
Malleable Memory Mapping: User-Level Control of
Memory Bounds for Effective Program Adaptation

Dimitrios S. Nikolopoulos
Department of Computer Science
The College of William&Mary

McGlothlin Street Hall
Williamsburg, VA 23188

Abstract

This paper presents a user-level runtime system which provides memory
malleability to programs running on non-dedicated computational environ-
ments. Memory malleability is analogous to processor malleability in the mem-
ory space, i.e. it lets a program shrink and expand its resident set size in
response to runtime events, without affecting the correct execution of the pro-
gram. Malleability becomes relevant in the context of grid computing, where
loosely coupled distributed programs assume to run on busy computational
nodes with fluctuating CPU and memory loads. User-level malleable memory
is proposed as a portable solution to obtain as much as possible out of the
available memory of a computational node, without reverting to more drastic
solutions such as job suspension or migration, and without causing the sys-
tem to thrash. Malleable memory mapping is also a solution to cope with the
unpredictable behavior of existing virtual memory management policies under
oversized memory loads. The current prototype is simple but leaves plenty of
room for application-independent or application-specific optimizations, com-
piler support and other extensions. Our performance evaluation is a proof of
concept that grid programs with malleable memory can improve their perfor-
mance by an order of magnitude as opposed to grid programs that let their
memory being reclaimed and reallocated by the OS.

1 Introduction

Multiprogramming has been a thorny problem in the development of efficient pro-
grams for non-dedicated parallel platforms. Sharing of processors, memory, and net-
work links may negate any assumptions that the programmer makes on the availabil-
ity of resources while the program is running. Although the related issues have been
a subject of investigation for almost two decades, they are still very much relevant

1



due to the advent of grid computing. Computational grids are based on malleable
resources and significant research effort is placed on developing programming and
runtime support for malleable grid programs.

Our work in this context focuses on the micro-management of a grid program at
the node level. We investigate ways to tune grid programs so that each computational
task scheduled to a node can make the most out of the resources available at the node,
not only at the time of scheduling, but also at runtime.

We believe that the problem of sharing memory on multiprogrammed servers,
clusters or computational grids has received less attention than it deserves. Typi-
cally, programmers develop distributed programs under a simplifying assumption of
the underlying memory constraints. The programmer has two choices. The first is
to measure the size of the resident set of the program and examine if the program
fits or doesn’t fit in the memory of a grid node. If the problem doesn’t fit in mem-
ory, the higher level grid scheduler will probably opt for finding another node with
higher memory capacity. The second, and most difficult to implement option, is to
restructure the program so that the size of the footprint is reduced. One may consider
numerous approaches to this problem, including traditional compiler optimizations
for memory hierarchies, algorithmic restructuring, or implementing an out-of-core
version of the program. We are investigating if there is any “middle ground” between
the two aforementioned options, i.e. provide a solution that will help the program run
at a reasonable speed with less memory resources than needed, without thrashing lo-
cal nodes. In addition to that, we are looking for a solution which is portable, does
not require OS modifications and can be customized to application-specific charac-
teristics.

Relying on existing virtual memory (VM) management systems does not appear to
be the best option in this context. Most VM systems fail to handle oversized memory
loads without thrashing or penalizing certain kinds of applications. They are designed
to make the common case fast and secure a fair share of memory resources allocated
to each job in the system in the long-term, but the notion of fairness and common
cases is being defined arbitrarily in the OS. VM systems are also hard to understand
and writing code for adapting to a specific feature of a particular VM system makes
the code non-portable. Changing VM systems to incorporate better VM algorithms
for more types of workloads is challenging, and the related work is probably reaching
its limits [12]. At the other end, changing the VM system to enable application-
specific VM and physical memory management schemes is the most aggressive and
customizable solution, but needs a major redesign of the operating system itself.
Both options share an important drawback, they need modifications to the operating
system, which may or may not be possible and they are most likely non-portable.

2



1.1 Problem statement

The problem that we are attempting to address with the work presented in this
paper is the following: How can we provide runtime support to a program running as
guest on a non-dedicated node of a computational grid, so that the program runs as
efficiently as possible without thrashing, when the memory available to it fluctuates
and the full resident set of the program may or may not fit in physical memory
at different snapshots of execution. For this problem, we assume that the program
is already optimized for a fixed-sized memory hierarchy. We also assume that the
program runs on top of a VM system, with policies which are generally unknown to
the program and may harm the performance of the program under certain conditions.

There is a solid motivation for writing programs with malleable memory. Non-
dedicated, multiprogrammed servers become increasingly more popular as compo-
nents of clusters and computational grids. The application basis for these platforms
is expanding towards applications which are more data-intensive and have larger res-
ident sets. Grid computing [9] is offered as an alternative for harnessing the available
cycles and memory of widely or locally networked systems [1, 2], but faces the prob-
lem of harmonic co-existence of local jobs and “grid,, jobs, in any given node which
contributes computational resources to the grid.

1.2 Contribution

In this paper, we propose a user-level mechanism which provides memory malleability
to grid programs and present its preliminary implementation and performance results.
We define memory malleability as the ability to dynamically shrink and expand the
resident set of a program, with a mechanism controlled by a user-level runtime system,
in response to oscillations of the memory available to the program by the OS. We
emphasize three aspects of the runtime system: First, it is a user-level solution for
memory malleability. It does not require modifications to the OS and it uses system
services common to most, if not all, contemporary OSes, so that it can be portable.
Second, it is fairly transparent to the application, in the sense that the application
can use malleable memory mapping by linking in a runtime system which provides
wrappers to memory allocation functions. It is not binary-transparent (i.e. can not be
immediately linked to object code), but we believe that achieving memory malleability
of unmodified binaries is feasible, and we consider it as one of the first priorities for our
future work. Third, it is expandable in many ways. The runtime system as is, unmaps
and remaps application memory transparently using application-independent metrics
and does a good job in controlling the resident set of the program and throttling
memory consumption when thrashing becomes an issue. It can be easily extended to
incorporate application-dependent metrics, hints provided by the application to the
memory manager, or compiler support.

We present results obtained on two systems, a small Linux cluster with four dual
Intel Xeon-based nodes and a 4-node partition of an SGI Origin2000. The experiments

3



use a synthesized distributed program to provide a proof of concept on how user-
level malleable memory can dramatically improve the performance of programs with
memory footprints that do not fit in loaded systems. Significant further investigation
is needed to put this research in the context of specific applications.

The rest of this paper is organized as follows: Section 2 overviews related work.
Section 3 presents the design and implementation of our malleable memory mapping
system. Section 4 presents preliminary performance evaluation results from two plat-
forms, a Linux cluster and an SGI Origin2000. Section 5 summarizes our conclusions
and presents the directions of our future work.

2 Related Work

The idea of malleability has been thoroughly explored in the context of job scheduling
on parallel systems [8] and dynamic space sharing policies [14] in particular. Although
memory malleability resembles processor malleability, the technical details of imple-
menting seamlessly a malleable memory mapping scheme are radically different. In
general, the impact of taking processors away from the program and re-scheduling
the program’s computation on the remaining available processors is relatively easy to
understand and model. On the other hand, the impact of taking memory away from
a program is much harder to model without full knowledge of the program’s memory
references. Even if modeling this impact is possible, coming up with efficient methods
for adaptation to memory shortage is challenging.

A method to cope with memory shortage in applications with very large working
sets is to use out-of-core algorithms. Significant work has been done on providing
optimized out-of-core implementations of popular mathematical routines [5, 7, 15] and
compiler support for effective composition of out-of-core programs [3, 13]. In principle,
out-of-core methods assume problem sizes that do not fit in the memory of the system
on which the program runs. We rather address the problem of memory malleability
for programs that do fit in the memory of the target platform, but their performance
suffers due to contention for memory resources and undesirable interferences with the
scheduling and VM management policies of the OS.

Application-specific, user-level memory management is an intensively researched
area of operating systems design and implementation [4, 11, 18]. The similarity
between these works and ours is that all are attempting to improve the performance
of programs in cases where the native VM management algorithms of the OS are
likely to fail. There are two important differences though. Application-controlled
memory management mechanisms are primarily designed to improve the performance
of specific applications, when the OS VM management algorithms do not match well
with the application’s data access patterns. In general, these algorithms do not
consider multiprogramming and memory sharing, or consider it as an orthogonal
problem treated inside the OS. We are targeting a different problem, which is how to
enable effective adaptation of jobs running as guests on hosts with local owners and

4



limitations in available memory, without leaving free memory resources go unutilized.
In the context of grid computing [9], research efforts are judiciously concentrated

in the numerous challenging problems of programming, partitioning and scheduling
computations to run on heterogeneous systems over heterogeneous networks. Al-
though the idea of harnessing as much as possible the shared resources available of
the Internet is dominating grid computing, most of the efforts concentrate on discov-
ering, negotiating and scheduling those resources, rather than micromanaging grid
programs on a specific resource, once this resource is granted to the program. The
Active Harmony project [16, 17] is a notable exception. The project has investigated
changes that need to be implemented in the operating system to enable an efficient
symbiosis between grid programs and local programs on hosts available for grid com-
puting. We differentiate from this work in two ways. First, we propose a user-level
solution designed for portability, while the researchers in Active Harmony proposed
solutions implemented in the OS. Second, we are proposing a solution which is more
application-centric, that is, it can be customized to the memory reference patterns of
specific applications with additional programming effort.

3 Malleable Memory Mapping

The rationale behind user-level malleable memory is to provide a dynamic memory
allocation and deallocation scheme which runs at user-level, is portable, and allows the
program to run efficiently under changing execution conditions. Memory malleability
is implemented in a runtime system that sits between the program and the OS. The
program is assumed to be a task of a grid job, submitted remotely to harness idle
resources. By definition, the grid job executes at a lower priority1 than any local job
in the system.

The runtime system biases the OS VM management policy in two ways: If the
amount of free physical memory in the system falls below a thrashing threshold,
the grid program forces immediate deallocation of sufficient memory, rather than
dynamic reclaiming of memory from the operating system. The working assumption
here is that since the program is a guest program submitted over the grid, it should
not thrash the system. Conversely, if more physical memory becomes available to
the program at runtime and the program has already released memory for reducing
memory pressure, the program can try to reclaim as much of the released memory as
possible, or needed, rather than waiting for the VM algorithm to redistribute memory
among programs.

Malleable memory mapping is encapsulated in a dynamic shared object. The task
of the runtime system is to intercept the program’s memory allocations and redirect
the anonymous memory mappings that are requested by the operating system to

1In the context, the term priority is used broadly. It signifies the fact that a grid job should not
actually use resources when they are needed by local jobs.

5



named memory mappings which are controlled by the application. Named memory
mappings are backed up by application-defined files in the disk and their consistency
is maintained at user-level, by flushing updates to in-core memory-mapped regions
before any attempt to unmap pages.

The two critical issues that need to be explained in a malleable memory system is
how the runtime system deallocates and allocates memory back to the program. The
general strategy is to design memory allocation and deallocation for adaptability to
memory shortage and fast reclamation of previously released memory, if the execution
conditions permit so. The runtime system provides an automatic mechanism which
detects memory shortage at runtime and deallocates “enough” program memory to
alleviate memory shortage. There are four technical issues that need to be addressed.
The first is when to deallocate memory, the second is how much memory to deallocate,
the third is what part of the memory to deallocate and the fourth is how to ensure
that the program keeps running correctly despite the deallocation. Symmetric issues
occur with memory reallocation. We elaborate on these issues in sections 3.2 and
3.3. Before discussing policies, we provide a brief description of the logistics and
mechanisms used in the runtime system.

3.1 Basic Mechanisms

The fundamental mechanism for memory malleability is dynamic mapping and un-
mapping of allocated memory, at user-level. For memory shrinking, the runtime
system maintains the memory maps established for program data and selectively or
randomly unmaps regions of these maps. All regions are backed up by designated
files in secondary storage. Unmapping makes sure that a program makes a fraction of
its allocated physical memory immediately available to the OS. Note that this differs
from just freeing memory (e.g. with a call to free()), which invalidates a region of
the address space of the program but does not necessarily return the memory to the
OS for immediate reallocation. If the program faults on a page which was previously
unmapped by the runtime system, the runtime system redirects the fault to a user-
level handler, which remaps all or part of the previously unmapped region, if and only
if the remapping is valid. Segmentation faults outside the regions controlled by the
runtime system are released to the OS for handling. The same action is taken when
the runtime system decides to reclaim memory on behalf of the program, if sufficient
memory becomes available. Protection and access rights of mapped regions are also
controlled by the runtime system, via the mmap and mprotect system calls.

The runtime system maintains a mapping table which contains the user-level
memory-mapped regions of the program’s data space. The table is initialized with
one entry per mapped region created with mmap. As the program executes, an un-
mapping of a previously mapped region is reflected on the table in the following ways:
The still-mapped region is maintained in the table with its new bounds and size. The
unmapped portion of a previously mapped region is also maintained in a separate

6



while (1) {

obtain a load index L from the /proc filesystem;

obtain resident_size, system_memory_size;

if (resident_size > system_memory_size/L) {

release (resident_size - system_memory_size/L);

}

}

Figure 1: Memory deallocation heuristic.

entry in the table with its bounds and size. The reason for this is that this region
is “valid,, from the application’s point of view, but is temporarily invalidated and
unmapped to cope with memory pressure.

The entries in the table contain a recency bit which is used for unmapped pages
or contiguous sets of pages. When the runtime system decides to remap a previously
unmapped region, the bit is set to indicate recent access. The recency bit used for
remapped regions is exploited as an indication of the working set of the program at
user-level. This is a lazy evaluation of the working set, in the sense that we only
designate regions as parts of the working set, only if these regions get unmapped
and remapped later by the runtime system. We are using a simple second-chance
algorithm for unmapping regions based on the recency bit.

The map table is maintained as a forest with the initially mapped regions at the
tree roots and decompositions of the initially mapped regions at the lower levels.
Splitting and coalescing of contiguous regions is handled by rearranging the tree.
Using more space or time-efficient data structures for the memory map is a subject
of further investigation.

3.2 Shrinking Memory

The runtime system deallocates memory when the memory system is about to thrash.
In order to check this, the runtime system polls periodically the /proc2 filesystem and
checks how much free memory is available and what is the instantaneous load. The
polling period for experimentation is set to one second, but it is a tunable parameter.
The condition for shrinking the memory of the program is the following: if free
memory is lower than a system-specific threshold, shrink the memory of the grid
program down to a fair share.

We decide to use program-independent metrics for deriving the fair-share of a
guest program in memory. The current heuristic is shown in Figure 1. The heuristic
is biased towards keeping small programs in memory and reducing the resident set of
large programs. We consider as large programs the programs with resident sizes that

2So far, we have only experimented with UNIX systems, hence the dependence on the /proc
interface. Similar ideas can be applied for other operating systems though given the respective
interfaces.

7



exceed their proportional memory share, i.e. the memory size divided by the load of
the system, given by the parameter L. The latter is an approximation of the ready
queue size using the length of the run queue during the past ten seconds. This is
similar to the value reported by uptime.

Note that the heuristic uses information available locally to each program. It does
not use centralized information on the sizes of other programs and does not assume
any kind of synchronization of the checks made by different programs. It is designed
for simplicity and portability. Application knowledge could be passed to the runtime
system and improve the heuristic in a non-intrusive manner, e.g. by indicating that
the program can actually use less than the fair share of memory.

Deciding what part of a mapped region to deallocate is a tougher problem. With
perfect knowledge of the application access pattern and the timing of memory refer-
ences, one could compose an ideal deallocation scheme which always deallocates the
regions which will be accessed as far as ahead in the future as possible, or will not
be accessed at all. One solution to this would be to use program traces, however the
traces should describe both where and when memory is referenced and they should
also be independent of the input. Moreover, analyzing memory reference traces at
runtime could be prohibitively expensive.

We implemented a scheme that starts with round-robin deallocation and progres-
sively adapts the deallocation to the observed memory reference pattern. Round-robin
is a reasonable starting solution for sequential access patterns. Initially, if a dealloca-
tion decision has to be made, the runtime system simply deallocates memory propor-
tionally from the beginning of mapped memory regions. Subsequent deallocations,
if needed, are satisfied at each memory region from the point where the last deallo-
cation stopped. If there are N memory regions with sizes (in pages) Si, i = 1 . . . N ,
and the program needs to deallocate M pages in total, the runtime system deallo-
cates Si∑N

i=1
Si

M pages from each region. This blind decision is refined at later stages

of the algorithm. If deallocated regions get reallocated (with the scheme described
in Section 3.3), their recency bits are set. A region with the recency bit set is not
considered immediately for deallocation and gets a second chance. It is deallocated
without a second chance only if the runtime system can not find enough memory with
cleared recency bits to deallocate. This algorithm can get as elaborate as a low-level
OS algorithm for reclaiming pages, however we prefer to keep it simple, since it has
a non-negligible runtime cost and the runtime system already consumes resources
needed by user programs.

3.3 Staying in the Memory Band and Expanding Memory

As long as the execution conditions of the program do not change, the runtime system
tries to keep the program running in the given memory band. More specifically, if
reallocating the unmapped memory back to the guest program will bring the amount
of free memory below the critical threshold, the guest program keeps executing with

8



its restricted resident set. If the program faults on deallocated pages, those pages will
be remapped in place of already mapped pages, which are in turn unmapped using
the scheme described in Section 3.2. Pages get unmapped round-robin, unless their
recency bits indicate otherwise.

We have implemented a lazy memory reallocation strategy and used an adaptive
prefetching scheme to accelerate the mapping of contiguous pages upon faults, to
amortize the cost of memory reallocation. Lazy reallocation amounts to postponing
the unmapping of previously mapped pages, until the program needs to access these
pages again. The motivation for prefetching is that if the deallocation algorithm
has unfortunately deallocated a significant part of the program’s working set, the
reallocation of this part should be accelerated.

Prefetching is facilitated with a simple predictor, similar to the adaptive predictors
used for data prefetching in microprocessor architectures [6, 10]. We are using a
small (32-entry) stream prediction table in memory. The table is indexed with page
addresses and the entries are managed with a clock algorithm. Each entry in the
table corresponds to a reference stream. The entry contains the last page accessed in
the stream, a test page, and a prefetching degree. Assume for simplicity that pages
are numbered sequentially. If a page p is faulted and there is no entry in the table
indexed with p, either as a last-accessed page or a test page, p is inserted in the table,
the test page in the same entry is set to p + 1 and the prefetch distance is set to 1. If
the next fault in the reference is to page p+1, page p+2 is prefetched and the prefetch
degree is increased to 2 and so on. The intuition here is to progressively increase the
prefetch degree if a persistent sequential fault pattern is observed. Prefetch distances
and degrees are reset upon interruptions of contiguous reference streams.

The same mechanism is used when the runtime system decides to re-expand the
resident set of the program, with the only difference being that pages are not re-
mapped in place of already mapped pages. The expansion decision is taken by re-
versing the criterion for the shrinking decision, i.e. if mapping back all the mapped
regions of the program does not overcommit memory. Nevertheless, expansion of the
program is done with lazy remapping and prefetching, as described previously. This
means that we do not immediately give the memory back to the program, but we do
it gradually, so that the program reloads only needed data which are not mapped in
memory. Lazy reallocation is also a defensive mechanism to shield the guest program
and the system from instantaneous spikes of memory load.

3.4 Possible Extensions

The memory malleability techniques described so far are designed for simplicity, low
overhead and portability. We currently have a malleable memory mapping scheme
which is good for mostly sequential memory reference patterns. Clearly, shrinking
and expanding the resident set at runtime can be improved with application hints,
compiler support, or by observing the application’s memory reference pattern.

9



The application can provide hints for dead or live memory regions, both in space
and in time, by specifying the limits of used/unused data regions and the code bound-
aries within which these data regions remain used or unused respectively. Compiler
support can provide similar information, although this is usually possible only for
regular array-based scientific codes. The compiler can reduce the programming effort
required to develop a malleable program. Another interesting issue is to investigate if
the runtime system can co-operate with garbage collectors or use ideas from garbage
collection to improve performance.

Analyzing the memory reference stream of the program at runtime is more chal-
lenging. Our current system performs limited analysis of the access stream for im-
proving the selectiveness of memory unmapping and the effectiveness of prefetching.
Obviously, the more the information about the reference stream made available to
the runtime system, the better job the runtime system can do while unmapping and
remapping memory. Unfortunately, maintaining excessive amount of information on
the memory reference stream at runtime can be very expensive. At best, the runtime
system can collect as much information as the operating system itself collects for
allocating and reclaiming memory, albeit limited to the local scope of a program.

Finally, for full portability, it would be desirable to have a runtime system that
embeds memory malleability directly to object code. One solution we are investigating
is to obtain the memory mappings of a running program from the /proc interface
and manage them with the runtime system. Managing dynamically allocated heap
space is another open issue.

4 Evaluation

We ran experiments on two platforms: a cluster of four Dell servers, each with two
Intel Xeon processors running at 1.4 Ghz and 1 Gigabyte of RAM per node; and
a 4-node cluster of an SGI Origin2000, with two MIPS R10K processors per node
running at 250 MHz and 768 Megabytes of memory per node.

We setup the following synthesized experiments. We run a pseudo-distributed
application, which consists of identical copies of matrix-matrix multiplications and a
reduction performed at the end of the multiplications, using MPI. Together with the
distributed matrix multiplications, we run a script on each node of the cluster. The
script offers two types of memory load, shown in Figure 2. The left chart shows a
contiguous offering of memory load and the right chart shows a memory load modeled
with a step function. In the first case (contiguous memory load) we commit 75% of the
memory available to a node, by running repeatedly a program that touches random
pages in a resident, memory-mapped array. The program completes after touching
the entire set of pages in its address space and then runs again. In the second case,
the offered memory follows a step function. We commit a time-variant fraction ft of
system’s memory and touch random pages in it. ft is given by:

10



�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

time time

m
em

o
ry

m
em

o
ry

Used Memory

Unused memory Unused memory

Used Memory

Figure 2: Types of memory load used in the experiments.

ft =

{
75% t, even
25% t, odd

(1)

where t denotes a time interval the length of which is user-defined.
We run the synthesized distributed application with different matrix sizes, to pro-

duce a resident set which ranges between 60% and 100% of the memory available
on each node. This translates to matrix sizes of 200–340 Mbytes on the Linux clus-
ter and 150–250 Mbytes on the Origin. Distributed matrix multiplications are fed
back-to-back to the clusters in a closed system setting. We measure the normalized
throughput of matrix multiplications at different degrees of memory use, ranging
from 135% to 175% of the available node memory. The normalized throughput is
calculated by inverting the average execution time of 100 consecutive instances of the
benchmark on the loaded system and multiplying it with the average execution time
of 100 standalone executions of the same benchmark. A throughput of 1 implies that
the benchmark suffers no slowdown due to memory contention or thrashing. The
thresholds for memory load were chosen arbitrarily. We only verified experimentally
that offering a memory load that equals or exceeds 135% of the available memory
caused thrashing on the two systems we tested. We also believe that memory over-
commitment at a factor of 2 or less is quite realistic in production settings and higher
memory loads are not frequently encountered in practice.

The results are preliminary and should be interpreted as such. We are using a
program with long streams of sequential accesses and problem sizes selected solely to
control the memory load, rather than representing a realistic application. We evaluate
the simplest case of adaptability, i.e. adapt the program to a memory space that stays
fixed throughout execution and a form of periodic adaptability, i.e. adapt the program

11



to a memory space that fluctuates periodically, with varying period lengths.
Figure 3 shows the normalized throughput of malleable memory allocation and

the Linux (left) and IRIX (right) VM systems with a contiguous offer of memory
load at 75% memory use. Each matrix multiplication requests between 60% and
100% of the node memory. The throughput of the malleable memory allocator starts
at 0.28 and drops gradually to approximately 0.25 in Linux and 0.24 in IRIX. The
throughput of the Linux VM system starts at 0.02 and drops rapidly to 0.0003 at
175% memory utilization. There is an order of magnitude of difference between the
malleable memory allocator and the VM system at 135% memory utilization. This
grows to 3 orders of magnitude at 175% memory utilization due to the effects of
thrashing. There is a noticeable improvement of throughput with the IRIX VM
allocator (2-fold to 10-fold improvements over the Linux VM system) but the overall
results do not change significantly. We observed long temporary program suspensions
in IRIX and we suspect that the improvement is attributed to these suspensions, but
we did not investigate the behavior of the IRIX VM policy further, since this was
beyond our intentions.

Figure 3 shows also the throughput of the host application, which in this case is
the synthetic benchmark that touches pages of its address space in random order. As
expected, if the guest job runs within its memory band (25% of memory), there is
no significant impact on the host job, other than sharing system resources such as
the bus (note that the two jobs run on different processors). The throughput of the
host job ranges between 0.87 and 0.93 when the malleable memory allocator is used
for the guest job. On the contrary, the VM systems of both IRIX and Linux favor
only marginally the host job, which suffers from thrashing practically as much as the
guest job.

The almost horizontal slopes of the normalized throughput of the malleable mem-
ory allocator for both host and guest jobs are an encouraging sign. Ideally, we would
like our allocator to keep the part of the working set of matrix multiplication that
occupies exactly 25% of the available node memory stable, throughout the execution
of matrix multiplications. The observed behavior matches this expectation.

The experiments with the periodic memory load were conducted to test whether
the malleable memory allocator can exploit idle memory intervals and investigate how
long should these intervals be to provide meaningful performance improvements to
guest jobs. We conducted experiments with three intervals set to 5, 10 and 20 seconds.
All three intervals are shorter than the length of any individual matrix multiplication
in stand-alone mode. Setting intervals shorter than the execution time of the test
program indicates whether the memory allocator provides runtime adaptability. We
are primarily interested in checking if the program can take advantage of additional
memory while it runs and not before it starts running.

From Figure 4, we observe that our memory allocator does not seem to be particu-
larly responsive to 5 and 10-second intervals of idle memory in Linux. However, there
is a significant improvement in throughput with 20-second idle memory intervals. In

12



130 140 150 160 170 180
Memory use (%)

0.0001

0.001

0.01

0.1

1

n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Malleable memory allocation (guest job)
VM memory allocation (guest job)
Malleable memory allocation (host job)
VM memory allocation, (host job)

Normalized throughput (RH Linux 2.4.18-10#smp)
Contiguous memory load

130 140 150 160 170 180
Memory use (%)

0.001

0.01

0.1

1

n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Malleable memory allocation (guest job)
VM memory allocation (guest job)
Malleable memory allocaiton (host job)
VM memory allocation (host job)

Normalized throughput (IRIX 6.5)
Contiguous memory load

Figure 3: Normalized throughput of the malleable memory allocator and the standard
VM allocator of Linux (left) and (right), with a contiguous memory load.

13



130 140 150 160 170 180
Memory use (%)

0.0001

0.001

0.01

0.1

1

n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Malleable memory allocation (t = inf.)
VM memory allocation (t = inf)
Malleable memory allocation (t = 5sec.)
VM memory allocation (t = 5sec.)
Malleable memory allocation (t = 10 sec.)
VM memory allocation (t = 10 sec.)
Malleable memory allocation (t = 20sec.)
VM memory allocaiton (t = 20 sec.)

Normalized throughput (RH Linux 2.4.18-10#smp)
Periodic memory load

130 140 150 160 170 180
Memory use (%)

0.001

0.01

0.1

1

n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Malleable memory allocation (t=inf)
VM memory allocation (t=inf)
Malleable memory allocation (t=5 sec.)
VM memory allocation (t=5 sec.)
Malleable memory allocation(t=10sec.)
VM memory allocation (t=10sec.)
Malleable memory allocation (t=20sec.)
VM memory allocation (t=20sec.)

Normalized throughput (IRIX 6.5)
Periodic memory load

Figure 4: Normalized throughput of the malleable memory allocator and the standard
VM allocator of Linux (left) and IRIX (right), using a step function for memory load.

14



IRIX, both the malleable memory allocator and the kernel exhibit similar behavior,
with roughly constant rate of throughput improvement when increasing the length
of the interval. We notice that the IRIX VM system benefits significantly from the
additional memory space, which is not the case for the Linux VM system. Again, we
do not analyze this behavior further, as our intention is not to improve existing VM
systems, but build runtime support for performance portability on top of them. The
message from the results is that the malleable memory allocator can exploit coarse-
grain idle intervals at runtime. Naturally, more experiments with different functions
for memory load are required to draw more accurate conclusions.

5 Conclusions and Future Work

We have presented a malleable memory mapping scheme which aims at enabling
effective adaptation of jobs submitted to harness idle memory and CPU cycles in non-
dedicated, remotely owned systems. We have proposed malleable memory mapping
as an alternative to coarse-grain solutions for running these jobs without thrashing
the system and without claiming additional memory from local jobs. We have argued
that this scheme is more portable than schemes based on modifications to the OS
and evaluated its effectiveness with controlled experiments on two different operating
systems. We have presented preliminary results which have shown that guest jobs can
sustain reasonable throughput even if only a small fraction of the memory needed by
them is available on the system. Furthermore, we have shown that given changes of
memory load that happen in coarse-grain time intervals malleable memory mapping
can benefit from additional idle memory and improve throughput.

The presented work is a first step towards implementing runtime support for
adaptive programs submitted for execution over computational grids. Several direc-
tions of further investigation were already pin-pointed in the paper, such as exploiting
application-specific knowledge for improved memory management and using compiler
support. We plan to investigate these issues in detail. We have already presented
at least one significant open problem, which is eliminating the need for source code
modifications. Ways around this problem, i.e. using a malleable memory mapper
which operates directly on the program’s binary need to be investigated as well.

Acknowledgments

This work was partially supported by the NSF ITR Grant No. 0085917. Part of this
work was carried out while the first author was with the Coordinated Science Lab,
at the University of Illinois, Urbana-Champaign. The author would like to thank
Constantine Polychronopoulos for several contributions to this work.

15



References

[1] A. Acharya, G. Edjlali, and J. Saltz. The Utility of Exploiting Idle Worksta-
tions for Parallel Computation. In Proc. of the 1997 ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’97), pages 225–236, Seattle, Washington, June 1997.

[2] A. Acharya and S. Setia. Availability and Utility of Idle Memory in Workstation
Clusters. In Proc. of the 1999 ACM SIGMETRICS Joint International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS’99),
pages 35–46, Atlanta, Georgia, May 1999.

[3] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M. Paleczny. A
Model and Compilation Strategy for Out-of-Core Data Parallel Programs. In
Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP’95), pages 1–10, Santa Barbara, California, July 1995.

[4] P. Cao, E. Felten, A. Karlin, and K. Li. Implementation and Performance of In-
tegrated Application-Controlled File Caching, Prefetching, and Disk Scheduling.
ACM Transactions on Computer Systems, 14(4):311–343, November 1996.

[5] T. Cormen, J. Wegmann, and D. Nicol. Multiprocessor Out-of-Core FFTs with
Distributed Memory and Parallel Disks. In Proceedings of the Fifth Workshop
on Input/Output in Parallel and Distributed Systems (IOPADS’97), pages 68–78,
San Jose, CA, November 1997.

[6] F. Dahlgren, M. Dubois, and P. Stenström. Fixed and Adaptive Sequential
Prefetching in Shared Memory Multiprocessors. In 1993 International Confer-
ence on Parallel Processing (ICPP’93), volume 1, pages 56–63, August 1993.

[7] J. Dongarra, S. Hammarling, and D. Walker. Key concepts for parallel out-of-
core LU factorization. Parallel Computing, 23(1–2):49–70, April 1997.

[8] D. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.
Technical Report RC 19790 (87657), IBM T. J. Watson Research Center, August
1997.

[9] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufman, July 1998.

[10] E. Gornish. Adaptive and Integrated Data Cache Prefetching for Shared Memory
Multiprocessors. PhD thesis, Department of Computer Science, 1995.

[11] K. Harty and D. Cheriton. Application-controlled Physical Memory Using Exter-
nal Page-Cache Management. In Proceedings of the 5th International Conference

16



on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’V), pages 187–197, Boston, Massachusetts, October 1993.

[12] S. Jiang and X. Zhang. TPF: A System Thrashing Protection Facility. Software:
Practice and Experience, 32(3):295–318, 2002.

[13] Z. Li, J. Reif, and S. Gupta. Synthesizing Efficient Out-of-Core Programs for
Block Recursive Algorithms Using Block-Cyclic Data Distributions. IEEE Trans-
actions on Parallel and Distributed Systems, 10:297–315, March 1999.

[14] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation Pol-
icy for Multiprogrammed Shared Memory Multiprocessors. ACM Transactions
on Computer Systems, 11(2):146–178, May 1993.

[15] E. Rothberg and R. Schreiber. Efficient Methods for Out-of-Core Sparse
Cholesky Factorization. SIAM Journal on Scientific Computing, 21(1):129–144,
January 2000.

[16] K. Ryu, J. Hollingsworth, and P. Keleher. Mechanisms and Policies for Sup-
porting Fine-Grain Cycle Stealing. In Proc. of the 13th ACM International
Conference on Supercomputing (ICS’99), pages 93–100, Rhodes, Greece, June
1999.

[17] K. Ryu, J. Hollingsworth, and P. Keleher. Efficient Network and I/O Throttling
for Fine-Grain Cycle Stealing. In Proc. of the ACM/IEEE Supercomputing’2001:
High Performance Networking and Computing Conference (SC’2001), Denver,
Colorado, November 2001.

[18] S. Sechrest and Y. Park. User-Level Physical Memory Management for Mach. In
The Second USENIX Mach Symposium Conference Proceedings, pages 189–200,
Berkeley, CA, November 1991.

17


