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Abstract

We explore the possibility of using multiple processors to improve the encoding and decoding times of Lempel–Ziv schemes.
A new layout of the processors, based on a full binary tree, is suggested and it is shown how LZSS and LZW can be adapted
to take advantage of such parallel architectures. The layout is then generalized to higher order trees. Experimental results show
an improvement in compression over the standard method of parallelization and an improvement in time over the sequential
method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Compression methods are often partitioned into static and dynamic methods. Thestaticmethods assume that the file to be
compressed has been generated according to a certain model which is fixed in advance and known to both compressor and
decompressor. The model could be based on the probability distribution of the different characters or more generally of certain
variable length substrings that appear in the file, combined with a procedure to parse the file into a well determined sequence
of such elements. The encoded file can then be obtained by applying some statistical encoding function, such as Huffman or
arithmetic coding. Information about the model is either assumed to be known (such as the distribution of characters in English
text), or may be gathered in a first pass over the file, so that the compression process may only be performed in a second pass.

Many popular compression methods, however, areadaptivein nature. The underlying model is not assumed to be known, but
discovered during the sequential processing of the file. The encoding and decoding of theith element is based on the distribution
of thei− 1 preceding ones, so that compressor and decompressor can work in synchronization without requiring the transmittal
of the model itself. Examples of adaptive methods are the Lempel–Ziv (LZ) methods and their variants, but there are also adaptive
versions of Huffman and arithmetic coding.

We wish to explore the possibility of using multiple processors to improve the encoding and decoding times. In[7] this has
been done for static Huffman coding, focusing in particular on the decoding process. The current work investigates how parallel
processing could be made profitable for LZ coding.

Previous work on parallelizing compression includes[1–3], which deal with LZ compression,[5], relating to Huffman and
arithmetic coding, and[4]. A parallel method for the construction of Huffman trees can be found in[8]. Our work concentrates
on LZ methods, in particular a variant of LZ77,[14], known as LZSS, and a variant of LZ78,[15], known as LZW. In LZSS,
[10], the encoded file consists of a sequence of items each of which is either a single character, or a pointer of the form (off, len)
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which replaces a string of lengthlen that appearedoff characters earlier in the file. Decoding of such a file is thus a very simple
procedure, but for the encoding there is a need to locate longest reoccurring strings, for which sophisticated data structures like
hash tables or binary trees have been suggested. In LZW,[11], the encoded file consists of a sequence of pointers to adictionary,
each pointer replacing a string of the input file that appeared earlier and has been put into the dictionary. Encoder and decoder
must therefore construct identical copies of the dictionary.

The basic idea of parallel coding is partitioning the input file of sizeN intonblocks of sizeN/n and assigning each block to one
of then available processors. For static methods the encoding is then straightforward, but for the decoding, it is the compressed
file that is partitioned into equi-sized blocks, so there might be a problem of synchronization at the block boundaries. This
problem may be overcome by inserting dummy bits to align the block boundaries with codeword boundaries, which causes a
negligible overhead if the block size is large enough. Alternatively, in the case of static Huffman codes, one may exploit their
tendency to resynchronize quickly after an error, to devise a parallel decoding procedure in which each processor decodes one
block, but is allowed to overflow into one or more following blocks until synchronization is reached,[7].

For dynamic methods one is faced with the additional problem that the encoding and decoding of elements in theith block
may depend on elements of some previous blocks. Even if one assumes a CREW architecture, in which all the processors share
some common memory space which can be accessed in parallel, this would still be essentially equivalent to a sequential model.
This is so because elements dealt with by processori at the beginning of blocki may rely upon elements at the end of block
i − 1 which have not been processed yet by processori − 1; thus processori can in fact start its work only after processori − 1
has terminated its own.

The easiest way to implement parallelization in spite of the above problem is to let each processor work independently of
the others. The file is thus partitioned inton blocks which are encoded and decoded without any transfer of data between the
processors. If the block size is large enough, this solution may even be recommendable: most LZ methods put a bound on the
size of the history taken into account for the current item, and empirical tests show that the additional compression, obtained by
increasing this history beyond some reasonable size, rapidly tends to zero. The cost of parallelization would therefore be a small
deterioration in compression performance at the block boundaries, since each processor has to “learn” the main features of the
file on its own, but this loss will often be tolerated as it may allow to cut the processing time by a factor ofn. In [6] the authors
suggest letting each processor keep the last characters of the previous block and thereby improve the encoding speed, but each
block must then be larger than the size of the history window. On the other hand, putting a lower bound on the sizeN/n of each
block effectively puts an upper bound on the number of processorsn which can be used for a given file of sizeN, so we might
not fully take advantage of all the available computing power.

We therefore turn to the question how to usenprocessors, even when the size of each block is not very large. In the next section
we propose a new parallel coding algorithm, based on a time versus compression efficiency tradeoff which is related to the degree
of parallelization. On the one extreme, for full parallelization, each of thenprocessors works independently, which may sharply
reduce the compression gain if the size of the blocks is small. On the other extreme, all the processors may communicate, forcing
delays that make this variant as time consuming as a sequential algorithm. The suggested tradeoff is based on a hierarchical
structure of the connections between the processors, each of which depending at most on logn others. The task can be performed
in parallel byn processors in logn sequential stages. There will be a deterioration in the compression ratio, but the loss will be
inferior to that incurred when alln processors are independent.

In contrast to Huffman coding, for which parallel decoding could be applied regardless of whether the possibility of having
multiple processors at decoding time was known at the time of encoding, there is a closer connection between encoding and
decoding for LZ schemes. We therefore need to deal also with the parallelencodingscheme, and we assume that the same
number of processors is available for both tasks.

Note, however, that one cannot assume simultaneously equi-sized blocks for both encoding and decoding. If encoding is done
with blocks of fixed size, the resulting compressed blocks are of variable lengths. So one either has to store a vector of indices
to the starting point of each processor in the compressed file, which adds an unnecessary storage overhead, or one performs a
priori the compression on blocks of varying size, such that the resulting compressed blocks are all of roughly the same size. To
get blocks of exactly the same size and to achieve byte alignment, one then needs to pad each block with a small number of bits,
but in this case the loss of compression due to this padding is generally negligible. Moreover, the second alternative is also the
preferred choice for many specific applications. For instance, in an information retrieval system built on a large static database,
compression is done only once, so the speedup of parallelization may not have any impact, whereas decompression of selected
parts is required for each query to be processed, raising the importance of parallel decoding.

2. A tree-structured hierarchy of processors

The suggested form of the hierarchy is that of a full binary tree, similarly to a binary heap. This basic form has already been
mentioned in[6], but the way to use it as presented here is new. The input file is partitioned inton blocksB1, . . . , Bn, each
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Fig. 1. Simple tree layout.
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Fig. 2. Layer-by-layer layout.

of which is assigned to one of the available processors. Denote then processors byP1, . . . , Pn, and assume, for the ease of
description, thatn + 1 is a power of 2, that isn = 2r − 1 for somer. ProcessorP1 is at the root of the tree and deals with the
first block. As there is no need to “point into the future”, communication lines between the processors may be unidirectional,
permitting a processor with higher index to access processors with lower index, and in particular their local memories, but
not vice versa. Restricting this to a tree layout yields a structure in whichP2i andP2i+1 can access the memory ofPi , for
1� i�(n − 1)/2. Fig. 1 shows this layout forn = 15, the arrows indicating the dependencies between the processors. The
numbers indicate both the indices of the blocks and of the corresponding processors.

The compression procedure for LZSS works as follows:P1 starts at the beginning of blockB1, which is stored in its memory.
Once this is done,P2 andP3 start simultaneously their work onB2 andB3 respectively, both searching for reoccurring strings
first within the block they have been assigned to, and then extending the search back into blockB1. As mentioned above,P2 can
access the local memory ofP1 whereB1 is stored, without disturbingP1’s work. In general, afterPi has finished the processing
of blockBi , processorsP2i andP2i+1 start scanning simultaneously their corresponding blocks. The compression of the file is
thus not necessarily done layer by layer, e.g.,P12 andP13 may start compressing blocksB12 andB13, even ifP5 is not yet done
with B5.

Note that while the blocksB2 andB1 are contiguous, this is not the case forB3 andB1, so that the (off, len) pairs do not
necessarily point tocloseprevious occurrences of a given string. This might affect compression efficiency, as one of the reasons
for the good performance of LZ methods is the tendency of many files to repeat certain strings within the close vicinity of their
initial occurrences. For processors and blocks with higher indices, the problem is even aggravated. The experimental section
below brings empirical estimates of the resulting loss.

The layout suggested inFig. 1is obviously wasteful, as processors of the higher layers stay idle after having compressed their
assigned block. The number of necessary processors can be reduced by half, or, which is equivalent, the block size for a given
number of processors may be doubled, if one allows a processor to deal with multiple blocks. The easiest way to achieve this is
displayed inFig. 2, where the numbers in the nodes are the indices of the blocks, and the boldface numbers near the nodes refer to
the processors. Processors 1, . . . ,2j are assigned sequentially, from left to right, to the blocks of layerj, j=0,1, . . . , r−1. This
simple way of enumerating the blocks has, however, two major drawbacks: refer, e.g., to blockB9 which should be compressed
by processorP2. First, it might be thatP1 finishes the compression of blocksB2 andB4, beforeP2 is done withB3. This
causes an unnecessary delay,B9 having to wait untilP2 processes bothB3 andB5, which could be avoided if another processor
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Fig. 3. New hierarchical structure: (a) Tree of blocks; (b) Tree of processors.

would have been assigned toB9, for example one of those that has not been used in the upper layers. Moreover, the problem
is not only one of wasted time:P2 stores in its memory information about the blocks it has processed, namelyB3 andB5. But
the compression ofB9 does not depend on these blocks, but only onB4, B2 andB1. The problem thus is that the hierarchical
structure of the tree is not inherited by the dependencies between the processors.

To correct this deficiency of the assignment scheme, each processor will continue working on one of the offsprings of its
current block. For example, one could consistently assign a processor to the left child block of the current block, whereas the
right child block is assigned to the next available newly used processor. More formally, letSi

j
be the index of the processor

assigned to blockj of layer i, wherei = 0, . . . , r − 1 andj = 1, . . . ,2i , thenS0
1 = 1 and fori >0 andj = 1, . . . ,2i−1,

Si2j−1= Si−1
j

and Si2j = 2i−1+ j.
The first layers are thus processed, from left to right, by processors with indices: (1), (1,2), (1, 3, 2, 4), (1, 5, 3, 6, 2, 7, 4, 8), etc.
Fig. 3(a) depicts the new layout of the blocks, the rectangles indicating the sets of blocks processed by the same processor. This
structure induces a corresponding tree of processors, depicted inFig. 3(b).

As a results of this method, processorPi will start its work with blockB2i−1, and then continue withB4i−2, B8i−4, etc. In
each layer, the evenly indexed blocks inherit their processors from their parent block, and each of the oddly indexed blocks starts
a new sequence of blocks with processors that have not been used before.

The memory requirements of the processors have also increased by this new scheme, and space for the data of up to log2 n

blocks has to be stored. However, most of the processors deal only with a few blocks. To evaluate the average number of blocks
to be memorized, amortized over themprocessors, suppose a full binary tree withr levels is used, so that there aren= 2r − 1
nodes andm=2r−1= (n+1)/2 processors are needed. Then processorP1 has to store information aboutr blocks, processorP2
aboutr − 1 blocks, the next two processors need only space corresponding tor − 2 blocks, etc. The average amortized number
of blocks to be referred to by a processor is therefore

1

m


r + r−1∑

j=1

(r − j)2j−1


= 2r − 1

2r−1 = 2− 1

m
,

that is, less than 2.
For the encoding and decoding procedures, we need a fast way to convert the index of a block into the index of the corresponding

processor, i.e., a functionf, such thatf (i) = j if block Bi is coded by processorPj . Definer(i) as the largest power of 2 that
divides the integeri, that is,r(i) is the length of the longest suffix consisting only of zeros of the binary representation ofi.

Claim: f (i)= 1

2

(
i

2r(i)
+ 1

)
.

Proof. By induction oni. For i = 1, we getf (1)= 1, which is correct. Assume the claim is true up toi − 1. If i is odd,r(i)= 0
and the formula givesf (i) = (i + 1)/2. As has been mentioned above, any oddly indexed block is the starting point of a new
processor and indeed processorP(i+1)/2 starts at blockBi . If i is even, blockBi is coded by the same processor as its parent
blockBi/2, for which the inductive assumption applies, and we get

f (i)= f (i/2)= 1

2

(
i/2

2r(i/2)
+ 1

)
= 1

2

(
i

2 2r(i)−1
+ 1

)
= 1

2

(
i

2r(i)
+ 1

)
,

so that the formula holds also fori. �
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Fig. 4. ParallelLZSSencoding for blockBi by processorPj .

2.1. Parallel coding for LZSS

We now turn to the implementation details of the encoding and decoding procedures for LZSS. Since the coding is done
by stages, the parallel co-routines will invoke themselves the depending offsprings. For the encoding, the procedurePLZSS-
encode(i,j) given inFig. 4will process blockBi with processorPj , wherej = f (i). The whole process is initialized by a call
toPLZSS-encode(1,1) from the main program.

Each routine starts by copying the text of the current block into the memory of the processor, possibly adding to texts
of previous blocks that have been stored there. As in the original LZSS, the longest substring in the history is sought that
matches the suffix of the block starting at the current position. The search for this substring can be accelerated by several
techniques, and one of the fastest is by use of a hash table,[13]. The longest substring is then replaced by a pair (offset,
length), whereoffsetis the distance (in characters) from the current position to the longest previous match, andlength is the
length of the match; if, however,length is too small (2 or 3 in implementations of[13], such as the patent[12], which is the
basis of Microsoft’s DoubleSpace), then a single character is sent to output and the current position is shifted by one to the
right.

In our case, the search is not limited to the current block, but extends backwards to the parent blocks in the hierarchy, possibly
up to the root. For example, referring toFig. 3, the encoding of blockB13 will search also throughB6,B3 andB1, and thus access
the memory of the processorsP7, P2, P2 andP1, respectively. That is, the “text” in which earlier occurrences of substrings of
B13 are searched is defined as the concatenation of the texts of blocksB1,B3,B6 andB13, though physically these texts are not
contiguously stored. The values ofoffsetrefer to the distances in this concatenated text.

Note that the size of the history window is limited by some constantW in many implementations of LZSS. In our general
description, we do not impose any such limit, but in fact, the encoding of any element is based on a history of size at most
log2 n× the block size, wheren is the number of blocks in the tree. Therefore, when the entire history is scanned to find the
longest occurrence of a prefix ofS, the scanning direction could be just as well top down rather than bottom up as inFig. 4. The
reason for using a bottom up scan is that this applies also in the case the history window is limited; indeed, if only a part of the
history is to be processed, it should be those blocks that are closest toS, to keep the values ofoffsetas small as possible and
because the main assumption of LZSS is that there is locality of reference.

For the decoding, recall that we assume that the encoded blocks are of equal sizeBlocksize. The decoding routine can thus
address earlier locations as if the blocks, that are ancestors of the current block in the tree layout, were stored contiguously. Any
element of the form (offset, length) in blockBi can point back into a blockBj , with j = �i/2b� for b = 0,1, . . . , �log2 i�, and
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Fig. 5. Parallel LZSS decoding for blockBi on processorPj .

the index of this block can be calculated by

b←− 	(offset− cur + 1)/Blocksize
,
wherecur is the index of the current position in blockBi . The formal decoding procedure is given inFig. 5.

The input of the decoding routine is supposed to be a file consisting of a sequence of items, each being either a single character
or a pointer of the form (offset, length); cur is the current index in the currently reconstructed block.

2.2. Parallel coding for LZW

Encoding and decoding for LZW is similar to that of LZSS, with a few differences. While for LZSS, the “dictionary” of
previously encountered strings is in fact the text itself, LZW builds a continuously growing tableTable, which need not be
transmitted, as it is synchronously reconstructed by the decoder. The table is initialized to include the set of single characters
composing the text, which is often assumed to be ASCII. If, as above, we denote byS the suffix of the text in blockBi starting
at the current position, then the next encoded element will be the index of the longest prefixRof Sfor whichR ∈ Table, and the
next element to be adjoined toTablewill be the shortest prefixR′ of S for whichR′ /∈ Table; R is a prefix ofR′ andR′ extends
Rby one additional character.

During the encoding process ofBi , one therefore needs to access the tables inBi itself and in the blocks which are ancestors
of Bi in the tree layout, but the order of access has to be top down rather than in the LZSS case, for which the order can be either
top down or bottom up, as explained earlier. For eachi, we therefore need a listlisti of the indices of the blocks accessed on the
way from the root to blockBi , that is,listi [ind] is the number whose binary representation is given by theind leftmost bits of
the binary representation ofi. For example,list13= [1,3,6,13].

To encode a new elementP, it is first searched for inTableof B1, and if not found there, then inTableof Blisti [2], which
is stored in the memory of processorPf (listi [2]), etc. However, storing only the elements in the tables may lead to errors. To
illustrate this, consider the following example, referring again toFig. 3.

Suppose that the longest prefix of the stringabcde appearing in theTableof B1 is abc . Suppose we later encounterabcd
in the text of blockB2. The stringabcd will thus be adjoined to the sameTable, since bothB1 andB2 are processed by the
same processorP1. Assume now that the texts of both blocksB5 andB3 start withabcde . While forB5 it is correct to store
abcde as the first element in itsTable, the first element to be stored in theTableof B3 should beabcd , since theabcd in the
memory ofP1 was generated by blockB2, whereasB3 only depends onB1.
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Fig. 6. Parallel LZW encoding for blockBi on processorPj .

To avoid such errors, we need a kind of a “time stamp”, indicating at what stage an element has been added to aTable. If
the elements are stored sequentially in these tables, one only needs to record the indices of the last element for each block. But
implementations of LZW generally use hashing to maintain the tables, so one cannot rely on deducing information from its
physical location, and each element has to be marked individually. The easiest way is to store with each stringP also the index
i of the block which caused the addition ofP. This would require log2 n bits for each entry. One can however take advantage
of the fact that the elements stored by different blocksBi in the memory of a given processor correspond to different indices
ind in the corresponding listslisti . It thus suffices to store with each element the index inlisti rather thani itself, so that only
log2 log2 n bits are needed for each entry. The formal encoding and decoding procedures are given inFigs. 6and7, respectively.

The parallel LZW encoding refers to the characters in the input block as belonging to a vectorBi [cur], with cur giving the
current index. Ifx andy are strings, thenxydenotes their concatenation. As explained above, since theTablecorresponding to
blockBi is stored in the memory of a processor which is also accessed by other blocks, each element stored in theTableneeds
an identifier indicating the block from which it has been generated. The elements in theTableare therefore of the form (string,
identifier).

The output of LZW encoding is a sequence of pointers, which are the indices of the encoded elements in theTable. In our
case, these pointers are of the form (index, identifier). There is, however, no deterioration in the compression efficiency, as the
additional bits needed for the identifier are saved in the representation of the index, which addresses a smaller range.

For simplicity, we do not go into details of handling the incremental encoding of the indices, and overflow conditions when
theTablegets full. It can be done as for the serial LZW.

The parallel LZW decode routine assumes that its input is a sequence of elements of the form (index, identifier). The empty
string is denoted by�. The algorithm inFig. 7 is a simplified version of the decoding, which does not work in case the current
element to be decoded was the last one to be added to theTable. This is also a problem in the original LZW decoding and can
be solved here in the same way. The details have been omitted to keep the emphasis on the parallelization.
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Fig. 7. Parallel LZW decoding for blockBi on processorPj .

3. Higher order trees

In this section, we wish to explore possible tradeoffs that can be achieved by generalizing the binary tree layout to trees of
higher orderk >2, in which each node hask children. Once a processor is done with a given block, it will start to work on the
block’s leftmost child, whilek−1 new processors will start their work on the remaining offsprings. Passing to higher order trees
may yield several advantages. For instance, the depth of ak-ary tree is only logk n, so that the chain of dependencies is shorter
than in the binary case, and thus less information need be stored per processor. Moreover, after theith parallel step, the number
of blocks that have been dealt with is

∑i
j=1 k

j−1, so a given block is reached faster whenk is larger.
To measure the level of exploitation of them available processors, define a utilization factor as the average fraction of the

processors which are active. At the lowest level of the tree, all the processors are busy; at the level just above the lowest, only
1
k

of the processors are active, etc. It would thus seem, at first sight, that if we assume that each level has the same expected

execution time, the average utilization factor would be proportional to
∑
(1
k
)i −→ 1+1/(k−1), which is a decreasing function

of k. But this did not take into account that the number of levels decreases whenk increases. The average time spent on each
level being 1/logk n, we get that the average utilization factor is

1

logk n

logk n∑
i=0

(
1

k

)i
−→ 1

log2 n

k log2 k

k − 1
,

which is an increasing function ofk for k�2, suggesting that a higher order tree layout may be advantageous for better utilization
of the available resources.

The average number of blocks to be memorized, amortized over them processors, is evaluated as follows. One processor
works on level 0,k− 1 additional ones on level 1,k(k− 1)more are added at the next level, etc. The total number of processors
is therefore

m= 1+ (k − 1)
r−2∑
j=0

kj = kr−1.

ProcessorP1 has to store information aboutr blocks, processorP2 toPk aboutr − 1 blocks, the nextk(k − 1) processors need
only space corresponding tor − 2 blocks, and the nextk2(k − 1) processors only tor − 3 blocks, etc. The total required space,
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Fig. 8. Hierarchical structure of ternary tree.

when summed over all the processors, is then

r +
r−1∑
j=1

(r − j)kj−1(k − 1)= k
r − 1

k − 1
.

Amortizing this space over themprocessors, we get as average required memory per processor:

kr − 1

(k − 1)kr−1 = 1+ 1− 1
m

k − 1
,

which is decreasing withk. So from the point of view of local space requirements, it is also worth passing to higher order trees.
However, all these advantages calling for largerkare counterbalanced by the fact that with increasingk, the hierarchical layout

tends increasingly to be equivalent to usingm independent processors, affecting the compression efficiency when the block size
is small. Indeed, the LZ compression schemes take advantage of the fact that certain strings tend to reoccur shortly after a first
appearance, and this locality of reference is disturbed by connecting blocks which are not adjacent. In our case, for a fixed block
size, the distance, in the file, between blocks treated by the same processor, is increasing withk, so we might expect better
compression with lowerk. In the next section, we bring empirical results comparing the compression performance for various
values ofk.

In a straightforward generalization of the binary case, the blocks would be numbered sequentially top down, left to right,
so that the children of blockBi would be the blocksBk(i−1)+1+t for t = 1, . . . , k. The correspondence between blocks and

processors would then be given as follows: ifSi
j

is the index of the processor assigned to blockj of layeri, wherei=0, . . . , r−1

andj = 1, . . . , ki , thenS0
1 = 1 and

for i >0 andj = 1, . . . , ki−1, Si
k(j−1)+1= Si−1

j

and for t = 2, . . . , k Si
k(j−1)+t = ki−1+ (k − 1)(j − 1)+ t − 1.

For example, fork = 3, we would get as order of processors, from left to right, for the first layers: (1), (1, 2, 3), (1, 4, 5, 2, 6, 7,
3, 8, 9), etc.Fig. 8depicts this layout of the blocks, fork = 3, on a tree with 4 layers, in similar form as inFig. 3(a).

As above for the binary case, we would need a functionfk(i) converting the index of a block into that of the corresponding
processor for thek-ary tree, i.e.,fk(i)= j if block Bi is coded by processorPj . This function would be given by

fk(i)=
{
fk

(
i+k−2
k

)
if imodk = 2,

i −
⌈
i−2
k

⌉
if imodk �= 2.

The particular casek = 2 coincides with the formula given earlier if one interprets the conditionimod 2= 2 as standing fori is
even. Indeed, one gets then thatf2(i)= f2(i/2) for eveni, andf2(i)= (i + 1)/2 if i is odd.

However, with a sequential numbering of the blocks, the parent-child relations of the blocks are not trivially obvious from
their indices. This is a disadvantage, since one needs a direct way to address ancestors in the LZ coding routines. One could of
course prepare for each indexi of a block, a listlisti as suggested above in Section 2.2, giving the sequence of the indices of the
blocks accessed from the root to blockBi ; but for the ternary case, we would get, for example,list21=[1,2,7,21], which is not
trivially related to the ternary representation of the index 21, aslisti for the binary case was related to the binary representation
of i.
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To rectify this deficiency, the following new numbering of the blocks in ak-ary layout is suggested: the blocks in layeri,
i = 0, . . . , r − 1, will be indexed from left to right byki + j , j = 0, . . . , ki − 1. For example, fork= 3, the sequence of indices
will be 1,3,4,5,9,10, . . . ,17,27,28, . . . ,53,81,82, . . .. The main property of this way of enumerating the blocks is that the
following relation holds between a block and its offsprings: if� is the representation of the index of the given block in the
standardk-ary numeration system, then the representations of the indices of thek children of this block are�0, �1, . . . , �(k−1).
Note that fork = 2, the new numbering coincides with the sequential numbering of Section 2.

Another way to look at it is by considering the layout as a fullk-ary trie, labelled in a similar way as suffix trees: the edges
emanating from a given node are labelled, from left to right, by 0,1, . . . , k − 1, the root is labelled by the empty string�, and
each nodex is labelled by the concatenation of the labels on the edges of the unique path from the root tox. Here we have
merely prefixed each of these node-labels by a leading 1, to avoid ambiguities when the labels are considered as numbers rather
thank-ary strings. Without the leading 1s, the labels of the nodes of the leftmost branch of the tree would be�,0,00,000, . . .,
prefixing the 1 turns them into different numbers 1,10,100, . . .. As an example, consider the blockB897 in a 5-ary tree. The
chain of blocks leading to it isB1, B7, B35, B179 andB897, and their indices, in 5-ary, are 1, 12, 120, 1204, 12042, respectively.

One can therefore readily generalize the binary based LZ coding routines by noting that the ancestors of blockBi are the
blocksB�i/kb�, for b = 1,2, . . .. The new definition of the functionfk(i), giving the index of the processor dealing with block
Bi is as follows: lett (i) = �logk i� be the length of thek-ary representation ofi not including the leading 1, so thatt (i) is in
fact the index of the layer in which blockBi occurs, and letr(i), as above, be the length of the longest suffix consisting only of
zeros in thek-ary representation ofi.

Claim: fk(i)= �kt(i)−r(i)−1� + (k − 1)

⌊
i − kt(i)
kr(i)+1

⌋
+ i

kr(i)
modk.

Proof. By induction on the relevant values ofi. For i = 1, the first component is�k0−0−1� = 0 (in fact, thefloor operator is
only needed in this special case, as fori >1, this component will always be an integer), the second component is 0 and the third
is 1, so we getfk(1)= 1 for all k.

Assume the claim is true up toi − 1 and consider first a node with indexi >1 to which a new processor is assigned; the
index i of this node is then such thatimodk �= 0, so thatr(i)= 0. The node appears on levelt (i) in the tree and the number of
processors used in thet (i) levels above the current one iskt(i)−1, which accounts for the first component. The relative index of
nodei within layert (i) is i − kt(i). This layer can be partitioned into groups ofk nodes, each group including the child nodes of
one of the nodes of layert (i)− 1. Since we assume here thati − kt(i) is not divisible byk, the number of groups to the left of
the one to which nodei belongs is�(i − kt(i))/k�, and each such group contributesk − 1 new processors, as only the first node
in each group inherits the processor of the parent node; this accounts the for the second component. What still need to be added
is the relative index of nodei within the group it belongs to, and this index isimodk.

If i is a multiple ofk, thenBi is dealt with by the same processor as its parent nodeBi/k . Noting thatt (i/k) = t (i) − 1,
r(i/k)= r(i)− 1, and that we can apply the inductive assumption fori/k < i, we get that

fk(i)= fk(i/k)= kt(i)−1−(r(i)−1)−1+ (k − 1)

⌊
i/k − kt(i)−1

k(r(i)−1)+1

⌋
+ i/k

k(r(i)−1)
modk,

and the right-hand side reduces to the formula given in the claim, which shows that it holds also fori. �

A way relating the functionfk(i) to thek-ary representation ofi is the following: first, delete the longest suffix consisting
only of zeros; defineA as the remaining string from which the rightmostk-ary digit, denotedC, has been removed, and defineB
as the string obtained fromA by removing its leading 1. Then

fk(i)= A+ (k − 2)B + C.
Returning to the above example, we getf5(897)= 12045+ 3 · 2045+ 2= 343.

The generalizations of the LZ coding routines given in the previous section, both for LZSS and LZW, both encode and decode,
are now straightforward. In particular, there arek parallel recursive calls of the form

perform in parallel




if ki�n PLZ-code(ki, fk(ki)),
if ki + 1�n PLZ-code(ki + 1, fk(ki + 1)),
...

if ki + k − 1�n PLZ-code(ki + k − 1, fk(ki + k − 1)).
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Table 1
Size and time measurements on test files

Size Time

Full Compressed by Compression Decompression
LZSS LZW Serial Stand. New Serial Stand. New

Eng Bib 3.860 41.6 36.6 5.508 1.513 2.296 3.653 1.081 1.504
Heb Bib 1.471 51.7 44.7 2.134 0.645 0.853 1.488 0.382 0.566
Voltaire 0.529 49.0 40.6 0.770 0.227 0.380 0.456 0.190 0.310
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Fig. 9. Size of compressed file as function of block size.

4. Experimental results

We now report on some experiments on files in different languages: the Bible (King James Version) in English, the Bible in
Hebrew and theDictionnaire philosophiqueof Voltaire in French.Table 1first brings the sizes of the files in MB and to what size
they can be reduced by LZSS and LZW, expressed in percent of the sizes of the original files. We consider three algorithms: the
serial one, using a single processor and yielding the compressed sizes inTable 1, but being slow; a parallel algorithm we refer to
asstandard, where each block is treated independently of the others; and thenewparallel algorithm presented herein, withk=2,
which exploits the hierarchical layout. The columns headedTime in Table 1compare the new algorithm with the serial and the
standard parallel ones. The time measurements were taken on a Sun 450 with four UltraSPARC-II 248 MHz processors sharing
a common memory, which allowed a layout with 7 blocks. For the serial algorithms, the code provided by[9] has been used,
with a maximal dictionary size of 32 K for LZW and a history buffer of 4 K for LZSS. The values are in seconds and correspond
to LZW, which turned out to give better compression performance than LZSS in our case. The improvement is obviously not
expected to be 4-fold, due to the overhead of the parallelization, but on the examples the time is generally cut to less than half.

For the compression performance, we first compare the standard parallel version with the new one fork=2. Both are equivalent
to the serial algorithm if the block size is chosen large enough, as in[6]. The graphs inFig. 9show the sizes of the compressed
files in MB as functions of the block size (in bytes), for both LZSS and LZW. We see that for large enough blocks (larger than
the history buffer) the loss relative to a serial algorithm with a single processor is negligible (about 1%) for both the standard and
the new methods. However, when the blocks become shorter, the compression gain in the independent model almost vanishes,
whereas with the new processor layout the decrease in compression performance is much slower. For blocks as small as 128
bytes, running a standard parallel compression achieves only about 1–4% compression for LZSS and about 12–15% for LZW,
while with the new layout this might be reduced by some additional 30–40%.

The graphs inFig. 10compare the compression performance of the higher order layouts corresponding to 3�k�5, with those
of the binary layout and with the standard parallel algorithm, using the English Bible file as example. As expected, for LZSS, the
compression gets worse with increasingk, for all block sizes, and for fixedk, compression is a decreasing function of the block
size, for allk. For LZW this is also the general trend, though there are small fluctuation. Interestingly, for the smaller block sizes,
the graphs of the hierarchic methods, even withk = 5, are much closer to each other than they are to the graph of the standard
parallel method, which implies that higher order layouts might be worth looking at if small blocks are required.A possible reason
for the difference between LZSS and LZW is that in the former, blocks are processed bottom up in our implementation, so that
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Fig. 10. Effect of higher order layouts.

for fixed block size but with increasingk, the referenced reoccurring strings are farther away, thus tend to yield lower savings.
The same would be true also for LZW, but for it, processing has been done top down; if the first few blocks are representative
of the whole file, they will contain “good” strings to be used in subsequent blocks, so compression might be less affected by the
choice ofk than in the LZSS case.

We conclude that the simple hierarchical layout might allow us to considerably reduce the size of the blocks that are processed
in parallel without paying too high a price in compression performance. As a consequence, if a large number of processors is
available, it enables a better utilization of their full combined computing power.
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