This argument can be extended to ¢ — 2, etc., but ultimately, there must be
a block j, with ;7 < ¢, for which this is true, since processor 1 starts at the beginning
of the file and its output is correct. Therefore, in the worst case, any output produced
by all the processors i, with 7 > 1, is useless, and the parallel decoding reduces to a
sequential one by processor 1 alone. As mentioned above, such a worst case behaviour
seems to be extremely rare, as in most cases, the synchronization points are found
quickly, long before the end of the block.

The formal parallel decoding algorithm for processor 7 is given in Figure 2. Pro-
cessor ¢ maintains a vector V;, which is also accessible to processors j, for 7 < ¢, and
records the indices, within block ¢, of the last bit of each codeword. In general, the
first few elements of V; will be wrong, corresponding to the erroneous decoding at the
beginning of the block, but they will be corrected when processor ¢ — 1 moves into
block i. This vector V; also serves as indicator for processor ¢ to stop: as soon as a
value is detected that is equal to one of the values stored in V; by an earlier processor,
synchronization has been achieved. We use the abbreviations EOB for end of block
and eoc for end of codeword.

To get an estimate of the number of bits that have to be processed before a
synchronization point is found, we introduce the following notations. Let 7 denote
the Huffman tree corresponding to a given Huffman code. The elements which are
encoded appear with probabilities py,...,p, in the text, and the lengths of the cor-
responding Huffman codewords are /4,...,7,, respectively. We shall also use the
notation p, for the probability of the element corresponding to the leaf y. Denote
by L the set of the leaves of 7, and by Z the set of its internal nodes. For each
x € Z, we define T, as the subtree of 7 rooted at xz, and we denote by £, = LN T,
the set of its leaves. The internal nodes Z correspond to the positions at which a
codeword might be cut by a block-boundary. In particular, the root r of the tree,
which belongs to Z, corresponds to the special case where the block-boundary falls
between two codewords.

We assume that a block boundary occurs at random in any possible position, that
is, at any internal node of 7. This is an approximation, since in certain cases, not all
the positions are possible cut-points, nor do those that are possible all appear with
the same probability. For example, if both the block-size and all the codeword lengths
are even, then no codeword can be cut by a block boundary after an odd number of
bits. But for many real-life distributions, especially for the large ones with thousands
or even millions of elements, the corresponding Huffman codes have codewords of
all possible lengths in a certain range; adding to this the fact that the block size is
generally chosen so as to accomodate a very large number of consecutive codewords,
we conclude that our assumption can be justified.
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Start decoding at beginning of block 7
Record indices of end of codewords in vector V;
Continue until EOB

If EOBisaneoc STOP

else // overflow to next block
{ 1 — 1+1

kE+— 1

repeat

{

decode to next eoc

if this eocis EOB STOP

if EOB was passed

{ i — 1+1 E+—1 }
else

{

j — index of eoc in block
while  V;[k] < j
{

}
if Vi[k]=j5 STOP
else insert 7 in front of V;[k] in V;

erase V;[k]
kE+— k+1

FIGURE 2: Decoding algorithm for processor t

Consider the fact of having a block boundary in a certain position as if it were
generated by the following random process: the compressed text consisting of a given
sequence of concatenated codewords, we “throw” at random boundaries into this
string, that is, we pick randomly bit positions which shall act as the starting positions
of the blocks. In this sense, we can speak about the probability of having a block
boundary in a certain position. For a given internal node z € Z, the probability
P(z) of the position corresponding to z being picked as a boundary point will be
proportional to p;¢;, and not just to p;, since we deal with a random process on
the compressed text and not on the original one. Each leaf of the Huffman tree is
associated with a probability p;, and the probability associated with an internal node
y is the sum of the probabilities associated with the two children of y. Thus, when
adding the probabilities associated with all the internal nodes, we get W = 0", p;4;,
the weighted average codeword length, and the probability P(z) is given by

Z:yELJIC Dy

P(z) = W



This is indeed a probability distribution, as 3,7 P(z) = 1. For z € 7 and y € L,,
define

1 if the path from z to y corresponds to a sequence
Q(z,y) = of one or more codewords in the code
0 otherwise,

that is, Q(z,y) = 1 if and only if, in case a codeword has been cut by a block
boundary, synchronization is reestablished at the end of this codeword. In particular,
for an affix code, Q(z,y) = 0 for all z and y, unless z is the root.

For a given block starting at some internal bit of a codeword ¢, let S denote the
event that the synchronization point is already at the end of ¢, i.e., only the codeword
cut by the boundary is lost, if at all, and the subsequent ones will be correctly
recognized by the processor assigned to this block. We evaluate the probability P(S)
by conditioning on the position of the possible cut-points:

P(8)=>_ P(S | cut-point is at z) P(z).

z€L

But P(S | cut-point is at z) is the weighted average of the decoding successes,
summed over all the leaves of 7T,, that is

EyE[,l Dy Q(xa y)
EyEE: Dy

P(S | cut-point is at z) =

)

from which we get that

P(S) _ EmEIEyE?}T/py Q(may> (1)

We therefore conclude that the probability P(S), which we shall denote be-
low Pi, depends only on the given distribution and on the shape of the Huffman
tree. The more paths from internal nodes to the leaves match other such paths
starting at the root, the more Q(z,y)s will be 1 and the higher P(S) will be. A
good choice for the shape seems then to be a canonical tree, in which the leaves
appear, from left to right, in non-decreasing order of their depths [13]. Such a
shape tends to favor reoccuring structure patterns. Returning to the example of
the affix code above, the canonical Huffman code with the same codeword lengths is
{00,010,011,100,101,1100,1101,1110,1111}. For this tree, we have Q(z,y) = 1 if
x is the root or if z is the internal node corresponding to the prefix 1 and y is one
of the leaves corresponding to 100, 1100 or 1101; or if = corresponds to 11 and y to
1100; for all other (z,y) pairs, Q(z,y) = 0.

Consider now the case when the complementary event of & occurs, that is, syn-
chronization was not regained at the end of the first codeword. But we are then in
a similar situation: a decoding process is started at some internal position within a
codeword ¢ and we ask what is the probability to resynchronize at the end of ¢. If
the number of codewords in a block is large enough, we may assume that this event is



independent of the previous one, so we again get the same probability P(S). Extend-
ing this argument, we see that the number of codewords ¢ we have to process until
success, 1.e., synchronization, is geometrically distributed, and its expected value is
1/P(S), from which we derive an estimate for the number of bits E scanned at the
beginning of a block until synchronization as:

W
E =55 (2)

In the experimental section below, we bring examples of this expected value and of
actual empirical results.

4. Experimental results

We now report on some experiments with the paralel algorithm on various files.
The first set consisted of textual files in different languages: the Bible (King James
Version) in English, the Dictionnaire philosophique of Voltaire in French and the
Bible in Hebrew. These files were Huffman encoded according to their individual
characters. In the second set, the same files were encoded as a sequence of bigrams,
yielding much larger alphabets. In the third set, we took three files of the Calgary
corpus. Canonical Huffman codes were used throughout, which indeed gave noticeably
faster synchronization than the other Huffman codes we tried.

Table 1 summarizes the results. The first columns give values calculated from
the files themselves: the size n of the alphabet used to compress the file, the average
codeword length W, the synchronization probability P(S) of eqn. (1) and the expected
number of processed bits until synchronization, F, of eqn. (2). The following columns
contain values that have been empirically measured: first the average and maximum
number of bits until synchronization. The numbers reported for the synchronization
correspond to a block size of 512 bytes (4096 bits). The final two columns give the
time, in seconds, of decoding the files sequentially and in parallel with 4 processors,
using as block-size a quarter of the file-size. The time measurements were taken on a
Sun 450 with four UltraSPARC-II 248 MHz processors.

Other block sizes were also checked, but essentially the same behaviour was ob-
tained for 700, 900 and 1024 bytes. This shows that the block sizes were large enough
to support the assumption that the position of a block boundary occurs at random.

As can be seen, the expected values of the number of bits to be processed until
synchronization at the beginning of a block fit generally well the average of the actual
values measured. As expected, synchronization is obtained faster for distributions
with small average codeword length, in our examples typically in less than 100 bits,
which is only 0.25% of the size of the block. But even for the larger alphabets only a
few tens of bytes were needed, which is reasonable since the size of the block can be
chosen larger than in our tests. For the processing time, we obviously did not expect
a reduction to a quarter of the sequential speed, since beside the overlap of the blocks
to be processed, there is also some overhead for the parallelization. The values we



# bits till sync Decode time
avg max sequential parallel

n | W |P©S)| E

English 63 | 442 | 042 | 94 | 8.1 63 11.75 | 3.40
French 56 | 4.50 | 0.43 [ 10.6 | 7.9 36 1.44 0.39
Hebrew 26 | 4.07 | 0.40 [ 10.2 | 9.8 98 3.53 1.21

English-2 || 1121 | 8.08 | 0.17 | 47.6 || 72.3 | 675 | 11.48 | 3.28
French-2 713 | 7.86 | 0.20 | 39.2 || 37.2 | 257 1.73 0.54
Hebrew-2 || 562 | 7.69 | 0.22 | 35.7 || 33.6 | 240 3.99 1.40

objl 256 | 6.04 | 0.25 | 24.0 | 14.0 | 112 0.05 0.02
paperl 95 | 5.01| 0.34 | 15.0 || 10.6 | 39 0.10 0.05
bib 81 |5.24 | 031 | 16.8 || 13.5 | 68 0.25 0.11

TABLE 1:  Calculated and measured values for parallel decoding

obtained for 4 processors were typically around one third of the sequential decoding
time.

5. Application to JPEG

We shortly sketch here an application to lossy image compression. In the final encod-
ing phase of standard JPEG [17, 12], Huffman coding may be used to compress the
DC and AC coefficients. The above idea, with a few adaptations, can thus be applied
to decompress such JPEG files in parallel, which can yield faster reconstruction of
the image when several processors are available.

A JPEG encoded file consists of codewords belonging to several Huffman codes,
intermixed with strings representing numbers. When decoding is started at the be-
ginning of a block, it is not clear which Huffman tree should be used, if at all. We
shall use the tree for the AC values since they are more frequent. Once we get syn-
chronization, we still don’t know where the decoded block is to be placed. We can
then choose an estimated location, at about (i — 1)/n of the decoded image for the
output of processor ¢ when n processors are available. Only when processor 7 — 1
finishes its block will the correct position of the output of processor 2 be known, so
blocks that have been temporarily displayed at the estimated location will probably
have to be relocated.

As to the DC values, they are not encoded themselves, but rather as the difference
between the current value and that of the previous block. When decoding does not
start at the beginning of the file, the exact DC for the current blocks are not known.
One can then assume some arbitrary basis value for DC (for example, the middle
value zero) to enable the decoding of the chain of DC values within a block. A
wrong guess may results in a biased image, which can be too bright or too dark for
greyscale pictures, or if the change was in the luminancy component; a change in the
chrominancy component of color pictures may turn the image too reddish or bluish.



This is still better than not seeing this part of the image at all. Once processor 7 — 1
gets to block 7, this bias will be corrected.

25% 50%

75% 100%

FIGURE 3: Parallel decoding of JPEG encoded image

Figure 3 brings an example greyscale picture, decoded by 8 processors, after 25%),
50%, 75% and the full 100% have been decoded. As can be seen, even though the
partial information is not always located in its final destination, one can nevertheless
recognize small sub-parts, so that the method described herein may also be useful for
accelerating JPEG decoding.
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