RICE UNIVERSITY

Transparent oper ating system support for superpages

by

Juan E. Navarro

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Peter Druschel, Chairman
Professor
Computer Science

Alan Cox
Associate Professor
Computer Science

Edward Knightly

Associate Professor

Electrical and Computer Engineering and
Computer Science

Houston, Texas
April, 2004



To the memory of my friends Alvaro Campos and Javier Pinto.



Transparent oper ating system support for superpages

Juan E. Navarro

Abstract

This dissertation presents the design, implementation and evaluation of a physical memory
management system that allows applications to transparently benefit from superpages. The
benefit consists of fewer TLB misses and the consequent performance improvement, which
is shown to be significant.

The size of main memory in workstations has been growing exponentially over the past
decade. As a cause or consequence, the working set size of typical applications has been
increasing at a similar rate. In contrast, the TLB size has remained small because it is
usually fully associative and its access time must be kept low since it is in the critical path
of every memory access. As a result, the relative TLB coverage — that is, the fraction of
main memory that can be mapped without incurring TLB misses — has decreased by a
factor of 100 in the last 10 years.

Because of this disparity, many modern applications incur a large number of TLB
misses, degrading performance by as much as 30% to 60%, as opposed to the 4-5% degra-
dation reported in the 80’s or the 5-10% reported in the 90°s.

To increase the TLB coverage without increasing the TLB size, most modern processors
support memory pages of large sizes, called superpages. Since each superpage requires
only one entry in the TLB to map a large region of memory, superpages can dramatically
increase TLB coverage and consequently improve performance.

However, supporting superpages poses several challenges to the operating system, in
terms of superpage allocation, promotion trade-offs, and fragmentation control. This dis-

sertation analyzes these issues and presents a design of an effective superpage management



system. An evaluation of the design is conducted through a prototype implementation for
the Alpha CPU, showing substantial and sustained performance benefits. The design is
then validated and further refined through an implementation for the Itanium processor.
The main contribution of this work is that it offers a complete and practical solution
for transparently providing superpages to applications. It is complete because it tackles all
the issues and trade-offs in realizing the potential of superpages. It is practical because it
can be implemented with localized changes to the memory management subsystem and it
minimizes the negative impact that could be observed in pathological cases. It can therefore

be readily integrated into any general-purpose operating system.



Acknowledgments

I would like to thank my advisor Peter Druschel for his guidance and support, but mostly
for pushing me hard enough to get me through the finish line. | would also like to give
thanks to Alan Cox for the time he spent advising me, and Ed Knightly for his insightful
comments both regarding this thesis and that elusive windsurfing move, the carving jibe.

I owe much to my fellow student in this endeavor, Sitaram lyer, who taught me a
plethora of ugly and dirty hacks that made my life easier. | keep fond memories of all
those allnighters, in spite of his tantrums due to the lack of sleep.

I would also like to thank Amit Saha who unselfishly managed to ship a 90-pound
Itanium server to California so that I could finish my experiments, and all those who, before
that, where available as meta-rebooters, that is, as rebooters of the not-very-reliable remote-
reboot device | acquired in order not to have to ask people to reboot my hacked machine
after leaving to California.

Thanks also to Dan Wallach for teaching me how to pronounce contiguity — an indis-
pensable word to describe this work — and to the staff of the Department, always willing
to help.

Last but far from least, | want to express my gratitude to three girls who do not have
the faintest idea what a superpage is, but without whose support along all these years this

work would not have been possible: Paula, Ada and Kathy.



Contents

Abstract i
Acknowledgments i
List of figures viii
List of tables IX
Introduction 1
Background 5
2.1 Hardware-imposed constraints . . . . . . ... ... L 6
2.2 Issuesandtrade-offs . . .. ... . ... ... 8
22.1 Allocation. . . . . . . . 8
2.2.2 Fragmentationcontrol . ... .. ... ... .. .. ........ 9
2.2.3 Promotion. . . . . . ... 10
224 Demotion . . . ... 10
225 Eviction . . . ... 10
Related work 12
3.1 Reducing TLBaccesstime . . ... ... ... ... .. .. .. ...... 12
3.2 Reducingcostof TLBmisses . . . . . . ... . ... .. ... ....... 14
3.3 In-cache address translation: the no-TLB school . . . . . . . ... ... .. 15
3.4 Reducing the number of TLB misses with superpages . . . . . . ... ... 16
341 Reservations . . . . ... 16
3.4.2 Pagerelocation . . . ... ... .. 18

3.4.3 Hardwaresupport. . . . . . .. ... 18



344 DISCUSSION . . . . ...
35 Pagecoloring . .. ... .. . ...
3.6 Memory compaction . . . . ... ...
Design
4.1 Reservation-based allocation . . . . ... ... .. ... ... ... ...,
4.2 An opportunistic policy for the preferred superpage size . . . . . . ... ..
4.3 Preemptingreservations. . . . . . . . .. ...
4.4 Fragmentationcontrol . . . . . . . .. ...
45 Incremental promotions . . . . . . ... L
4.6 Speculativedemotions . . . ... .. ...
4.7 Pagingoutdirty superpages . . . . . . . ..o
4.8 Multi-listreservationscheme . . . . . . ... ... .. L.
4.9 Populationmap . . . . ...
4.10 Implementationnotes . . . . . . . . . .. ...
4.10.1 Contiguity-aware page daemon . . . . . . . . . . ... ... ...
4.10.2 Wiredpageclustering . . . . .. ... ... ... ...
4.10.3 Multiplemappings . . . . . . . . ... .
Evaluation
51 Platform . . . . . .
52 Workloads . . . . . . ...
5.3 Best-case benefits due to superpages . . . . . . . ...
5.4 Benefits from multiple superpage sizes . . . . . . . ... ... ...
5.5 Sustained benefitsinthe longterm . . . . . . ... ... oL
5.5.1 Sequential execution . . . . . .. ... ... o
55.2 Concurrentexecution . . . . . . ... ..o
5.6 Adversary applications . . . . ... ... ... .

5.6.1 Incremental promotionoverhead . . . . . . . ... ... ... ...

19
20
20

23
23
24
25
26
31
31
32
33
34
37
37
38
39



Vi

5.6.2 Sequential accessoverhead . . . . . .. ... ... ... ... ... 52

5.6.3 Preemptionoverhead . . . ... ... ... ... .. ... .. ... 52

56.4 Overheadinpractice . . ... . ... ... ... ... . ...... 52

5.7 Dirty SUPErpages . . . . . . o o i e e 53
58 Scalability . . . . . . ... 53
5.8.1 Promotionsand demotions . . . . . ... ... ... 54

5.8.2 Dirty/reference bitemulation . . . . . ... ... ... ... ..., 54

6 Validating the design in the 1A-64 platform 55
6.1 Platform . . . . . . . 55
6.2 Newinsights . . . . .. .. . ... . . .. 56
6.2.1 Reserved framelookup . . . . . ... ... ... L. 57

6.2.2 Sharedobjects . .. .. ... ... ... 57

6.2.3 Overhead for an adversarycase . ... ............... 58

6.2.4 Overheadinpractice . .. ... ... ... ... ... ....... 59

6.3 Refiningthedesign . . . . . ... . ... ... .. .. 59
6.3.1 Reservations: lookup and overlap avoidance . . . . . ... ... .. 59

6.3.2 Streamlined populationmaps. . . . . .. ... ... ... ... .. 60

6.3.3 Reservation preemption . . . . ... ... ... ... 62

6.3.4 Sharedobjects . ... ... .. ... ... 64

6.4 ResultsforlA-64 . . . . . . . . . ... .. 64
6.4.1 Best-casebenefits. . . .. ... ... ... ... 64

6.5 Overhead and adversary case revisited . . . . . ... ... ... ...... 66
6.6 Reducing page tableoverhead . . . ... ... ... ... ... ...... 67
6.6.1 Alternative page table organizations: existing approaches . . . . . . 67

6.6.2 Alternative page table organizations: aproposal . . . . . .. .. .. 68

6.6.3 Fewer superpage sizes: staticapproach . . .. ... ... ..... 69

6.6.4 Fewer superpage sizes: dynamicapproach . . . . . ... ... ... 71



7 Memory compaction in the idle loop
7.1 A memory compactionalgorithm . . . . . . ... ... ... .. ......
7.1.1 Thecost. . . . . . . . .
7.1.2 Thebenefit . .. .. ... . .. . ...
7.1.3 WhatTLBsizetotarget . . .. ... ... .. ... ........
7.2 Selectingachunktovacate . . . . .. ... ... ... .. ... ......
7.3 Vacatingtheselectedchunk . . . . ... ... ... ... . .........
74 Evaluation . . . . . . ...
741 SCANNING . . . o o e e
7.4.2 Effectiveness . . . . . . . ..
743 Impact . . . ...
744 Overall . . ... . ...

7.5 DISCUSSION . . . . . . o,

8 Concluding remarks
8.1 Comparison with previouswork . . . . . ... . ... ... . ..
8.2 Unexploredalternatives . . . . . . . . .. . ... . ...

8.3 Conclusions . . . . . . ..,

Bibliography

vii

73
73
74
75
77
78
80
81
81
82
83
84
85

87
87
88
90

91



2.1
2.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3

7.1
7.2
7.3

Figures

TLB coverage as percentage of mainmemory . . . . ... ... ... ... 6
Reservation-based allocation . . . . ... ... ... ... ......... 9
Memory trace for FFTW . . . . . . . . . . ... . .. 27
Memory trace forthe GNU linker . . . . . ... ... .. ... ...... 28
MemorytraceforSP . . . . . . . . . ... .. 29
Memory trace forbzip2 . . . . . . . ... 30
Apopulationmap . . . . . ... 36
Two techniques for fragmentation control . . . . . . ... ... ... ... 48
Contiguity as a functionoftime . . ... ... ... ... ... ...... 50
Overlapping reservations . . . . . .. . . . . . . . . ..., 58
Stagesof apopulationmap . . . . . ... ... 61
Reservation preemption . . . . . . . . . ... L 63
A possible statusof memory . . . .. ... oo 79
Buddy coverage as a function of number of page migrations . . . . . . .. 83

Compaction in a busy versus partially busy system . . ... ... ... .. 85



5.1
5.2
5.3

6.1

6.2
6.3

Tables

Speedups and superpage usage when memory is plentiful and unfragmented 44

Speedups with different superpage sizes . . . . . ... ... .. ... ... 46
TLB miss reduction percentage with different superpage sizes . . . . . .. 46
Speedups and peak superpage usage for 1A-64 when memory and

contiguityareabundant . . . ... .. ... L 65
Speedups for all seven sizes compared to speedups for three fixed sizes. . . 70
Speedups for all seven sizes compared to speedups for three sizes

dynamicallychosen . . . . . ... .. ... ... .. ... 72



Chapter 1

| ntroduction

Virtual memory was invented more than 40 years ago at the University of Manchester for
the Atlas Computer [26]. The goal of its inventors was to simplify the task of the program-
mer by providing the abstraction of an address space much larger than physical memory.
Virtual memory systems transparently decide what portions of the address space are kept
in physical memory and what portions are kept on disk or backing store. The programmer
is thus freed from the time-consuming task of explicitly managing the transfer of data back
and forth between disk and physical memory for programs with memory requirements that
exceed the physical memory of the machine. The goal of the Atlas Computer designers is
reflected in the name that they used for this technique: automatic use of a backing store.
Virtual memory is based on a level of indirection that separates the notion of address
(the identifiers that processes use to refer to memory cells) from physical location (the ac-
tual location of the cell in the memory banks) [19]. This indirection has proved powerful
enough to solve a variety of memory management issues beyond the main goal of the At-
las team. It allows for both protection and controlled sharing of memory among different
entities (processes and operating system), it enables optimizations such as demand paging,
copy-on-write, zero-on-demand and dynamic linking, and it simplifies memory manage-
ment by providing artificial contiguity [68]. Virtual memory can also be used by applica-
tions [1] to implement a variety of techniques, such as distributed shared memory [54, 67],
garbage collection [17], and concurrent checkpointing [55]. Hennessy and Patterson point
out that “the only computers today without virtual memory are a few supercomputers and
older personal computers” [33]. Denning calls the pervasiveness of virtual memory “one

of the engineering triumphs of the computer age” [20].



The indirection required by virtual memory is achieved through an address translation
mechanism which must be performed on every memory access. To speedup this translation,
processors cache virtual-to-physical-address mappings in the translation lookaside buffer
or TLB, sometimes also called translation buffer or address translation cache [46, 52, 59].
TLB coverage is defined as the amount of memory accessible through these cached map-
pings, i.e., without incurring misses in the TLB. Over the last decade, TLB coverage has
increased at a much lower pace than main memory size. For most general-purpose pro-
cessors today, TLB coverage is a megabyte or less, thus representing a very small frac-
tion of physical memory. Applications with larger working sets [18] can incur many TLB
misses and suffer from a significant performance penalty. Recent research findings on the
TLB performance of modern applications state that TLB misses are becoming increasingly
performance critical [45]. To alleviate this problem, most modern general-purpose CPUs
provide support for superpages.

A superpage is a memory page of larger size than an ordinary page (henceforth called
a base page). They are usually available in multiple sizes, often up to several megabytes.
Each superpage occupies only one entry in the TLB, so the TLB coverage can be dramati-
cally increased to cover the working set of most applications. Better TLB coverage results
in performance improvements of over 30% in many cases, as demonstrated in Sections 5.2
and 6.4.

However, inappropriate use of large superpages can result in enlarged application foot-
prints because of internal fragmentation, leading to increased physical memory require-
ments and higher paging traffic. These I/O costs can easily outweigh any performance
advantages obtained by avoiding TLB misses. Therefore the operating system needs to use
a mixture of page sizes. The use of multiple page sizes leads to the problem of physical
memory fragmentation, and decreases future opportunities for using large superpages. To
ensure sustained performance, the operating system needs to control fragmentation, with-
out penalizing system performance. The problem of effectively managing superpages thus

becomes a complex, multi-dimensional optimization task. Most general-purpose operating



systems either do not support superpages at all, or provide limited support [28, 85, 87].

This dissertation develops a general and transparent superpage management system.
It balances various trade-offs while allocating superpages, so as to achieve high and sus-
tained performance for real workloads and negligible degradation in pathological situa-
tions. When a process allocates memory, the system reserves a larger contiguous region of
physical memory in anticipation of subsequent allocations. Superpages are then created in
increasing sizes as the process touches pages in this region. If the system later runs out of
contiguous physical memory, it may preempt portions of unused contiguous regions from
the processes to which they were originally assigned. If these regions are exhausted, then
the system restores contiguity by biasing the page replacement scheme to evict contiguous
inactive pages. A complementary idle-loop defragmentation mechanism based on page
migration is also proposed and evaluated.

A prototype of this system is implemented in FreeBSD for two dissimilar architectures,
namely Alpha and 1A-64, and is evaluated on real applications and benchmarks. It is shown
to yield substantial benefits when memory is plentiful and fragmentation is low. Further-
more, it sustains these benefits over the long term, by controlling the fragmentation arising
from complex workload scenarios.

The contributions of this work are five-fold. It extends a previous reservation-based ap-
proach to work with multiple, potentially very large superpage sizes, and demonstrates the
benefits of doing so; it is, to our knowledge, the first to investigate the effect of fragmen-
tation on superpages; it proposes a novel contiguity-aware page replacement algorithm to
control fragmentation; it tackles issues that have to date been overlooked but are required
to make a solution practical, such as superpage demotion and eviction of dirty superpages;
and it presents a detailed design and evaluation of superpage-oriented memory compaction
as a defragmentation mechanism.

Chapter 2 provides some background and motivation for this work, and establishes the
constraints and complexities of the problem. Chapter 3 examines related work not only on

superpages, but also on the broader area of TLB overhead reduction. Chapter 4 describes



the design and implementation of a superpage system. Chapter 5 presents the results of an
evaluation in the Alpha processor. Chapter 6 refines the design under the light of the results
obtained for the 1A-64 architecture. Chapter 7 proposes and evaluates memory compaction
as a complementary mechanism for reducing fragmentation. Finally, Chapter 8 concludes

this dissertation.



Chapter 2

Background

Main memory has grown exponentially in size over at least the last decade and, as cause
or consequence, the memory requirements of applications have also increased [87]. Mauro
and McDougall state that this increase is as much as 100% per year [57]. In contrast, TLB
coverage has lagged behind.

Since the TLB is in the critical path of every memory access, a fundamental require-
ment is low access time [60]. In turn, low access time in a complex device that is usually
multi-ported and fully-associative can only be achieved with a small number of entries.
Hence, TLB size has remained relatively small, usually 128 or fewer entries, correspond-
ing to a megabyte or less of TLB coverage. Figure 2.1 depicts the TLB coverage achieved
as a percentage of main memory size, for a number of Sun and SGI workstation mod-
els available between 1986 and 2001. Relative TLB coverage is seen to be decreasing by
roughly a factor of 100 over ten years. As a consequence, many modern applications have
working sets larger than the TLB coverage.

In addition to a larger number of TLB misses due to lack of TLB coverage, technologi-
cal trends have also led to an increase in the cost of each miss [86]. The main component of
the TLB miss penalty is memory accesses to traverse the page table. The increasing gap be-
tween processor and memory speed [34] makes this component relatively more expensive.
Aggravating this situation, machines are now usually shipped with on-board, physically
addressed caches that are larger than the TLB coverage. As a result, many TLB misses
require several accesses to the memory banks to find a translation for data that is already in
the cache, increasing the miss penalty even more.

Section 5.3 shows that for many real applications, TLB misses degrade performance by



g 10%

g ®

7]

>

g 1% @ E
(0]

£ © ®

c

E 01%F L E
5 ® ®

5 © O

2 001% E
o

m 1 1 1 1 1 1 1 \®\
-

'—

'86 '88 '90 '92 '94 '96 '98 '00 '02
Year of workstation manufacture

Figure 2.1 : TLB coverage as percentage of main memory for workstations, 1986-2001 (data
collected from various websites). (A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCSstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H) Indy; (1) Indigo2; (J) SPARCstation-
20; (K) Ultra-1; (L) Ultra-2; (M) O2; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450; (R) Oc-
tane2.

as much as 30% to 60%, contrasting to the 4% to 5% reported in the 1980°s [16, 98] or the
5% to 10% reported in the 1990’s [72, 93].

We therefore seek a method of increasing TLB coverage without proportionally enlarg-
ing the TLB size. One option is to always use base pages of a larger size, say 64KB or
4MB. However, this approach would cause increased internal fragmentation due to partly
used pages, and therefore induce a premature onset of memory pressure. Also, the 1/0 de-
mands become higher due to increased paging granularity. Tallury shows that an increase
from 4KB to 64KB pages can make some applications to double their working set size [89].

In contrast, the use of multiple page sizes enables an increase in TLB coverage while
keeping internal fragmentation and disk traffic low. This technique, however, imposes
several challenges upon the operating system designer, which are discussed in the rest of

this chapter.

2.1 Hardware-imposed constraints

The design of TLB hardware in most processors establishes a series of constraints on su-

perpages, akin to the constraints imposed on normal pages. Firstly, the superpage size is



always a power of 2 and must be among a set of page sizes supported by the processor.
For example, the Alpha processor provides 8KB base pages and 64KB, 512KB and 4MB
superpages; the 1386 processor family supports 4KB and 4MB pages, and the Itanium CPU
provides ten different page sizes from 4KB to 256MB.

Secondly, a superpage is required to be contiguous in physical and virtual address space.
Thirdly, it must be naturally aligned, meaning that its starting address in the physical and
virtual address space must be a multiple of its size; for example, a 64KB superpage must
be aligned on a 64KB address boundary.

Finally, the TLB entry for a superpage provides only a single reference bit, dirty bit,
and set of protection attributes. The latter implies that all base pages that form a superpage
must have the same read, write, and execute attributes. Also, due to the coarse granularity
of reference and dirty bits, the operating system can determine whether some part of the
superpage has been accessed or written to, but cannot distinguish between base pages in
this regard.

Upon a TLB miss for an address in a superpage, the processor loads the translation
entry for the requested address, including the superpage size, from the page tables into the
TLB. Since superpages are contiguous, and since the TLB entries contain the superpage
size, this entry suffices to translate any subsequent address in the superpage. The page
tables must therefore contain information about what superpage size must be used for each
address mapped by a process. Many architectures use a page table structure with one entry
per base page, which contains a page size field to indicate the superpage size.

Adding superpage support to an existing architecture is thus straightforward: a page
size field must be added to each TLB entry, page tables must also be augmented with page
size information, and the comparator in the TLB must be augmented to make use of the
superpage size to determine how many of the most significant bits of an address identify
a page. All mainstream processors today support superpages [43]: Alpha, 1A-32, 1A-64,
MIPS, PA-RISC, PowerPC and UltraSPARC.



2.2 Issues and trade-offs

The task of managing superpages can be conceptually broken down into a series of steps,
each governed by a different set of trade-offs. The forthcoming analysis of these issues is
independent of any particular processor architecture or operating system.

We assume that the virtual address space of each process consists of a set of virtual
memory objects. A memory object occupies a contiguous region of the virtual address
space and contains application-specific data. Examples of memory objects include memory
mapped files, and the code, data, stack and heap segments of processes. Physical memory

for these objects is allocated as and when their pages are first accessed.

2.2.1 Allocation

When a page in a memory object is first touched by the application, the OS allocates a
physical page frame, and maps it into the application’s address space. In principle, any
available page frame can be used for this purpose, just as in a system without superpage
support. However, should the OS later wish to create a superpage for the object, already
allocated pages may require relocation (i.e., physical copying) to satisfy the contiguity and
alignment constraints of superpages. The copying costs associated with this relocation-
based allocation approach can be difficult to recover, especially in a system under load.
An alternative is reservation-based allocation. Here, the OS tries to allocate a page
frame that is part of an available, contiguous range of page frames equal in size and align-
ment to the maximal desired superpage size, and tentatively reserves the entire set for use
by the process. Subsequently, when the process first touches other pages that fall within
the bounds of a reservation, the corresponding base page frames are allocated and mapped.
Should the OS later decide to create a superpage for this object, the allocated page frames
already satisfy the contiguity and alignment constraints. Figure 2.2 depicts this approach.
Reservation-based allocation requires the a priori choice of a superpage size to reserve,
without foreknowledge of memory accesses to neighbouring pages. The OS may optimisti-

cally choose the desired superpage size as the largest supported size that is smaller or equal



to the size of the memory object, but it may also bias this decision on the availability of
contiguous physical memory. The OS must trade off the performance gains of using a large
superpage against the option of retaining the contiguous region for later, possibly more

critical use.

Object
mapping /mapped pages
Virtual \
address < |j ] >
space y i
————___superpage
- == alignment
Physical { : boundary
address O]
space : X
allocated . ynused - reservation
page frame page frame

Figure 2.2 : Reservation-based allocation.

2.2.2 Fragmentation control

When contiguous memory is plentiful, the OS succeeds in using superpages of the desired
sizes, and achieves the maximum performance due to superpages. In practice, reservation-
based allocation, use of different page sizes and file cache accesses have the combined
effect of rapidly fragmenting available physical memory. To sustain the benefits of super-
pages, the OS may proactively release contiguous chunks of inactive memory from previ-
ous allocations, at the possible expense of having to perform disk I/O later. The OS may
also preempt an existing, partially used reservation, given the possibility that the reserva-
tion may never become a superpage. The OS must therefore treat contiguity as a potentially
contended resource, and trade off the impact of various contiguity restoration techniques

against the benefits of using large superpages.



10

2.2.3 Promotion

Once a certain number of base pages within a potential superpage have been allocated,
assuming that the set of pages satisfy the aforementioned constraints on size, contiguity,
alignment and protection, the OS may decide to promote them into a superpage. This
usually involves updating the page table entries for each of the constituent base pages of
the superpage to reflect the new superpage size. Once the superpage has been created, a
single TLB entry storing the translation for any address within the superpage suffices to
map the entire superpage.

Promotion can also be performed incrementally. When a certain number of base pages
have been allocated in a contiguous, aligned subset of a reservation, the OS may decide
to promote the subset into a small superpage. These superpages may be progressively
promoted to larger superpages, up to the size of the original reservation.

In choosing when to promote a partially allocated reservation, the OS must trade off the
benefits of early promotion in terms of reduced TLB misses against the increased memory

consumption that results if not all constituent pages of the superpage are used.

2.2.4 Demotion

Superpage demotion is the process of marking page table entries to reduce the size of a
superpage, either to base pages or to smaller superpages. Demotion is appropriate when a
process is no longer actively using all portions of a superpage, and memory pressure calls
for the eviction of the unused base pages. One problem is that the hardware only maintains
a single reference bit for the superpage, making it difficult for the OS to efficiently detect

which portions of a superpage are actively used.

2.25 Eviction

Eviction of superpages is similar to the eviction of base pages. When memory pressure

demands it, an inactive superpage may be evicted from physical memory, causing all of its



11

constituent base page frames to become available. When an evicted page is later faulted in,
memory is allocated and a superpage may be created in the same way as described earlier.

One complication arises when a dirty superpage is paged out. Since the hardware main-
tains only a single dirty bit, the superpage may have to be flushed out in its entirety, even
though some of its constituent base pages may be clean.

Managing superpages thus involves a complex set of trade-offs; other researchers have
also alluded to some of these issues [49, 60]. The next chapter describes previous ap-
proaches to the problem, and Chapter 4 describes how our design effectively tackles all

these issues.



12

Chapter 3

Related wor k

There is a large body of literature on virtual memory. Smith’s early bibliography on the
topic comprises 333 publications [81]. However, the first works that study TLB perfor-
mance appear in the early 1980’s, and conclude that the TLB overhead for typical applica-
tions of that time is acceptable at 4 to 5% [16, 73, 98]. Only in the 1990’s, TLB overhead
starts to be a concern for researchers who observe that it can now reach 10% [72, 93]. More
recent studies show that the TLB nowadays plays a critical role in performance [45, 62].

This chapter describes approaches that have been proposed to reduce the TLB overhead.
The spectrum goes from hardware approaches that are fully transparent at the architecture
level to 100% software mechanisms. Some techniques aim at reducing the number of TLB
misses, others try to reduce the overhead of each miss, others attempt to reduce or hide the
TLB access time, yet others propose to dispense with the TLB altogether. Superpage-based
approaches belong to the first category and are described last.

Two other techniques that are related to superpages, namely page coloring and memory

compaction, are also discussed.

3.1 Reducing TLB access time

Many modern processors have two-level TLBs, but their use goes as far back as 1984 with
the MicroVVAX [23]. The first level TLB or micro-TLB is faster thanks to a small number of
entries, and is usually invisible outside the processor. The Itanium processor, for instance,
has a 32-entry first-level TLB and a 96-entry second-level TLB for data.

Taylor et al. describe the MIPS R6000’s TLB slice [91], which is a very small (four

lines wide) and fast first-level TLB. The TLB slice is a direct-mapped translation cache



13

that maps a few of the least significant bits of the virtual page number to the few bits in the
physical address that are required beyond the page offset to address a physically mapped
cache.

The output of the TLB slice is concatenated with the page offset to form the physi-
cal index that is fed to a virtually tagged cache. Thus, the R6000 has a very uncommon
physically-indexed and virtually-tagged cache. The small number of entries in the TLB
slice — sixteen — is made effective by interposing a primary virtually-mapped cache be-
tween the processor and the TLB slice; hits in the primary cache do not require an address
translation. A full-width translation is required on a secondary cache miss, which compli-
cates the cache miss sequence. The R6000 reserves a portion of the secondary cache to be
used as a second level TLB with 4096 full entries.

Virtually-addressed and physically-tagged first-level caches are used in many architec-
tures to mask the TLB access time by initiating the cache access in parallel with the address
translation [94]. Virtual address caches that are larger than the page size times the cache
associativity introduce consistency issues due to synonyms [82]: when a page is mapped
multiple times at virtual addresses that do not map to the same cache lines, multiple copies
of the same data will be present at different locations in the cache. For this reason, unless
complex logic is added to the hardware [30, 96], the OS must be involved in the manage-
ment of virtual address caches by either taking corrective [40] or preventive actions [14, 53]

Another way to hide the TLB latency is by predicting the addresses of memory accesses
to initiate a speculative cache load earlier in the processor pipeline [2].

Chiueh and Katz propose a mechanism to achieve with physically-addressed caches
the benefits of parallel address translation that virtual caches provide [15]. The idea is
to restrict the virtual-to-physical mappings in a way such that all the least significant bits
that are required for a cache access are identical in corresponding virtual and physical
addresses. This approach is similar to superpages in that the OS must collaborate to allocate
frames according to hardware-imposed restrictions. An important difference is that while

the restrictions are weaker than for superpages, the system will not operate correctly if



14

ignored. Chiueh and Katz’s work focuses on evaluating the potential performance gains
rather than on operating systems issues.

In the same paper, Chiueh and Katz propose a transparent mechanism that bypasses the
TLB access for all but the first of a sequence of accesses to the same page. This approach,
called lazy address translation is only applicable to architectures in which memory accesses
are always expressed by means of a base register and an offset; the processor keeps a hint

associated with each base register for the last translation.

Discussion

Reducing TLB access time and using superpages are complementary techniques, since they
aim at reducing different components of the total TLB overhead. They target, however, dis-
joint sets of applications. Applications with working sets larger than the TLB coverage are
unlikely to benefit from smaller TLB access times, since the largest performance penalty is

due to TLB misses.

3.2 Reducing cost of TLB misses

Huck and Hays present the hashed page table, a translation table that combines the flexi-
bility of software TLB miss handling with the efficiency of hardware handling [37]. The
hashed page table is essentially a cache of page table entries that is maintained by the OS
and is accessed by a hardware state machine on a TLB miss. Only if the required en-
try is not present in the cache, the miss handling is transfered to the OS. This approach has
been adopted by many architectures, including PA-RISC, Sparc64, Enhanced PowerPC and
IA-64.

Bala et al. suggest that a cache of page table entries is also effective in reducing the
TLB miss penalty on architectures with software-only miss handling. They also apply
software prefetching techniques for TLB entries in order to reduce the number of kernel

TLB misses [4].



15
Discussion

While these techniques have the same high-level goal as superpages, which is to reduce the
TLB miss overhead, they can be considered complementary. In fact, architectures that use
hash page tables also provide superpage support.

When applied simultaneously, there will be fewer TLB misses due to superpages, and
each miss will cost less if the required entry is in the page table cache. Note, however, that
the applications that benefit from a page table cache are a superset of those that benefit from
superpages: applications with non-uniform memory mappings may not create superpages

but can still take advantage of a page-table cache.

3.3 In-cache address translation: the no-TLB school

Virtual caches that are also virtually tagged only require to perform address translations
on a cache miss or flush. However, permission checking still needs to be done upon every
memory access. Wood et al. propose to move all the functionality of the TLB to the
cache [98]. In particular, this approach requires reference, dirty and protection bits to be
added to each cache line.

Jacob and Mudge present a similar no-TLB approach [42], but they go one step further

by handling address translations in software; thus, every cache miss traps to the OS.

Discussion

Naturally, in an architecture with no TLB there will be no TLB miss overhead. Conse-
quently, the techniques presented in this subsection are mutually exclusive with superpages.

While eliminating the TLB is attractive, in-cache address translation is not free from
disadvantages. Not only does it make caches more complex and cache misses more expen-

sive, but it also has the aforementioned drawbacks of virtual caches.



16

3.4 Reducing the number of TLB misses with superpages

Many operating systems use superpages for kernel segments and frame buffers. This sec-
tion discusses existing superpage solutions for application memory, which is the focus of
this thesis. These approaches can be classified by how they manage the contiguity required
for superpages: reservation-based schemes try to preserve contiguity; relocation-based ap-
proaches create contiguity; and hardware-based mechanisms reduce or eliminate the conti-

guity requirement for superpages.

341 Reservations

Reservation-based schemes make superpage-aware allocation decisions at page-fault time.
On each allocation, they use some policy to decide the preferred size of the allocation and
attempt to find a contiguous region of free physical memory of that size.

Talluri and Hill propose a reservation-based scheme, in which a region is reserved
at page-fault time and promoted when the number of frames in use reaches a promotion
threshold. Under memory pressure, reservations can be preempted to regain free space [87].

The main goal of Talluri and Hill’s design is to provide a simple, best-effort mechanism
tailored to the use of partial-subblock TLBs, which are described in Section 3.4.3. Their
design considers only one superpage size, and the effects of external memory fragmentation
is not taken into account in this study.

They use this mechanism to evaluate different TLB organizations, and for a conven-
tional superpage TLB that supports 64KB superpages they report TLB miss reductions
from 0.7% to 99.9% on ten benchmarks, mostly from the SPEC 92 suite. The evaluation
methodology is based on a trap-based simulator (an execution-driven simulation that only
calls the simulator on TLB misses) that does not account for kernel references.

In contrast, superpages in both the HP-UX [85] and IRIX [28] operating systems are
eagerly created at page-fault time. When a page is faulted in, the system may allocate
several contiguous frames to fault in surrounding pages and immediately promote them

into a superpage, regardless of whether the surrounding pages are likely to be accessed.



17

Although pages are never actually reserved, this eager promotion mechanism is equivalent
to a reservation-based approach with a promotion threshold of one frame.

In IRIX and HP-UX, the preferred superpage size is based on memory availability at
allocation time, and on a user-specified per-segment page size hint. This hint is associ-
ated with an application binary’s text and data segments; IR1X also allows the hint to be
specified at runtime.

The main drawback of IRIX and HP-UX’s eager promotion scheme with page size hints
is that it is not transparent. Although it is not necessary to modify or recompile applica-
tions, it requires experimentation to determine the optimum superpage size for the various
segments of a given application. A suboptimal setting will result in lower performance, due
to either insufficient TLB coverage if superpages are too small, or unnecessary paging and
page population costs if superpages are too large.

Subramanian et al. use seven benchmarks to evaluate HP-UX’s support for super-
pages [85]. Three of the test cases are synthetic benchmarks that simulate the memory
reference behaviour of real applications, but the computation performed by the applica-
tions is not taken into account, making the speedup around 2.5 unrealistic for those specific
cases. For the other applications, mostly from the the SPEC 95 integer benchmark set, they
report improvements from 17% to 34%. For each benchmark they set the page size hint
to one of the seven supported page sizes that range from 4KB to 16MB; the best page size
(the size that maximizes performance without unduly increasing memory usage) is found
to vary between 16KB and 4MB, depending on the benchmark.

Similarly, Ganapathy and Schimmel use three integer applications from SPEC 95 and
two from the NAS parallel suite to evaluate IRIX’s support for superpages [28]. EXx-
perimenting with page size hints of 16KB, 64KB, 256KB and 1MB, they obtain perfor-
mance improvements in the range 10-20% and also show that the best size is application-

dependent.



18

3.4.2 Pagereocation

Relocation-based schemes create superpages by physically copying allocated page frames
to contiguous regions when they determine that superpages are likely to be beneficial.
Approaches based on relocation can be entirely and transparently implemented in the
hardware-dependent layer of the operating system, but then they need to relocate most
of the allocated base pages of a superpage prior to promotion, even when there are plenty
of contiguous available regions.

Romer et al. propose a competitive algorithm that uses on-line cost-benefit analysis to
determine when the benefits of superpages outweigh the overhead of superpage promotion
through relocation [71]. Their design requires a software-managed TLB, since it associates
with each potential superpage a counter that must be updated by the TLB miss handler.

Using trace-driven simulation and a set of ten benchmarks mostly from the SPEC 92
suite, Romer et al. report results that go from a 0.8% of performance degradation to a
92% of performance improvement when all power of two page sizes from 4KB to 8MB are
supported. Nevertheless, their simulations do not take into account the cache pollution that
relocation produces, and they use a copying cost that is significantly smaller than that in
real systems [24].

In the absence of memory contention, this approach has strictly lower performance
than a reservation-based approach, because, in addition to the relocation costs, (1) there
are more TLB misses, since relocation is performed as a reaction to an excessive number
of TLB misses, and (2) TLB misses are more expensive — by a factor of four or more,
according to Romer et al. — due to a more complex TLB miss handler. On the other hand,

a relocation approach is more robust against fragmentation.

3.4.3 Hardware support

The contiguity requirement for superpages can be reduced or eliminated by means of addi-
tional hardware support.

Talluri and Hill study different TLB organizations. They advocate partial-subblock



19

TLBs, which essentially contain superpage TLB entries that allow “holes” for missing
base pages. They claim that with this approach most of the benefits from superpages can
be obtained with minimal modifications to the operating system [87]. By means of trap-
based simulations they obtain TLB miss reductions from 3.7% to 99.8% on 10 benchmarks
mostly from the SPEC 92 suite, with a partial-subblock TLB that can map 4KB base pages
and 64KB superpages with holes.

Partial-subblock TLBs yield only moderately larger TLB coverage than the base sys-
tem, and it is not clear how to extend them to multiple superpage sizes.

Fang et al. describe a hardware-based mechanism that completely eliminates the conti-
guity requirement of superpages. They introduce an additional level of address translation
in the memory controller, so that the operating system can promote non-adjacent physi-
cal pages into a superpage. This greatly simplifies the task of the operating system for
supporting superpages [24].

Using execution-driven simulations, for a 128-entry TLB Fang et al. report performance
degradation around 5% in two SPEC 95 benchmarks, and 2% to 101% improvements in
other six benchmarks. They compare their approach to Romer et al.’s relocation mech-
anism, for which they obtained slowdowns of up to 17% in five of the benchmarks, and
improvements ranging from 1% to 65% in the other three.

To the best of our knowledge, neither partial-subblock TLBs nor address-remapping

memory controllers are supported on commercial, general-purpose machines.

3.4.4 Discussion

Our approach generalizes Talluri and Hill’s reservation mechanism to multiple superpage
sizes. To regain contiguity on fragmented physical memory without relocating pages, it bi-
ases the page replacement policy to select those pages that contribute the most to contiguity,
and uses spare CPU cycles to compact memory. It also tackles the issues of demotion and
eviction (described in Section 2.2) not addressed by previous work, and does not require

special hardware support.



20

3.5 Page coloring

A technique that has nothing to do with TLBs but is related to superpages is page color-
ing [47, 56].

In physically-addressed caches, pages that have contiguous virtual addresses do not
necessarily map to consecutive location in the cache. Since virtually contiguous pages are
likely to be accessed together, it is desirable to prevent cache conflicts among them. By
carefully selecting among free frames when mapping a page, the OS can prevent these
conflicts. This technique is usually implemented by keeping the free frames, according
to the least significant bits of their physical addresses, in bins of different colors. On a
page allocation, a frame of the proper color is picked, depending on the color of the virtual
neighbors of the new page.

Bershad et al. present performance-oriented page coloring schemes in which they dy-
namically relocate pages when too many cache misses are observed, both with special

hardware support [7] and on standard hardware [70].

Discussion

In a way, superpages imply a very restricted form of page coloring, in which the color
bins have cardinality one when they are not empty. Nevertheless, although page coloring

generally improves performance, the main motivation is to reduce run time variance.

3.6 Memory compaction

Early systems that implemented virtual memory using a pure segmentation approach were
exposed to external fragmentation [19]. Memory compaction is often cited — especially in
textbooks [78, 84, 90] — as a mechanism to fight this problem, but very rarely applied in
practice.

Haddon and Waite describe what seems to be the first memory compactor in history: a

simple algorithm used on the English Electric KDF 9 computer to fully compact memory



21

when the allocator failed due to external fragmentation [31]. They assert that the program
“takes 2.87 seconds to compact a 10000-word store in the worst case”.

The designers of the Burroughs D-825 system [95] had planned to use compaction
but later dropped the plan, somewhat surprised by the good performance of their best-
fit allocation algorithm [77]. Knuth later found through simulations that when a first-fit
allocation algorithm is unable to fulfill a request due to external fragmentation, memory is
close to full utilization anyway [51].

Balkovich et al. develop a probabilistic model to determine the conditions under which
it pays off to perform memory compaction (or repacking, as they call it) [5].

Since modern systems use paging or paged segmentation to implement virtual mem-
ory, memory compaction in operating systems has not been considered recently until the
introduction of superpages. Note that paged virtual memory systems are not entirely free
from external fragmentation, since some device drivers and kernel loadable modules still
require to allocate contiguous physical memory chunks larger than a page. However, this
allocations are usually performed during start-up, when fragmentation is low.

Superpages reintroduce the problem of external fragmentation in paged virtual mem-
ory. The scenario is different from the one in Knuth’s simulations in that an allocated chunk
is not necessarily deallocated at once: any subregion of the chunk can be deallocated by
means of eviction or unmapping. This condition makes fragmentation a more serious prob-
lem, since the allocator can fail when memory is far from full utilization [62].

In the context of superpages, there is only one paper to date that proposes and describes
amemory compaction mechanism, which is in use in the IRIX operating system [28]. Com-
paction is performed by a background task, the coalescing daemon, which tries to keep
some unspecified contiguity metric above a watermark. To achieve its goal, the coalescing
daemon scans superpage-sized memory chunks and vacates them if the number of occupied
pages in the chunk is below a threshold. Thresholds for each size were “chosen by exper-
imentation”. Apparently, the coalescing daemon is not aware of existing superpages, and

thus it might break them while migrating its constituent pages. If after several passes the



22

daemon has not been able to recover enough contiguity, then it becomes more aggressive
by ignoring the thresholds and always vacating the scanned chunk. Neither the effective-
ness of the coalescing daemon nor the impact it might have in foreground processes are

reported in the paper.

Discussion

In this thesis we propose and evaluate a novel superpage-oriented memory compaction
mechanism. It is different from IRIX’s coalescing daemon in that (1) it is meant to run
in the idle loop, thus minimizing the impact on other processes; (2) it is superpage- and
reservation- aware in the sense that it relocates, if necessary, existing superpages and reser-
vations as a block, without breaking them; and (3) it performs a cost/benefit analysis in

order to maximize the profit of every cycle spent in compaction.



23

Chapter 4

Design

Our design adopts the reservation-based superpage management paradigm introduced
in [87]. It extends the basic design along several dimensions, such as support for multi-
ple superpage sizes, scalability to very large superpages, demotion of sparsely referenced
superpages, effective preservation of contiguity without the need for compaction, and effi-
cient disk 1/0O for partially modified superpages. As shown in Chapter 5, this combination
of techniques is general enough to work efficiently for a range of realistic workloads, and
thus suitable for deployment in modern operating systems.

A high-level sketch of the design contains the following components. Available physi-
cal memory is classified into contiguous regions of different sizes, and is managed using a
buddy allocator [65]. A multi-list reservation scheme is used to track partially used memory
reservations, and to help in choosing reservations for preemption. A population map keeps
track of memory allocations in each memory object. The system uses these data structures
to implement allocation, preemption, promotion and demotion policies. Finally, it controls
external memory fragmentation by performing page replacements in a contiguity-aware

manner. The following sections elaborate on these concepts.

4.1 Reservation-based allocation

Most operating systems allocate physical memory upon application demand. When a vir-
tual memory page is accessed by a program and no mapping exists in the page table, the
OS’s page fault handler is invoked. The handler attempts to locate the associated page in
main memory; if it is not resident, an available page frame is allocated and the contents

are either zero-filled or fetched from the paging device. Finally, the appropriate mapping



24

is entered into the page table.

Instead of allocating physical memory one frame at a time, our system determines a
preferred superpage size for the region encompassing the base page whose access caused
the page fault. The choice of a size is made according to an opportunistic policy described
in Section 4.2. At page-fault time, the system obtains from the buddy allocator a set of
contiguous page frames corresponding to the chosen superpage size. The frame with the
same address alignment as the faulted page is used to fault in the page, and a mapping is
entered into the page table for this page only. The entire set of frames is tentatively reserved
for potential future use as a superpage, and added to a reservation list. In the event of a page
fault on a page for which a frame has already been reserved, a mapping is entered into the

page table for the base page.

4.2 An opportunistic policy for the preferred superpage size

This section describes the policy used to choose the desired superpage size during allo-
cation. Since this decision is usually made early in the life of a process, when it is hard
to predict its future behaviour, our policy looks only at attributes of the memory object to
which the faulting page belongs. If the chosen size turns out to be too large, then the deci-
sion will be later overridden by preempting the initial reservation. However, if the chosen
size is too small, then the decision cannot be reverted without relocating pages. For that
reason, we use an opportunistic policy that tends to choose the maximum superpage size
that can be effectively used in an object.

For memory objects that are fixed in size, such as code segments and memory-mapped
files, the desired reservation size is the largest, aligned superpage that contains the faulting
page, does not overlap with existing reservations or allocated pages, and does not reach
beyond the end of the object.

Dynamically-sized memory objects such as stacks and heaps can grow one page at a
time. Under the policy for fixed size objects, they would not be able to use superpages,

because each time the policy would set the preferred size to one base page. Thus a slightly



25

different policy is required. As before, the desired size is the largest, aligned superpage that
contains the faulting page and does not overlap with existing reservations or allocations.
However, the restriction that the reservation must not reach beyond the end of the object is
dropped to allow for growth. To avoid waste of contiguity for small objects that may never
grow large, the size of this superpage is limited to the current size of the object. This policy
thus uses large reservations only for objects that have already reached a sufficiently large
size.

Note that, in the absence of memory fragmentation, this policy provides optimal TLB
coverage for fixed-sized objects. For dynamically-sized objects, coverage is not optimal
because the policy starts assigning small superpages to objects that eventually grow to a
large size: an object of size N that could be covered by only one superpage will usually
require O(log N) superpages.

If there are no contiguous extents of memory of the preferred size, then the reservation
iIs made as large as possible. The consequence of this policy is that, when there is not
enough contiguity to satisfy all the requests for the preferred size, then the largest super-
pages are likely to be created in the regions that are first touched by a process. This is not
necessarily the place where they provide the most benefit, but the system lacks the infor-
mation required to optimize the assignment of limited contiguity to regions of the address
space. The system also does not try to reserve contiguity for future processes that may

obtain larger benefits.

4.3 Preempting reservations

When free physical memory becomes scarce or excessively fragmented, the system can
preempt frames that are reserved but not yet used. When an allocation is requested and no
extent of frames with the desired size is available, the system has to choose between (1)
refusing the allocation and thus reserving a smaller extent than desired, or (2) preempting
an existing reservation that has enough unallocated frames to yield an extent of the desired

size.



26

Our policy is that, whenever possible, the system preempts existing reservations rather
than refusing an allocation of the desired size. When more than one reservation can yield an
extent of the desired size, the reservation is preempted whose most recent page allocation
occurred least recently, among all candidate reservations. This policy is based on the fol-
lowing key observation: useful reservations are often populated quickly, and reservations
that have not experienced any recent allocations are less likely to be fully allocated in the
near future.

We observed that this behaviour is common by examining memory traces of typical
applications. Figures 4.1 to 4.4 show the memory traces of four programs, FFTW, GNU
linker, SP and bzip2, where the first touch (i.e., allocation) to any given page is marked with
a larger and darker dot than subsequent references. Refer to Section 5.2 for a description
of the programs.

To make the amount of data produced by the tracer manageable, we took a statistical
sample of the references, except for the first touch to each page. Also, we run FFTW, SP
and bzip2 with smaller data sets than what we used for the evaluation in Chapter 5, and
display only a small portion of the execution after the last first touch.

For FFTW in Figure 4.1, practically all of the memory is initialized in a sequential
manner before the computation starts. The GNU linker in Figure 4.2 also allocates pages
mostly in sequential order, but the allocation rate diminishes with time. SP and bzip2 in
Figures 4.3 and 4.4 sequentially and quickly allocate about half of the memory; while the
other half is not allocated sequentially, it is observed to be allocated quickly and with no
“holes”. This kind of behaviour supports our preemption policy: if a reservation has had
any of its frames populated recently, then it is not a good candidate for preemption since it

is likely that the other not-yet-populated frames get populated soon.

4.4 Fragmentation control

Allocating physical memory in contiguous extents of multiple sizes leads to fragmentation

of main memory. Over time, extents of large sizes may become increasingly scarce, thus



27

T
le+07 1.5e+07 2e+07 2.5e+07

5e+06

16000
14000 ¥

Figure 4.1 : Memory trace for FFTW. The vertical axis is the page id (for the data segment only), and
the horizontal axis grows with time roughly at one tick each time that a different page is referenced.
The first touch to any given page is marked with a larger and darker dot than subsequent references.



1ayull NNS 8yl oy aden Alows\ : Z'{7 ainbi4

2500

2000

1500

1000

500

iE
i§

KKK K K KAKE KKK K KON

2e+06

3e+06

4e+06

6e+06

8¢



dS 40} a2el] AIoWS : £ ainbi4

220

200

180

160

140

120

100

40

I I I I I I I I I
" e = - e
PR — - —
e
PR — — —
x»*‘*— — — —
- — — — -
P - e e
> P —
P e
# - _, — - _
X — - — -

P o — e o

PR e e
P P =

X — — S -
PR - - P—— -

> —_ — [
B
] ] ] ] ] ] ] ] ]

0

50000

100000

150000 200000 250000 300000 350000 400000 450000 500000

6¢



2500

2000

1500

Figure 4.4

1000

: Memory trace for bzip2.

500 |

le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

5e+06

30



31

preventing the effective use of superpages.

To control fragmentation, our buddy allocator performs coalescing of available memory
regions whenever possible. However, coalescing by itself is only effective if the system
periodically reaches a state where all or most of main memory is available. To control
fragmentation under persistent memory pressure, the page replacement daemon is modified
to perform contiguity-aware page replacement. Section 4.10.1 discusses this in greater

detail.

4.5 Incremental promotions

For promotions we also use an opportunistic policy that creates a superpage as soon as any
superpage-sized and aligned extent within a reservation gets fully populated. Promotion,
therefore, is incremental: if, for instance, pages of a memory object are faulted in sequen-
tially, a promotion occurs to the smallest superpage size as soon as the population count
corresponds to that size. Then, when the population count reaches the next larger superpage
size, another promotion occurs to the next size, and so on.

It is possible to promote to the next size when the population count reaches a certain
fraction of that size. However, before performing the promotion the system needs to popu-
late the entire region, which could artificially inflate the memory footprint of applications.
We promote only regions that are fully populated by the application, since we observe that
most applications populate their address space densely and relatively early in their execu-

tion.

4.6 Speculative demotions

Demotion occurs as a side-effect of page replacement. When the page daemon selects a
base page for eviction that is part of a superpage, the eviction causes a demotion of that
superpage. This demotion is also incremental, since it is not necessary to demote a large

superpage all the way to base pages just because one of its constituent base pages is evicted.



32

Instead, the superpage is first demoted to the next smaller superpage size, then the process
is applied recursively for the smaller superpage that encompasses the victim page, and so
on. Demotion is also necessary whenever the protection attributes are changed on part of a
superpage. This is required because the hardware provides only a single set of protection
bits for each superpage.

The system may also periodically demote active superpages speculatively in order to
determine if the superpage is still being actively used in its entirety. Recall that the hardware
only provides a single reference bit with each superpage. Therefore, the operating system
has no way to distinguish a superpage in which all the constituent base pages are being
accessed, from one in which only a subset of the base pages are. In the latter case, it would
be desirable to demote the superpage under memory pressure, such that the unused base
pages can be discovered and evicted.

To address this problem, when the page daemon resets the reference bit of a superpage’s
base page, and if there is memory pressure, then it recursively demotes the superpage that
contains the chosen base page, with a certain probability p. In our current implementation,
p is 1. Incremental repromotions occur when all the base pages of a demoted superpages

are being referenced.

4.7 Paging out dirty superpages

When a dirty superpage needs to be written to disk, the operating system does not possess
dirty bit information for individual base pages. It must therefore consider all the constituent
base pages dirty, and write out the superpage in its entirety, even though only a few of its
base pages may have actually been modified. For large, partially dirty superpages, the
performance degradation due to this superfluous I/O can considerably exceed any benefits
from superpages.

To prevent this problem, we demote clean superpages whenever a process attempts
to write into them, and repromote later if all the base pages are dirtied. This choice is

evaluated in Section 5.7.



33

Inferring dirty base pages using hash digests

As an alternative, we considered a technique that retains the benefits of superpages even
when they are partially dirty, while avoiding superfluous 1/0. When a clean memory page
is read from disk, a cryptographic hash digest of its contents is computed and recorded.
If a partially dirty set of base pages is promoted to a superpage, or if a clean superpage
becomes dirty, then all its constituent base pages are considered dirty. However, when the
page is flushed out, the hash of each base page is recomputed and compared to determine
if it was actually modified and must be written to disk.

This technique is considered safe because a 160-bit SHA-1 hash has a collision prob-
ability of about one in 289 [25], which is much smaller than the probability of a hardware
failure. This argument, however, sparked some debate [36]. In addition, preliminary mi-
crobenchmarks using SHA-1 reveal significant overhead, up to 15%, in disk-intensive ap-
plications. The pathological case of a large sequential read when the CPU is saturated
incurs a worst-case degradation of 60%.

We did not explore this alternative any further, although we believe that these overheads
can be reduced using a variety of optimizations. The hash computation can be postponed
until there is a partially dirty superpage, so that fully-clean or fully-dirty superpages and
unpromoted base pages need not be hashed. In addition, the hashing cost can be eliminated
from the critical path by performing it entirely from the idle loop, since the CPU may

frequently be idle for disk-intensive workloads.

4.8 Multi-list reservation scheme

Reservation lists keep track of reserved page frame extents that are not fully populated.
There is one reservation list for each page size supported by the hardware, except for the
largest superpage size. Each reservation appears in the list corresponding to the size of the
largest free extent that can be obtained if the reservation is preempted. Because a reserva-

tion has at least one of its frames allocated, the largest extents it can yield if preempted are



34

one page size smaller than its own size. For instance, on an implementation for the Alpha
processor, which supports 4MB, 512KB, 64KB and 8KB pages, the 64KB reservation list
may contain reservations of size 512KB and 4MB.

Reservations in each list are kept sorted by the time of their most recent page frame
allocations. When the system decides to preempt a reservation of a given size, it chooses
the reservation at the head of the list for that size. This satisfies our policy of preempting
the extent whose most recent allocation occurred least recently among all reservations in
that list.

Preempting a chosen reservation occurs as follows. Rather than breaking the reservation
into base pages, it is broken into smaller extents. Unpopulated extents are transferred to the
buddy allocator and partially populated ones are reinserted into the appropriate lists. For
example, when preempting a 512KB reservation taken from the head of the 64KB list, the
reservation is broken into eight 64KB extents. The ones with no allocations are freed and
the ones that are partially populated are inserted at the head of the 8KB reservation list.
Fully populated extents are not reinserted into the reservation lists.

When the system needs a contiguous region of free memory, it can obtain it from the
buddy allocator or by preempting a reservation. The mechanism is best described with an
example. Still in the context of the Alpha CPU, suppose that an application faults in a given
page for which there is no reserved frame. Further assume that the preferred superpage size
for the faulting page is 64KB. Then the system first asks the buddy allocator for a 64KB
extent. If that fails, it preempts the first reservation in the 64KB reservation list, which
should yield at least one 64KB extent. If the 64KB list is empty, the system will try the
512KB list. If that list is also empty, then the system has to resort to base pages: the buddy

allocator is tried first, and then the 8KB reservation list as the last resort.

4.9 Population map

Population maps keep track of allocated base pages within each memory object. They serve

four distinct purposes: (1) on each page fault, they enable the OS to map the virtual address



35

to a page frame that may already be reserved for this address; (2) while allocating contigu-
ous regions in physical address space, they enable the OS to detect and avoid overlapping
regions; (3) they assist in making page promotion decisions; and (4) while preempting a
reservation, they help in identifying unallocated regions.

A population map needs to support efficient lookups, since it is queried on every page
fault. We use a radix tree in which each level corresponds to a page size. The root corre-
sponds to the maximum superpage size supported by the hardware, each subsequent level
corresponds to the next smaller superpage size, and the leaves correspond to the base pages.
If the virtual pages represented by a node have a reserved extent of frames, then the node
has a pointer to the reservation and the reservation has a back pointer to the node.

Each non-leaf node keeps a count of the number of superpage-sized virtual regions at
the next lower level that have a population of at least one (the sormepop counter), and that
are fully populated (the f ul | pop counter), respectively. This count ranges from 0 through
R, where R is the ratio between consecutive superpage sizes (8 on the Alpha processor).
The tree is lazily updated as the object’s pages are populated. The absence of a child node
is equivalent to having a child with both counters zero. Since counters refer to superpage-
sized regions, upward propagation of the counters occurs only when sonepop transitions
between 0 and 1, or when f ul | pop transitions between R — 1 and R. Figure 4.5 shows
one such tree.

A hash table is used to locate population maps. For each population map, there is an
entry associating a memory_object, page_index tuple with the map, where page_index is the
offset of the starting page of the map within the object. The population map is used as

follows.

Reserved frame lookup: On a page fault, the virtual address of the faulting page is
rounded down to a multiple of the largest page size, converted to the corresponding mem-
ory_object, page_index tuple, and hashed to determine the root of the population map. From

the root, the tree is traversed to locate the reserved page frame, if there is one.



36

(somepop, fuIIpop)/ EREE 1,0

N\

3,1

1,0 2,1 4.4
[\

[TH] |||||||\||||||,ﬁIIIIIIIIFI\III

Figure 4.5 : A population map. At the base page level, the actual allocation of pages is shown.

Overlap avoidance: If the procedure above yields no reserved frame, then we try to
make a reservation. The maximum size that does not overlap with existing reservations or
allocations is given by the first node in the path from the root whose somepop counter is

Z€ero.

Promotion decisions. After a page fault is serviced, a promotion is attempted at the
first node on the path from the root to the faulting page that is fully populated and has an
associated reservation. The promotion attempt succeeds only if the faulting process has the

pages mapped with uniform protection attributes and dirty bits.

Preemption assistance: When a reservation is preempted it is broken into smaller chunks
that need to be freed or reinserted in the reservation lists, depending on their allocation
status, as described in Section 4.8. The allocation status corresponds to the population

counts in the superpage map node to which the reservation refers.



37

4.10 Implementation notes

This section describes some implementation specific issues of our design. While the dis-

cussion of our solution is necessarily OS-specific, the issues are general.

4.10.1 Contiguity-aware page daemon

FreeBSD’s page daemon keeps three lists of pages, each in approximate LRU (A-LRU)
order: active, inactive and cache. Pages in the cache list are clean and unmapped and
can thus be easily freed under memory pressure. Inactive pages are those that are mapped
by some process, but have not been referenced for a long time. Active pages are those
that have been accessed recently, but may or may not have their reference bit set. Under
memory pressure, the daemon moves clean inactive pages to the cache, pages out dirty
inactive pages, and also deactivates some unreferenced pages from the active list. We made

the following changes to factor contiguity restoration into the page replacement policy.

1. We consider cache pages as available for reservations. The buddy allocator keeps
them coalesced with the free pages, increasing the available contiguity of the sys-
tem. These coalesced regions are placed at the tail of their respective lists, so that

subsequent allocations tend to respect the A-LRU order.

The contents of a cache page are retained as long as possible, whether it is in a buddy
list or in a reservation. If a cache page is referenced, then it is removed from the
buddy list or the reservation; in the latter case, the reservation is preempted. The

cache page is reactivated and its contents are reused.

2. The page daemon is activated not only on memory pressure, but also when available
contiguity falls low. In our implementation, the criterion for low contiguity is the
failure to allocate a contiguous region of the preferred size. The goal of the daemon
is to restore the contiguity that would have been necessary to service the requests

that failed since the last time the daemon was woken. The daemon then traverses the



38

inactive list and moves to the cache only those pages that contribute to this goal. If it

reaches the end of the list before fulfilling its goal, then it goes to sleep again.

3. Since the chances of restoring contiguity are higher if there are more inactive pages
to choose from, all clean pages backed by a file are moved to the inactive list as
soon as the file is closed by all processes. This differs from the current behaviour of
FreeBSD, where a page does not change its status on file closing or process termina-
tion, and active pages from closed files may never be deactivated if there is no mem-
ory pressure. In terms of overall performance, our system thus finds it worthwhile to
favor the likelihood of recovering the contiguity from these file-backed pages, than

to keep them for a longer time for the chance that the file is accessed again.

Controlling fragmentation comes at a price. The more aggressively the system recovers
contiguity, the greater is the possibility and the extent of a performance penalty induced by
the modified page daemon, due to its deviation from A-LRU. Our modified page daemon
aims at balancing this trade-off. Moreover, by judiciously selecting pages for replacement,
it attempts to restore as much contiguity as possible by affecting as few pages as possible.

Section 5.5 demonstrates the benefits of this design.

4.10.2 Wired page clustering

Memory pages that are used by FreeBSD for its internal data structures are wired, that is,
marked as non-pageable since they cannot be evicted. At system boot time these pages
are clustered together in physical memory, but as the kernel allocates memory while other
processes are running, they tend to get scattered. Our system with 512MB of main memory
is found to rapidly reach a point where most 4MB chunks of physical memory contain at

least one wired page. At this point, contiguity for large pages becomes irrecoverable.



39

To avoid this fragmentation problem, we identify pages that are about to be wired for
the kernel’s internal use. We cluster them in pools of contiguous physical memory, so that

they do not fragment memory any more than necessary.

4.10.3 Multiple mappings

Two processes can map a file into different virtual addresses. If the addresses differ by, say,
one base page, then it is impossible to build superpages for that file in the page tables of
both processes. At most one of the processes can have alignment that matches the physical
address of the pages constituting the file; only this process is capable of using superpages.

Our solution to this problem leverages the fact that applications most often do not spec-
ify an address when mapping a file. This gives the kernel the flexibility to assign a virtual
address for the mapping in each process. Our system then chooses addresses that are com-
patible with superpage allocation. When mapping a file, the system uses a virtual address
that aligns to the largest superpage that is smaller than the size of the mapping, thus retain-

ing the ability to create superpages in each process.



40

Chapter 5

Evaluation

This chapter reports results of experiments that exercise the system on several classes of
benchmarks and real applications. We evaluate the best-case benefits of superpages in
situations when system memory is plentiful. Then, we demonstrate the effectiveness of
our design, by showing how these benefits are sustained despite different kinds of stress on
the system. Results show the efficiency of our design by measuring its overhead in several
pathological cases, and justify the design choices in the previous section using appropriate

measurements.

5.1 Platform

We implemented our design in the FreeBSD-4.3 kernel as a loadable module, along with
hooks in the operating system to call module functions at specific points. These points are
page faults, page allocation and deallocation, the page daemon, and at the physical layer of
the VM system (to demote when changing protections and to keep track of dirty/modified
bits of superpages). We were also able to seamlessly integrate this module into the kernel.
The implementation comprises of around 3500 lines of C code.

We used a Compag XP-1000 machine with the following characteristics:

e Alpha 21264 processor at 500 MHz;
e four page sizes: 8KB base pages, 64KB, 512KB and 4MB superpages;
o fully associative TLB with 128 entries for data and 128 for instructions;

e software page tables, with firmware-based TLB loader;



41

e 512MB RAM,;
e 64KB data and 64KB instruction L1 caches, virtually indexed and 2-way associative;

e 4MB unified, direct-mapped external L2 cache.

The Alpha firmware implements superpages by means of page table entry (PTE) repli-
cation. The page table stores an entry for every base page, whether or not it is part of
a superpage. Each PTE contains the translation information for a base page, along with a
page size field. In this PTE replication scheme, the promotion of a 4MB region involves the

setting of the page size field of each of the 512 page table entries that map the region [79].

5.2 Workloads

We used the following benchmarks and applications to evaluate our system.
CINT2000: SPEC CPU2000 integer benchmark suite [35].

CFP2000: SPEC CPU2000 floating-point benchmark suite [35].

Web: The thttpd web server [66] version 2.20c servicing 50000 requests selected from an
access log of the CS departmental web server at Rice University. The working set

size of this trace is 238MB, while its data set is 3.6GB.

Image: 90-degree rotation of a 800x600-pixel image using the popular open-source Im-

ageMagick tools [39], version 5.3.9.
Povray: Ray tracing of a simple image using povray 3.1g.
Linker: Link of the FreeBSD kernel with the GNU linker.

C4: An alpha-beta search solver for a 12-ply position of the connect-4 game, also known

as the fhourstones benchmark.



42

Tree: A synthetic benchmark that captures the behaviour of processes that use dynamic
allocation for a large number of small objects, leading to poor locality of reference.
The benchmark consists of four operations performed randomly on a 50000-node
red-black tree: 50% of the operations are lookups, 24% insertions, 24% deletions,
and 2% traversals. Nodes on the tree contain a pointer to a 128-byte record. On
insertions a new record is allocated and initialized; on lookups and traversals, half of

the record is read.

SP: The sequential version of a scalar pentadiagonal uncoupled equation system solver,
from the NAS Parallel Benchmark suite [3], version 2.3. The input size corresponds

to the “workstation class” in NAS’s nomenclature.

FFTW: The Fastest Fourier Transform in the West [27], version 3.0, with a 200x200x200

matrix as input.

Matrix: A non-blocked matrix transposition of a 1000x1000 matrix.

5.3 Best-case benefits due to superpages

This first set of experiments shows that several classes of real workloads yield large benefits
with superpages when free memory is plentiful and non-fragmented. Table 5.1 presents
these best-case speedups obtained when the benchmarks are given the contiguous memory
regions they need, so that every attempt to allocate regions of the preferred superpage size
(as defined in Section 4.2) succeeds, and reservations are never preempted.

The speedups are computed against the unmodified system using the mean elapsed
runtime of three runs after an initial warm-up run. For both the CINT2000 and CFP2000
entries in the table, the speedups reflect, respectively, the improvement in SPECint2000
and SPECfp2000 (defined by SPEC as the geometric mean of the normalized throughput
ratios).

The table also presents the superpage requirements of each of these applications (as a

snapshot measured at peak memory usage), and the percentage data TLB miss reduction



43

achieved with superpages. In most cases the data TLB misses are virtually eliminated by
superpages, as indicated by a miss reduction close to 100%. The contribution of instruc-
tion TLB misses to the total number of misses was found to be negligible in all of the
benchmarks.

Nearly all the workloads in the table display benefits due to superpages; some of these
are substantial. Out of our 35 benchmarks, 18 show improvements over 5% (speedup
of 1.05), and 10 show over 25%. The only application that slows down is mesa, which
degrades by a negligible fraction. Matrix, with a speedup of 7.5, is close to the maximum
potential benefits that can possibly be gained with superpages, because of its access pattern
that produces one TLB miss for every two memory accesses.

Several commonplace desktop applications like Linker (gnuld), gcc, and bzip2 observe
significant performance improvements. If sufficient contiguous memory is available, then
these applications stand to benefit from a superpage management system. In contrast, Web
gains little, because the system cannot create enough superpages in spite of its large 315MB
footprint. This is because Web accesses a large number of small files, and the system does
not attempt to build superpages that span multiple memory objects. Extrapolating from
the results, a system without such limitation (which is technically feasible, but likely at a
high cost in complexity) would bring Web’s speedup closer to a more attractive 15%, if it
achieved a miss reduction close to 100%.

Some applications create a significant number of large superpages. FFTW, in particular,
stands out with 60 superpages of size 4MB. The next section shows that FFTW makes good
use of large superpages, as there is almost no speedup if 4MB pages are not supported.

Mesa shows a small performance degradation of 1.5%. This was determined to be not
due to the overhead of our implementation, but because our allocator does not differentiate
zeroed-out pages from other free pages. When the OS allocates a page that needs to be sub-
sequently zeroed out, it requests the memory allocator to preferentially allocate an already
zeroed-out page if possible. Our implementation of the buddy allocator ignores this hint;

we estimated the cost of this omission by comparing base system performance with and



Super page usage TLB miss
Benchmark | 8KB | 64KB | 512KB | 4MB | reduction | Speedup
CINT 2000 1.112
gzip 204 22 21 42 80.00 1.007
vpr 253 29 27 9 99.96 1.383
gce 1209 1 17 35 70.79 1.013
mcf 206 7 10 46 99.97 1.676
crafty 147 13 2 99.33 1.036
parser 168 5 14 8 99.92 1.078
eon 297 6 0.00 1.000
perl 340 9 17 34 96.53 1.019
gap 267 8 7 47 99.49 1.017
vortex 280 4 15 17 99.75 1.112
bzip2 196 21 30 42 99.90 1.140
twolf 238 13 7 99.87 1.032
CFP2000 1.110
wupw 219 14 6 43 96.77 1.009
swim 226 16 11 46 98.97 1.034
mgrid 282 15 5 13 98.39 1.000
applu 1927 | 1647 90 5 93.53 1.020
mesa 246 13 8 1 99.14 0.985
gage 957 172 68 2 99.80 1.289
art 163 4 7 99.55 1.122
equake 236 2 19 9 97.56 1.015
facerec 376 8 13 2 98.65 1.062
ammp 237 7 21 7 98.53 1.080
lucas 314 4 36 31 99.90 1.280
fma3d 500 17 27 22 96.77 1.000
Sixtr 793 81 29 1 87.50 1.043
aps 333 5 5 47 99.98 1.827
Web 30623 5 143 1 16.67 1.019
Image 163 1 17 7 75.00 1.228
Povray 136 6 17 14 97.44 1.042
Linker 6317 12 29 7 85.71 1.326
C4 76 2 9 95.65 1.360
Tree 207 6 14 1 97.14 1.503
SP 151 103 15 99.55 1.193
FFTW 163 13 7 60 99.59 1.549
Matrix 198 12 5 3 99.47 7.546

Table 5.1 : Speedups and superpage usage when memory is plentiful and unfragmented.

44



45

without the zeroed-page feature. We obtained an average penalty of 0.9%, and a maximum
of 1.7%. These penalties represent an upper bound, since the buddy allocator, even though
it ignores the hint, still has a chance of returning a zeroed-out page when requested.

A side effect of using superpages is that it subsumes page coloring [47], a technique that
FreeBSD and other operating systems use to reduce cache conflicts in physically-addressed
and especially in direct-mapped caches. By carefully selecting among free frames when
mapping a page, the OS keeps virtual-to-physical mappings in a way such that pages that
are consecutive in virtual space map to consecutive locations in the cache. Since with super-
pages virtually contiguous pages map to physically contiguous frames, they automatically
map to consecutive locations in a physically-mapped cache. Our speedup results factor out
the effect of page-coloring, because the benchmarks were run with enough free memory
for the unmodified system to always succeed in its page coloring attempts. Thus, both the

unmodified and the modified system effectively benefit from page coloring.

5.4 Benefits from multiple superpage sizes

We repeated the above experiments, but changed the system to support only one super-
page size, for each of 64KB, 512KB and 4MB, and compared the resulting performance
against our multi-size implementation. Tables 5.2 and 5.3 respectively present the speedup
and TLB miss reduction for the benchmarks, excluding those that have the same speedup
(within 5%) in all four cases.

The results show that the best superpage size depends on the application. For instance,
it is 64KB for SP, 512KB for vpr, and 4MB for FFTW. The reason is that while some
applications only benefit from large superpages, others are too small to fully populate large
superpages. To use large superpages with small applications, the population threshold for
promotion could be lowered, as suggested in Section 4.5. However, the OS would have
to populate regions that are only partially mapped by the application. This would enlarge
the application footprint, and also slightly change the OS semantics, since some invalid

accesses would not be caught.



Benchmark || 64KB | 512KB | 4MB || All |

CINT2000 | 1.05] 1.09] 1.05] 111
vpr 128 | 138 1.13 | 1.38
mcf 124 | 131 1.22 || 1.68
vortex 101 | 107 | 1.08 || 1.11
bzip2 114 | 112 | 1.08 || 1.14

CFP2000 || 1.02] 1.08] 1.06 ] 112
gagd 128 | 1.28| 1.01 | 1.29
lucas 1.04 | 128 1.24 || 1.28
aps 104 | 179 | 1.83 || 1.83

Image 119 1.19] 1.16 || 1.23

Linker 116 | 126 | 1.19 || 1.32

ca 130 | 1.34| 098 || 1.36

sP 119 | 1.17 | 098 || 1.19

FFTW 1.01| 1.00| 155 || 1.55

Matrix 383 | 7.17| 686 || 7.54

Table 5.2 : Speedups with different superpage sizes.

Benchmark || 64KB [ 512KB | 4MB | All |

CINT2000
vpr 82.49 | 98.66 | 45.16 || 99.96
mcf 55.21 | 84.18 | 53.22 || 99.97
vortex || 46.38 | 92.76 | 80.86 || 99.75
bzip2 99.80 | 99.09 | 49.54 || 99.90
CFP2000

gagd 9851 | 98.71] 0.00 || 99.80
lucas 12.79 | 96.98 | 87.61 | 99.90
aps 9.69 | 98.70 | 99.98 | 99.98
Image 50.00 | 50.00 | 50.00 || 75.00
Linker 57.14 | 85.71 | 57.14 || 85.71
ca 95.65 | 95.65 | 0.00 | 95.65
S 99.11 | 93.75| 0.00 | 99.55
FFTW 741 | 7419959 | 99.59
Matrix 90.43 | 99.47 | 99.47 || 99.47

Table 5.3 : TLB miss reduction percentage with different superpage sizes.



47

The tables also demonstrate that allowing the system to choose between multiple page
sizes yields higher performance, because the system dynamically selects the best size for
every region of memory. An extreme case is mcf, for which the percentage speedup when
the system gets to choose among several sizes more than doubles the speedup with any
single size.

Some apparent anomalies, like different speedups with the same TLB miss reduction
(e.g., Linker) are likely due to the coarse granularity of the Alpha processor’s TLB miss
counter (512K misses). For short-running benchmarks, 512K misses corresponds to a two-

digit percentage of the total number of misses.

5.5 Sustained benefits in the long term

The performance benefits of superpages can be substantial, provided contiguous regions of
physical memory are available. However, conventional systems can be subject to memory
fragmentation even under moderately complex workloads. For example, we ran instances
of grep, emacs, netscape and a kernel compilation on a freshly booted system; within about
15 minutes, we observed severe fragmentation. The system had completely exhausted all
contiguous memory regions larger than 64KB that were candidates for larger superpages,
even though as much as 360MB of the 512MB were free.

Our system seeks to preserve the performance of superpages over time, so it actively
restores contiguity using techniques described in Sections 4.4 and 4.10.1. To evaluate these
methods, we first fragment the system memory by running a web server and feeding it with
requests from the same access log as before. The file-backed memory pages accessed by
the web server persist in memory and reduce available contiguity to a minimum. Moreover,
the access pattern of the web server results in an interleaved distribution of active, inactive
and cache pages, which increases fragmentation.

We present two experiments using this web server.



48

5.5.1 Sequential execution

After the requests from the trace have been serviced, we run the FFTW benchmark four
times in sequence. The goal is to see how quickly the system recovers just enough contigu-
ous memory to build superpages and perform efficiently.

Figure 5.1 compares the performance of two contiguity restoration techniques. The
cache scheme treats all cached pages as available, and coalesces them into the buddy allo-
cator. The graph depicts no appreciable performance improvements of FFTW over the base
system. We observed that the system is unable to provide even a single 4MB superpage
for FFTW. This is because memory is available (47MB in the first run and 290MB in the
others), but is fragmented due to active, inactive and wired pages.

The other scheme, called daemon, is our implementation of contiguity-aware page re-
placement and wired page clustering. The first time FFTW runs after the web server, the
page daemon is activated due to contiguity shortage, and is able to recover 20 out of the
requested 60 contiguous regions of 4MB size. Subsequent runs get a progressively larger
number of 4MB superpages, viz. 35, 38 and 40. Thus, FFTW performance reaches near-

optimum within two runs, i.e., a speedup of 55%.

2 - O Cache B Daemon

|_Best-case speedup

Speedup
|_\

FFTW runs

time >

Figure 5.1 : Two techniques for fragmentation control.



49

The web server closes its files on exit, and our page daemon treats this file memory
as inactive, as described in Section 4.10.1. We now measure the impact of this effect
in conjunction with the page daemon’s drive to restore contiguity, on the web server’s
subsequent performance. We run the web server again after FFTW, and replay the same
trace. We observe only a 1.6% performance degradation over the base system, indicating
that the penalty on the web server performance is small.

We further analyze this experiment by monitoring the available contiguity in the system
over time. We define an empirical contiguity metric as follows. We assign 1, 2 or 3 points
to each base page that belongs to a 64KB, 512KB, or 4AMB memory region respectively,
assuming that the region is contiguous, aligned and fully available. We compute the sum
of these per-page points, and normalize it to the corresponding value if every page in the
system were to be free. Figure 5.2 shows a plot of this contiguity metric against experi-
mental time. Note that this metric is unfavorable to the daemon scheme since it does not
consider as available the extra contiguity that can be regained by moving inactive pages to
the cache.

At the start of the experiment, neither scheme has all of the system’s 512MB available;
in particular, the cache scheme has lost 5% more contiguity due to unclustered wired pages.
For about five minutes, the web server consumes memory and decreases available conti-
guity to zero. Thereafter, the cache scheme recovers only 8.8% of the system’s contiguity,
which can be seen in the graph as short, transitory bursts between FFTW executions. In
contrast, the daemon scheme recovers as much as 42.4% of the contiguity, which is con-
sumed by FFTW while it executes, and released each time it exits. The FFTW executions
thus finish earlier, at 8.5 minutes for the daemon scheme, compared to 9.8 minutes for the
cache scheme.

To estimate the maximum contiguity that can be potentially gained back after the FFTW
runs complete, we run a synthetic application that uses enough anonymous memory to max-
imize the number of free pages in the system when it exits. At this point, the amount of

contiguity lost is 54% in the cache scheme, mostly due to scattered wired pages. In con-



50

80 T T T T
§ Cache ............
> 60 Daemon 1
'S
2
S 40 | |
(&)
Q d
=)
TE 20 4
< :

0 oo Sk e 2

0 2 4 6 8 10

Experimental time (minutes)

Figure 5.2 : Contiguity as a function of time.

trast, the daemon scheme is unable to recover 13% of the original contiguity. The reason
is that the few active and inactive pages that remain at the end of the experiment are scat-
tered in physical memory over as many as 54 4MB chunks. Since the experiment starts
on a freshly booted system, active and inactive pages were physically close at that time,
occupying only 22 such chunks. Part of the lost 13% is due to inactive pages that are not
counted in the contiguity metric, but can be recovered by the page daemon. Therefore, the
real loss in the long term for the daemon scheme is bounded only by the number of active

pages.

5.5.2 Concurrent execution

The next experiment runs the web server concurrently with a contiguity-seeking applica-
tion. The goal is to measure the effect of the page replacement policy on the web server
during a single, continuous run. We isolate the effect of the page replacement policy by
disabling superpage promotions in this experiment.

We warm up the web server footprint by playing 100,000 requests from the trace, and



51

then measure the time taken to service the next 100,000 requests. We wish to avoid interfer-
ence of the CPU-intensive FFTW application with the web server, so we substitute it with
a dummy application that only exercises the need for contiguity. This application maps,
touches and unmaps 1MB of memory, five times a second, and forces the page daemon to
recover contiguity rather than just memory.

The web server keeps its active files open while it is running, so our page daemon cannot
indiscriminately treat this memory as inactive. The web server’s active memory pages get
scattered, and only a limited amount of contiguity can be restored without compacting
memory. Over the course of the experiment, the dummy application needs about 3000
contiguous chunks of 512KB size. The original page daemon only satisfied 3.3% of these
requests, whereas our contiguity-aware page daemon fulfills 29.9% of the requests. This
shows how the change in the replacement policy succeeds in restoring significantly more
contiguity than before, with negligible overhead and essentially no performance penalty.

The overhead of the contiguity restoration operations of the page daemon is found to
be only 0.8%, and the web server suffers an additional 3% of performance degradation, as

a consequence of the deviation of the page replacement policy from A-LRU.

5.6 Adversary applications

This section exercises the system on three synthetic pathological workloads, and concludes

with a measurement of realistic overhead.

5.6.1 Incremental promotion over head

We synthesized an adversary application that makes the system pay all the costs of incre-
mental promotion without gaining any benefit. It allocates memory, accesses one byte in
each page, and deallocates the memory, which renders the TLB useless since every trans-
lation is used only once. This adversary shows a slowdown of 8.9% with our implementa-
tion, but as much as 7.2% of this overhead is due to the following hardware-specific reason.

PTE replication, as described in Section 5.1, forces each page table entry to be traversed six



52

times: once per each of the three incremental promotions, and once per each of the three
incremental demotions. The remaining 1.7% of the overhead is mainly due to maintenance

of the population maps.

5.6.2 Sequential access overhead

Accessing pages sequentially as in our adversary is actually a common behaviour, but usu-
ally every byte of each page is accessed, which dilutes the overhead. We tested the cnp
utility, which compares two files by mapping them in memory, using two identical 100MB

files as input, and observed a negligible performance degradation of less than 0.1%.

5.6.3 Preemption overhead

To measure the overhead of preempting reservations, we set up a situation where there is
only 4MB of memory available and contiguous, and run a process that touches memory
with a 4MB stride. In this situation, there is a pattern of one reservation preemption every
seven allocations. Every preemption splits a reservation into eight smaller chunks. One
remains reserved with the page that made the original reservation; another is taken for the
page being allocated, and six are returned to the free list. We measured a performance

degradation of 1.1% for this process.

5.6.4 Overhead in practice

Finally, we measure the total overhead of our implementation in real scenarios. We use
the same benchmarks of Section 5.2, perform all the contiguous memory allocation and
fragmentation management as before, but factor out the benefit of superpages by simply not
promoting them. We preserve the promotion overhead by writing the new superpage size
into some unused portion of the page table entries. We observe performance degradations
of up to 2%, with an average of about 1%, which shows that our system only imposes

negligible overhead in practice.



53

5.7 Dirty superpages

To evaluate our decision of demoting clean superpages upon writing, as discussed in Sec-
tion 4.7, we coded a program that maps a 100MB file, reads every page thus triggering
superpage promotion, then writes into every 512" page, flushes the file and exits. We
compared the running time of the process both with and without demoting on writing. As
expected, since the I/0 volume is 512 times larger, the performance penalty of not demoting
is huge: a factor of more than 20.

Our design decision may deny the benefits of superpages to processes that do not write
to all of the base pages of a potential superpage. However, according to our policy, we

choose to pay that price in order to keep the degradation in pathological cases low.

5.8 Scalability

If the historical tendencies of decreasing relative TLB coverage and increasing working set
sizes continue, then to keep TLB miss overhead low, support for superpages much larger
than 4MB will be needed in the future. Some processors like the Itanium and the Sparc64-
I11 provide 128MB and larger superpages, and our superpage system is designed to scale to
such sizes. However, architectural peculiarities may pose some obstacles.

Most operations in our implementation are either O(1); or O(SS), where S is the number
of distinct superpage sizes; or in the case of preempting a reservation, O(S * R), where R
is the ratio between consecutive sizes, which is usually 8 or less in modern processors.
The exceptions are four routines with running time linear in the size (in base pages) of the
superpage that they operate on. One is the page daemon that scans pages; since it runs as
a background process, it is not in the critical path of memory accesses. The other three
routines are promotion, demotion, and dirty/reference bit emulation. They operate on each
page table entry in the superpage, and owe their unscalability to the hardware-defined PTE

replication scheme described in Section 5.1.



54

5.8.1 Promotionsand demotions

Often, under no memory pressure, pages are incrementally promoted early in the life of
a process, and only demoted at program exit. In such case, the cost amortized over all
pages used by the process is O(S), which is negligible in all of our benchmarks. The only
exception to this is the adversary experiment of Section 5.6.1, which pays a 7.2% overhead
due to incremental promotions and demotions. However, when there is memory pressure,
demotions and repromotions may happen several times in a process’s life (as described in
Sections 4.6 and 4.7). The cost of such operations may become significant for very large

superpages, given the linear cost of PTE replication.

5.8.2 Dirty/reference bit emulation

In many processors, including the Alpha, dirty and reference bits must be emulated by the
operating system. This emulation is done by protecting the page so that the first write or
reference triggers a software trap. The trap handler registers in the OS structures that the
page is dirty or referenced, and resets the page protection. For large superpages, setting
and resetting protection can be expensive if PTE replication is required, as it must be done
for every base page.

These problems motivate the need for more superpage-friendly page table structures,
whether they are defined by the hardware or the OS, in order to support very large su-
perpages in a more scalable way. Clustered page tables proposed by Talluri et al. [88]

represent one step in this direction.



55

Chapter 6

Validating the design in the | A-64 platform

The prototype system was ported to FreeBSD 5.0 for 1A-64, the architecture to which the
Itanium family of processors belong [61]. With this port to a more modern architecture
than the Alpha, we expected to gain new insights into our approach. An interesting feature
of 1A-64 is its support for 10 pages sizes, from 4KB to 256MB, which allows us to put
more stress on our system in order to better evaluate its overhead and scalability.

In addition, while 1A-64 requires the presence of a software TLB handler (like the
Alpha architecture), most of the misses are actually handled in hardware. Therefore, it is
interesting to know whether this potentially more efficient handling translates to smaller
benefits from using superpages.

In this chapter we describe the port of our system to the 1A-64 architecture, then an-
alyze the experiments that motivated a change in our design, and present results for our

benchmarks with an implementation of the refined design.

6.1 Platform
For the experiments, we used an HP workstation i2000 with the following characteristics:
e Intel Itanium processor at 733 MHz;

e ten page sizes: 4KB, 8KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB, 64MB and
256MB (FreeBSD for 1A-64 uses 8KB as the base page size);

e 2 GB RAM, 4-way associative separate 16KB data and 16KB instruction L1 caches,

6-way associative 96KB unified L2 cache, 4-way associative 2MB unified L3 cache;



56

o fully associative, two-level data TLB with 32 entries in the first level and 96 in the

second, and 64-entry one-level instruction TLB, also fully associative.

To handle TLB misses, Itanium processors use a hardware finite state machine to lookup
the required translation entry in a hash table that resides in main memory and acts as a cache
of the page table. Only if the entry is not found in this cache, a software handler must take
over. Thus, most of the misses are handled in hardware with no pollution of the instruction
cache and TLB, and no pipeline flushing.

This page table software cache is known as VHPT for Virtual Hash Page Table in Intel’s
nomenclature. Although the OS is free to use any page table organization to service VHPT
misses, the VHPT is structured in a way that encourages the implementation of a hashed
page table. The architecture also provides instructions to compute hashes and tags.

The VHPT is essentially an array in which each entry is a TLB entry augmented with a
tag and enough space to store a pointer. On a TLB miss, the hardware state machine uses
the virtual address to compute a hash index and a tag. It then retrieves the entry given by
the hash index, and compares the tag in the entry with the computed tag. If they match,
then the entry is used to fill the TLB; otherwise, a trap to the OS is triggered. FreeBSD
follows the architectural guidelines, and thus uses the extra space in the VHPT entry to
store a pointer to a collision chain, and keeps all the page table entries with colliding hash
values in this chain. The size of the VHPT is configurable, and FreeBSD sets it so that
there are as many VHPT entries as page frames in the physical memory of the machine.

Sparc64-111 processors have a similar page table cache with a different name: the Trans-

lation Memory Buffer or TMB [83].

6.2 New insights

The design that we described for the Alpha architecture is based on a radix tree for popula-
tion maps and a hash table for looking up reservations. Using large superpages and several
superpage sizes exposed some problems of this design. The following subsections describe

these problems.



57

6.2.1 Reserved framelookup

As shown in section 4.9, reserved frame lookup for a given virtual address is performed by
rounding the virtual address down to a multiple of the largest superpage size (e.g., 256MB),
determining the page index within the object for the rounded address, and feeding the result
along with the object identifier into a hash table to find the root of the population map’s
radix tree. From the root, the tree is traversed to locate the reserved page frame, if there is
one.

Note that regardless of the size of the object, the radix tree has a depth equal to the

number of superpage sizes supported, which is overkill for small objects.

6.2.2 Shared objects

The hash table approach based on rounded virtual addresses for looking up reserved frames
produces also the following problem. Say that two processes map an object at virtual
addresses a and b such that b — a is not a multiple of the largest superpage size. Then the
two processes will not see each others’ reservations. As a consequence, these processes
may produce overlapping reservations and unnecessarily prevent each other from building
superpages.

To make the case more concrete, let us say that the base page size is 8KB, and that
superpages of sizes 4 and 16 base pages are supported. Assume that process P; maps an
object at virtual address 0, while process P, maps the same object at virtual address 64KB,
that is, 8 base pages beyond the origin. Further suppose that process P; has touched the
first 15 pages of the object, which are populated into a 16-page reservation.

If at this point P, touches the 16™ page, then the system will use page index 8 to lookup
a population map in the hash table, but the existing reservation was stored in the table with
page index 0. Hence, the first reservation will not be found and a new reservation that
partially overlaps with the first one will be created, as shown in Figure 6.1.

The overlapping reservations unnecessarily waste contiguity. In addition, between the

two processes only three 4-page superpages will be created for the first 16 pages, in cir-



58

TP | First reservation

LLLITTTETITITT] second reservation

0 4 8 12 16 20 Page index within object

Figure 6.1 : Overlapping reservations.

cumstances where it should be possible to create one 16-page superpage for one process
and two 4-page superpages for the other.

Note that the approach to multiple mappings described in Section 4.10.3 — in which the
OS picks virtual addresses that are compatible with superpage allocation when a process
maps an object — does not completely avoid this issue. In particular, this problem may
still arise when applications request to map an object at a fixed address, or when they map

a file starting at some offset.

6.2.3 Overhead for an adversary case

We used the adversary application described in section 5.6 to gauge the overhead of our
system when many superpage sizes are supported. Recall that such an application simply
allocates memory, accesses one byte in each page, and deallocates the memory. We set the
system to support all page sizes that the Itanium provides, but limited in the low end by
FreeBSD’s page size and in the high end by the maximum size that provides enough TLB
coverage for the entire 2 GB of physical memory of the machine. Therefore, the system
supported eight sizes: 8 KB base pages and superpages of sizes 16KB, 64KB, 256KB,
1MB, 4MB, 16MB and 64MB.

This adversary application shows a slowdown of 32.9% when run with our superpage
support system, composed of 20.6% of overhead due to page table traversal and 12.3%
of data structure bookkeeping. Recall that most page table entries in this experiment are
traversed twice per superpage size due to incremental promotions and once per superpage

size due to incremental demotions.



59

This rather high overhead for an adversary case begs the question of whether real ap-

plications will suffer a noticeable slowdown due to the use of superpages.

6.2.4 Overhead in practice

We repeated the experiment of Section 5.6.4, where we measure the overhead paid by our
benchmarks. Again, we factor out the benefit of superpages by not creating any actual su-
perpage, but preserve the overhead of promotions and demotions by writing the superpage
size field into an unused portion of the page table entry.

We found that the overhead is generally low, below 2%, with the exception of FFTW
and Image, for which the overhead reaches 4.1% and 2.1% respectively. However, in both
cases the overhead is more than compensated by the benefit that superpages provide to

these applications.

6.3 Refining the design

We found that most of the problems mentioned above can be solved with a redesign of the

population map.

6.3.1 Reservations. lookup and overlap avoidance

FreeBSD 5.x uses a splay tree [80] as a container for the pages in a memory object, while
previous versions use a hash table for this effect. As a consequence, the doubly-linked list
that links the pages in an object is now kept in page index order, and finding the predecessor
and successor of any given page is trivially efficient.

In section 4.9 we described the four distinct purposes of the population map. The first
two are reserved frame lookup, and reservation overlap avoidance. By leveraging the splay
tree, these two goals can be achieved more efficiently in the following manner.

Each page (or rather, the data structure that describes the page) contains a pointer to a
data structure that describes the reservation that the page belongs to. The reservation data

structure includes the starting physical address and size of the reservation. On a page fault,



60

we use the splay tree and the linked list to find the pages that are going to be the predecessor
and successor of the faulting page. From these pages we obtain two candidate reservations
that may contain a frame reserved for the faulting page (in general, the number of candi-
dates can be zero, one, or two; for instance, both the predecessor and the successor might
be pointing to the same reservation, or there might not be a predecessor or a successor).
If the faulting page does not fall in the range covered by these reservations, then we know
that we must create a new reservation, and we can also determine the maximum size for
this reservation that prevents overlapping with the existing ones. The hash table used in the

original design to locate the root of a population map is not needed.

6.3.2 Streamlined population maps

With the change described above, the role of the population map is limited to assisting in
preemptions and promotion decisions. We streamlined the design of the population map to
perform only these two functions, and optimized it for sequential allocations, which is the
most common case according to our observations.

We still use a radix tree for the population map, but instead of keeping track of the
population status of the superpage-sized portions of a reservation (fully populated, partially
populated, or empty), we use a scheme that does not need to develop the tree beyond the
root node when a reservation is populated sequentially.

The root (and each node) maintains a pair of indices that describe a fully populated
range of frames. Only if the population pattern in the reservation becomes non-contiguous
we need to make the tree one level deeper, and so on recursively. The recursion is stopped
at the level corresponding to the smallest superpage, since below that level we only need
the number of frames populated, but we do not need to keep track of which frames are
actually populated.

In addition, at each node we keep track of the largest superpage-sized and -aligned
unused chunk in the subtree below the node. This facilitates the maintenance of the reser-

vation lists described in Section 4.8.



61

Figure 6.2(a) depicts a population map for a reservation of 64 base pages, in which
frames 17 to 26 have been populated; only the root node is needed. If frame 53 is then
populated, the map will look as shown in Figure 6.2(b). If frame 58 is populated next, one
more level is needed as shown in Figure 6.2(c). This example assumes that superpages of

size 4, 16 and 64 base pages are supported.

0 16 32 48
| I |16

@

(b)

| 1@

scibe

®

(©

Figure 6.2 : Stages of a population map. White rectangles represent nodes of the radix tree. Black
rectangles represent ranges of populated pages. Gray circles next to a node indicate the size of
the largest unused chunk appropriate for superpages at or below the node. (a) The map after
frames 17-26 have been populated; (b) after frame 53 is also populated; (c) after frame 58 is also
populated.



62

6.3.3 Reservation preemption

When a reservation is broken into smaller ones, we do not want to go through potentially
thousands of pages in the original reservation to adjust their pointers to point to the new,
smaller reservations. To avoid this, we keep the original reservation data structure, mark
it as broken, create data structures for the smaller reservations, and add pointers from the
original reservation to the smaller ones, in a radix-tree-like manner.

These pointers are used to lazily adjust the reservation pointers of the pages in the
following manner. Whenever a page’s reservation is needed, the reservation that the page
currently points to is examined. If it is broken, then we descend down the radix tree using
the pointer that corresponds to the position of the page within the reservation, until we find
a non-broken reservation. At that point, we can adjust the page pointer to point to the new
reservation. A reference counting scheme is used in order to know when it is possible to
free a broken reservation’s data structure.

Reservation preemptions can happen because of two different reasons, and the preemp-
tion process varies slightly depending on the reason: a preemption can be triggered either
by memory pressure or by the reactivation of a cache page that winds up as part of a reser-
vation, as described in Section 4.10.1.

Figure 6.3(a) shows the same population map as Figure 6.2(c), with the addition of the
page data structures, which all point initially to the root node. If in this situation the reser-
vation is preempted to regain memory, then the goal is to return to the free list the largest
available chunks, and keep the rest as smaller reservations. The system will therefore free
the first and third quarter of the original reservation, and mark the reservation as broken.
All pages remain pointing to the root node that represents the original reservation, because
these pointers are lazily updated as previously said. Figure 6.3(b) shows the resulting data
structures after the reservation pointers for pages 26 and 58 have been updated.

On the other hand, if the preemption is due to the reactivation of a cache page, say page

58, then the system must recursively break all the reservations in the path to that page. The



63

(b)

s
UL

ff

= |

@

(©

Figure 6.3 : Reservation preemption. (a) The original reservation. (b) After preemption due to
memory pressure. (c) After preemption due to reactivation of page 58. Nodes representing broken
reservations are shaded.



64

result is depicted by Figure 6.3(c), again assuming that reservation pointers for pages 26

and 58 have been updated.

6.3.4 Shared objects

The new design also solves the problem with shared objects mentioned in Section 6.2.2.
Overlapping reservations due to mappings of incompatible alignment cannot happen any-
more, because the system will always find the predecessor and successor of a new page,
and from there the respective reservations, regardless of the intended alignment for those

reservations.

6.4 Results for |1A-64

In this section we present the results obtained for our benchmarks with the refined imple-

mentation for |A-64.

6.4.1 Best-case benefits

We used the same workloads from sections 5.2, with the exception of the SPEC CPU2000
floating-point benchmarks and Povray, which we were unable to compile under this plat-
form.

The methodology is the same as the one described in Section 5.3, that is, benchmarks
are run under conditions of memory and contiguity abundance, so that allocation for reser-
vations always succeed and reservations are never preempted. The speedups are computed
against the unmodified system using the mean elapsed runtime of several runs after an
initial warm-up run. Table 6.1 shows the results.

Overall, the results are similar to those obtained for the Alpha architecture. Almost all
applications experience speedups. Out of the 20 benchmarks, 16 experience improvements
above 5%, and 6 experience over 25%. Comparing with Table 5.1, some applications, such
as twolf and Image, show a significantly better speedup for the Itanium than the Alpha,

while the inverse is true for some others, such as bzip2, FFTW and Matrix. However, the



65

Superpage usage
Benchmark || 8KB | 16KB | 64KB | 256KB | 1MB | 4MB | 16 MB | 64MB || Speedup
CINT 2000 1.127
gzip 157 24 14 10 9 10 8 1.000
vpr 219 27 15 12 8 6 1 1.367
gcc 561 21 44 20 7 7 3 1.012
mcf 177 13 8 6 4 6 6 1.707
crafty 218 20 12 4 1.083
parser 215 18 1 5 3 4 1 1.081
eon 311 28 12 1 1.000
per| 361 28 16 10 6 6 7 1.031
gap 326 22 9 3 3 3 3 1.068
vortex 312 17 5 5 3 10 2 1.125
bzip2 148 25 16 11 13 14 7 1.082
twolf 242 18 7 10 2 1.137
Web 10716 | 3041 | 1145 214 50 1 1.094
Image 260 33 18 16 3 3 1 1.379
Linker 196 18 11 13 12 7 2 1.401
C4 143 11 4 3 4 1.279
Tree 130 15 6 8 1.312
SP 210 60 50 35 2 1.063
FFTW 192 42 7 4 3 4 6 1.134
M atrix 119 13 6 6 4 6 5.148

Table 6.1 : Speedups and peak superpage usage for IA-64 when memory and contiguity are abun-

dant.



66

Matrix benchmark for the Alpha consisted of highly efficient code produced by Compaq’s
compiler, while for the Itanium we used the more modest gcc compiler. If gcc is used for
both platforms, then the speedups for Matrix tend to equalize: 5.490 for the Alpha against
5.148 for the Itanium.

Better speedups for a processor that performs hardware TLB miss handling might seem
unexpected, but there are two reasons that in combination can explain it. Firstly, without
superpages, Itanium’s data TLB covers a smaller portion of benchmarks’ footprint than
Alpha’s data TLB, not only because it is smaller, but also because benchmarks have a
larger footprint on the Itanium. For instance twolf’s footprint is 6.2 MB for the Alpha and
7.1 MB for the Itanium, although the base page size is the same for both architectures.
And secondly, Itanium supports larger pages. These two factors imply that for any given
benchmark, it is likely that superpages eliminate a larger absolute number of TLB misses
in the Itanium.

On top of these two reasons, the disparity of processor and memory speed make mem-
ory accesses required to fill the TLB the largest component of TLB miss cost, regardless of

whether this access is performed by a hardware state machine or by a software handler.

6.5 Overhead and adversary case revisited

With the aforementioned changes, the bookkeeping overhead for the adversary case is re-
duced to a mere 2%. Nevertheless, since we have optimized the population map for sequen-
tial allocation, it is fair for our adversary to perform non-sequential but still full allocation
of the memory region. We therefore modified the adversary to first touch the even pages in
the allocated memory region, and then the odd pages. This pattern forces the system to fully
develop the population map’s radix tree, and in fact increases the adversary’s bookkeeping
overhead to 4.9%, which is still much better than the 12.3% with the old population map.

The page table overhead remains close to 20% when all seven sizes are supported, since
these changes do not affect it.

For the other benchmarks, the overhead is now always below 1%, with the usual two



67

exceptions: FFTW and Image. For these two applications, the total overhead is now 1.1%,

which is much lower than the previous 2.1% and 4.1% with the original design.

6.6 Reducing page table overhead

This section analyzes mechanisms to reduce the 20% worst-case page table overhead. The
overhead is due to the way superpages are supported in the page table, combined with the

use of multiple superpage sizes through incremental promotions and demotions.

6.6.1 Alternative pagetable organizations. existing approaches

IA-64 and Alpha processors support superpages in the page table by means of PTE repli-
cation, as discussed in Section 5.1. Even though one entry would be enough to describe
the address translation for the entire superpage, there is still one entry per base page in
the page table. Each entry replicates the same information: superpage size, protection
attributes, and the most significant bits of the physical address. The motivation for PTE
replication is quick translation lookup, because the page size is not an input to the lookup
procedure. Alternative organizations are likely to increase TLB miss costs.

One option would be to have parallel page tables, one per superpage size. On a TLB
miss, an entry needs to be looked up in every page table. Sparc64-111 processors [83]
provide a parallel page table for 64KB superpages; larger superpages are supported through
conventional PTE replication.

Clustered page tables [88] offer partial relief to the overhead involved in PTE replica-
tion. Clustered page tables are similar to 1A-64’s virtual hash page tables, with the differ-
ence that each entry contains the translation information for a group of virtually contiguous
base pages. The number of base pages represented in each entry is called the clustering
factor and is necessarily small. Superpage sizes beyond the clustering factor are handled
through replication of clustered entries.

A very clean, non-replicated page table organization for superpages is that of 1A-32

processors. It consists of a two-level radix tree where a 4MB superpage is created by storing



68

the superpage information in the common parent of the 1024 base pages that compose the
superpage. A naive extension of this approach to 64-bit address spaces with a more flexible
collection of superpage sizes than factor-of-1024, would make the tree prohibitively deep.
It also complicates management and addressing of the nodes, since they would be much
smaller than a physical page. However, a more sophisticated scheme based on this approach

can overcome these problems, as shown next.

6.6.2 Alternative pagetable organizations. a proposal

This section suggests an efficient page table organization that does not impose a linear
overhead for superpage promotions and demotions. The idea is to use an approach similar
to PTE replication, except that replication is avoided by always referring to the first entry
in the group of entries that would have been otherwise replicated. The other entries are
ignored, and hence need not be replicated.

Consider a leaf page in a radix-tree page table, like 1A-32’s, but with 128 entries in each
page, and assume a factor of four between consecutive page sizes. What we need is extra
information that tells us how to interpret the data in this page. For this particular example,
that extra information can be encoded in only 17 bits, which can be stored in the parent
node of the page. Those 17 bits represent a 3-level radix tree of bits. The first one indicates
whether the entire page of page-table entries represents a superpage. If so, we only need
to retrieve the first entry. Otherwise, we consider the page as four groups of 32 entries
each, and the next four bits tell us whether each of these groups corresponds to a 32-page
superpage or we should further recur.

We can repeat this scheme at each level of the tree. The depth of the tree can be greatly
reduced by combining a hash table and multiple smaller trees. Each small tree would
describe a chunk of address space of the size of the largest supported superpage. The hash
table would be used to locate the root of the tree. Since each level describe three superpage
sizes, with three levels we can support nine sizes. A tenth level can be supported at the

hash table entry.



69

Note that this approach can also be seen as a tree of radix 4, where multiple levels of
the tree (a node along with its children, grandchildren and great-grandchildren) are placed
together into one physical page. Also, only one generation is accessed per page, thanks to
the extra information stored in the parent entry, and to the fixed layout of the descendants
in the page.

In summary, this approach requires one hash table lookup and at most three additional
memory accesses per TLB miss to support up to ten page sizes without PTE replication.
We did not explore this alternative in favor of solutions that work efficiently with existing

hardware.

6.6.3 Fewer superpage sizes: static approach

In Section 5.4 it was shown that supporting multiple page sizes is necessary to achieve
maximum performance. The question now is whether it is necessary to support all the page
sizes that the platform provides, especially considering that fewer sizes would reduce the
page table overhead of incremental promotions.

Such overhead is proportional to the number of sizes supported. Therefore, if the goal
Is to reduce it by any significant amount, then the number of sizes must be reduced also
significantly. To evaluate this possibility, we decided to experiment with a reduction of
superpages sizes to roughly one half, that is, to three or four.

Clearly, the only reasonable choice within this constraint is to support every other size,
that is, sizes that are separated by a factor of 16. In effect, it was shown before that some
applications only benefit from small sizes, so it is not a good idea to support only large
sizes. On the other hand, if only three or four small sizes are supported, then applications
that require a large TLB coverage will suffer. An instance of FFTW, for example, with the
largest input we could run in our platform (a cubic matrix of 390 elements per side) pays a
performance penalty of 47% if 64MB superpages are not provided.

Hence, the choices would be to support either 16KB, 256KB, 4MB and 64MB super-
pages, or 64KB, 1MB and 16MB. We picked the latter to experiment with. Table 6.2 details



70

the results, where the second column shows the speedup when all sizes are supported, the
third column shows the speedup when only 64KB, 1MB and 16MB are supported, and the
last column shows the percentage of difference between the two (negative numbers mean

that the benchmark runs faster with all sizes).

| Benchmark || All sizes | 64KB + IMB + 16MB || % Difference

CINT2000
gzip 1.000 1.000 0.00
vpr 1.367 1.376 0.66
gcc 1.012 1.017 0.49
mcf 1.707 1711 0.23
crafty 1.083 1.076 -0.65
parser 1.081 1.081 0.00
eon 1.000 1.006 0.60
perl 1.031 1.034 0.29
gap 1.068 1.067 -0.09
vortex 1.125 1.123 -0.18
bzip2 1.082 1.083 0.09
twolf 1.137 1.055 -7.21
Web 1.094 1.051 -3.93
Image 1.379 1.379 0.00
Linker 1.401 1.400 -0.07
c4 1.279 1.287 0.63
Tree 1.312 1331 1.45
SP 1.063 1.058 -0.47
FFTW 1134 1.138 0.35
Matrix 5.148 2.486 -51.71

Table 6.2 : Speedups for all seven sizes compared to speedups for three fixed sizes.

Expectedly, although not shown in the table, the page table overhead got reduced to
about one half. However, the benchmarks show almost no benefit from this reduction:
there is only one case, Tree with 1.45%, that shows an improvement above 1%. On the
other hand, the penalty paid for the lack of support for some sizes is much larger than the
small benefit from a lower overhead: twolf runs 7.21% slower, Web runs 3.93% slower,

and Matrix takes more than twice the time to finish.



71

6.6.4 Fewer superpage sizes. dynamic approach

We can reduce the overhead of incremental promotions and demotions without the disad-
vantages of the previous three-sizes-fit-all approach, by adapting what three sizes to provide
according to the circumstances.

As demonstrated in the previous section, different processes have different needs. How-
ever, choosing a set of three sizes on a per-process basis is still unnecessarily restrictive,
since a process may have different needs for its different memory segments. Moreover,
memory conditions should also be considered: if we have a budget to provide three page
sizes, it would be wasteful to aim at very large sizes in conditions of low contiguity.

A very simple and effective approach that takes all these factors into account is to
provide three sizes on a per-reservation basis, and pick those sizes according to the size of
the reservation. This works well because (1) the reservation size depends on our preferred
superpage size policy of Section 4.2, which tends to choose the maximum superpage size
that can be effectively used in a memory object, and (2) the actual reservation size is further
restricted by availability.

We found that what works best for our benchmarks is to support the sizes that corre-
sponds to the size of the reservation, plus one size smaller, plus the size between the latter
and 16KB, the smallest one. For instance, for a 16MB reservation we use 16MB, 4MB and
256KB; for anything smaller than 1MB we use all sizes up to the size of the reservation.

We further reduced the page table overhead by forcing a full demotion instead of an
incremental one whenever the system removes all pages in an object. This happens when
an object is unmapped or the entire address space is torn down. Without this optimization
a superpage is gradually demoted without any benefit, since none of the pages will be
accessed anymore.

With these changes the overhead of the adversary case was reduced to an acceptable
13%, composed of 8.1% of page table overhead and an unchanged 4.9% of bookkeeping
overhead. This improvement for the worst case comes with virtually no impact for the other

benchmarks, as shown in Table 6.3. The majority of benchmarks show a slowdown rather



72

than a speedup, but the absolute difference with the case when all superpages are supported

is under 1%, with the only exception of linker, whith -1.14%.

‘ Benchmark H All sizes

| Dynamicthree || % Difference

CINT 2000
gzip 1.000 1.000 0.00
vpr 1.367 1.376 0.01
gce 1.012 1.017 0.49
mcf 1.707 1.705 -0.12
crafty 1.083 1.080 -0.28
parser 1.081 1.081 0.00
eon 1.000 0.999 -0.10
perl 1.031 1.028 -0.29
gap 1.068 1.064 -0.37
vortex 1.125 1.122 -0.27
bzip2 1.082 1.072 -0.92
twolf 1137 1.136 -0.09
Web 1.094 1.085 -0.82
Image 1.379 1.379 0.00
Linker 1.401 1.378 -1.14
C4 1.279 1.281 0.16
Tree 1.312 1.322 0.76
SP 1.063 1.058 -0.47
FFTW 1.134 1.131 -0.26
Matrix 5.148 5.097 -0.99

Table 6.3 : Speedups for all seven sizes compared to speedups for three sizes dynamically chosen.



73

Chapter 7

Memory compaction in theidleloop

In an idle or partially idle system, spare CPU cycles can be used to regain contiguity by
compacting memory. Memory compaction consists of relocating pages to reorganize mem-
ory in a way such that free pages are physically contiguous and suitable for superpage use.

Spare cycles are available in servers due to uneven load, and in workstations due to
inactivity periods. By using these cycles, memory compaction can complement the con-
tiguity recovery mechanism based on page eviction described in Section 5.5. A proactive
compaction approach can help applications run faster before the reactive eviction mecha-
nism triggers.

This chapter proposes and evaluates a memory compaction algorithm for the idle loop

that balances the relocation impact against the performance potential of superpages.

7.1 A memory compaction algorithm

From a high level standpoint, the goal of a compaction algorithm is straightforward: to
maximize contiguity in the system at the minimum cost. The question is, how do we
measure contiguity and what exactly are the costs involved in relocation?

The fact that compaction is done in the idle loop, i.e., only when there is nothing else
to do, imposes several requirements. The compactor can be interrupted at any time and for
arbitrarily long periods; by the time it resumes, memory layout can be completely different.
We therefore want to do the job in a way that provides incremental benefits. A corollary of
this requirement is that the algorithm must not spend too much time thinking what to do.
Furthermore, page allocations should not only be allowed while the compactor runs, but

they also should not undo the job of the compactor, i.e., they should not occur in the middle



74

of a chunk the compactor is trying to make available. In essence, this last point means that
there must be some synchronization between the compactor and the allocator.

Finally, current superpages and reservations must be brought into the equation, since
they must be relocated together as a block. A sketch of an algorithm that fulfills these

requirements follows:

1. Within a set of candidate chunks to vacate, pick the one with the best cost/benefit

ratio.

2. Do not allow the page allocator to pick frames from this chunk, unless it has no

alternative. If the latter happens, start over.

3. Vacate the selected chunk by moving occupied pages to free frames outside the
chunk. Relocate reservations and superpages as a block, and carefully pick the desti-
nation so as to not fragment memory. Also, be greedy to obtain incremental benefits:
start relocating those pages that provide the most contribution to contiguity at the

smallest cost.

4. Repeat.

The following sections discuss how to compute the cost and benefit of vacating a given

chunk, which is required by the first and third steps above.

7.1.1 Thecost

To compute the cost of vacating a chunk, we use a simple metric that relates directly to the
cost in cycles, which is the number of occupied pages in the chunk, that is, the number of
pages that must be relocated.

Note that, although spare cycles are available, we want to use them effectively, since
every cycle spent in migrating a page cannot be used for migrating other pages or for other

idle loop tasks such as zeroing out free pages.



75

When a page is relocated, the page tables of each process that has the page mapped need
to be updated with the new physical address of the page. This remapping is not necessarily
uniform, because shared pages have a higher cost given that they have more mappings,
while cache pages have no remapping cost. However, since it is much smaller than the

copying cost, it is not considered in our metric.

7.1.2 Thebenefit

The benefit of vacating a given chunk is, in simple terms, the contiguity provided by the
chunk minus the contiguity required to evacuate it. The complexity in this definition is
hidden in the concept of contiguity. Instead of measuring contiguity in absolute terms,
we propose to consider the relative value of that contiguity in relation to what is currently
available, motivated by the following example.

Consider two 4MB candidate chunks with the same evacuation cost, but one containing
only base pages and the other containing base pages plus one 1MB superpage; the latter
therefore needs a 1MB free chunk to evacuate the superpage. If free memory in the system
consists of a very large number of 1MB and smaller chunks, then it makes little difference
to pick one or the other. On the other hand, if free memory consists of one 1IMB chunk
and many smaller ones, then we should prefer the first chunk to spare the only 1MB chunk
available. More to the extreme, if there is no 1MB chunk available, then we simply cannot
pick the second candidate, because there is no place where to move the existing superpage
without breaking it. Breaking a superpage or reservation with the purpose of obtaining con-
tiguity for a future reservation, at the additional relocation expenses, is not sensible since
the system has no way of predicting that a future reservation will provide more benefits
than an existing one.

Our metric for contiguity is based on the TLB coverage that a new process can obtain
with the existing free chunks of memory. Define 7 as the number of entries in the TLB, for
now, and define /C; as the size of the 5™ largest free chunk. Then, the coverage C provided

by the free chunks — which we will hereinafter call the buddy coverage, given that free



76

pages are managed in a buddy system — is the sum of the sizes of the largest 7 chunks:

.
C=> K
=0

assuming, for now, that there are at least 7 free chunks.

This way of defining contiguity means that we consider as valuable sizes only those
that are at least as large as the largest 7 chunks currently in the free list. As an example,
assume 7 = 8 and suppose that the free list is composed of one 4MB chunk, four 1IMB

chunks, and many 64KB chunks, i.e., in KB,

K, ..., Ks = 4096,1024, 1024, 1024, 1024, 64, 64, 64

In this scenario, if we consider to vacate a 4MB chunk containing four 1MB reserva-
tions, then we would obtain a buddy coverage increase of 192KB. We will obtain a 4MB
chunk at the expense of the four LMB ones required to hold the reservations. The net effect

is thus that three 64KB chunks will get into the largest 8:
Ky, ..., Ks = 4096,4096, 64, 64, 64, 64, 64, 64

On the other hand, if we vacate a 4MB chunk that only contains 64KB reservations,
then the coverage increase would be 4032KB (4MB — 64KB), reflecting the lack of value
of 64KB chunks since there are plenty of them:

Ky, ..., Ks = 4096,4096, 1024, 1024, 1024, 1024, 64, 64

Basing the computation of the benefit on this metric will therefore make the algorithm
tend to choose large chunks (chunks that are at least as large as KC7), and chunks that do
not contain relatively large reservations inside. Also, since the benefit is divided by the
number of populated pages, it allows us to choose between a fully-occupied large chunk

and a lightly occupied small one.



77

7.1.3 What TLB sizetotarget

The Itanium processor has three TLBs with different sizes: the first-level data TLB has 32
entries, the second-level data TLB has 96 entries, and the instruction TLB has 128 entries.
There is, therefore, several possible values for 7. Multiprocessor machines multiply the
number of choices for 7, since one could give good arguments to base it in the number
of entries per processor, and good arguments to base it in the total number of TLB entries
in the machine. This section describes how this decision is made uncritical with a small
change in the algorithm.

Note that a special case occurs when there are fewer than 7 free chunks in the system,
because in this case any further compaction will not change the buddy coverage. Similarly,
once 7 chunks of the largest supported size have been recovered, no further compaction
will increase the buddy coverage. This is an indication that the system is in a state where
the potential benefits of compaction are likely to be marginal. In particular, a new process
for which there is enough memory is guaranteed to get enough TLB coverage without any
further compaction.

Since the buddy coverage is equal to the amount of free memory in the system, the
compactor could declare its job done and stop until memory conditions change. Instead,
we set a new goal for the compactor, by redefining 7 and hence changing the computation
of coverage: whenever there are more than 7 free chunks of the largest size or fewer than
T chunks in total, we change 7 by doubling or halving it as many times as necessary.

In essence, this means that the system picks a value for 7 depending on the configu-
ration of the free lists. The advantage is that now only a non-crucial initial value for 7
needs to be provided. The disadvantage is that the compactor may compact beyond what
is necessary. In our implementation the compactor runs at a strictly lower priority than the
only other idle loop task, which is the zeroing out of pages. Therefore this disadvantage
does not exist, since the cycles spent by the compactor cannot be spent in anything else. A

different implementation may choose to run the compactor at the lowest priority within the



78

idle loop only if the actual value for 7 differs significantly from the initial one.

7.2 Selecting a chunk to vacate

Every superpage-sized and naturally aligned chunk of physical memory is a potential can-
didate for evacuation. For every candidate, we need to evaluate its cost and benefit. How-
ever, we can discard chunks that are larger than the total amount of free memory, since they
cannot be fully evacuated.

To compute the cost of vacating a chunk we simply count the number of occupied pages
in the chunk. However, we consider that chunks that have wired pages have infinite cost,
since wired pages cannot be moved. To compute the benefit, we calculate the current buddy
coverage and subtract it from the coverage resulting from the hypothetical evacuation of the
candidate chunk. We take into account the allocation needs for evacuating the candidate,
and the fact that these allocations might result in the breakage of free chunks larger than
requested in the absence of free chunks of the proper size.

Conceptually, the algorithm to select a chunk to vacate is the following. Let F' be the
total amount of free memory, rounded down to a superpage size, i.e., F' is the largest chunk

size that should be targeted for evacuation. Then,

coverageO = current buddy coverage
for all superpage sizes S fromthe smallest to F
for all chunks C of size S
if no wired pages in the chunk
cost = nunber of occupi ed pages
si mul at e evacuati on of chunk
coveragel = buddy coverage in sinulation
benefit = coveragel — coverage0O
if cost/benefit is best so far
best _chunk = C



79

In practice we trade accuracy for time and examine just a portion of physical memory
each time. After computing the cost and benefit of every candidate chunk in the selected
memory region, we pick the one with the lowest cost-to-benefit ratio. Once this chunk is
evacuated, the cycle is repeated in a different portion of physical memory.

Also, for performance reasons, in our implementation of the algorithm we visit each
page (or rather, the structure that contains its information) only once. We traverse the array
of page structures counting the number of occupied pages. Every time we hit a superpage
boundary, we update the cost for all superpage-sized chunks that end in that boundary, and
compute their benefits.

Note that this algorithm may move more pages than necessary to achieve maximum
compaction. It can even move the same page more than once. For instance, in the context
of a hypothetical system with superpages of size 2, 4 and 8 base pages, consider what

happens if 7 = 2 and memory has the state depicted in Figure 7.1.

A B|C|D|E|F |G |H I |J|K|L[M[N

L 1 1 1 1 1 1

0 4 8 12 16 20

Figure 7.1 : A possible status of memory. Shaded blocks represent occupied pages.

In this situation, the buddy coverage is 6 pages, and the best cost/benefit migration
operation is to move page A to frame 4, which would increase the coverage to 8 pages.
After that operation is complete, the next move would be to obtain an 8-page superpage by
migrating either the first or the second group of four pages to the adjacent 8-page chunk,
yielding a new coverage of 10 pages. Note that, depending on how the algorithm resolves
ties, the next page to move might be A, the very same page that was last moved.

There are two justifications for this seemingly suboptimal behaviour. First, avoiding it
involves complex trade-offs. When migrating a page, the destination frame must be chosen

not only according to how much contiguity is lost by using that frame, but also according



80

to how likely it is that the frame belongs to a chunk that may be chosen for evacuation in
the near future. This in turn affects the computation of the benefits of evacuating a chunk,
which would increase the “think time” of the algorithm. Longer times to make decisions
go against one of the requirements stated at the beginning of this chapter.

Second, in some situations it might be better to move the same page twice. Consider
again the example in Figure 7.1, and note that if we move page A directly to frame 12,
then the buddy coverage would actually be reduced while the copy is taking place. This

reduction does not occur if we move page A first to frame 4 and then to frame 12.

7.3 Vacating the selected chunk

The selected chunk is vacated in greedy order: it is divided into subregions of the next
smaller superpage size and these subregions are vacated in ascending order of their cost/benefit
values, recursively applying the same evacuation procedure to each. If a page reloca-
tion fails, (for instance, because the source page became wired for 1/0O), the evacuation
is aborted and a new iteration to select another candidate is started.

Special care must be taken when moving reservations: only after the last page is copied
to its new location, the population map to which the reservation belongs is updated with
the new physical address, and the vacated space is returned to the buddy allocator.

To synchronize the compactor with the allocator, we use a pair of global variables to
indicate the starting address and length of the chunk being evacuated. The buddy allocator
refrains from allocating memory within that range, unless (1) it has no alternative, or (2)
the only alternative is to break a free chunk of the same or larger size as the one being
vacated. In either case, the compactor aborts its current task and restarts the algorithm
from the beginning.

When a page is relocated, the page table entries that refer to the page must be either
eagerly updated with the new physical address of the page, or invalidated to force lazy
updates through page faults. We prefer eager updating because the page table entries must

be modified anyway and hence we save the page fault costs of invalidation, essentially



81

for free.

Finally, since the FreeBSD kernel is not preemptible, we have to avoid holding the CPU
for too long during the evacuation of a large chunk. We therefore check at various points
whether there is any process ready to run, and if so yield the CPU. Specifically, we intro-
duce a yield point after a number of pages have been scanned (500 in our implementation)

and also after each page is copied; page relocation is thus atomic on a page basis.

7.4 Evaluation

The compactor is evaluated in the same platform as the one described in the previous chap-

ter, in Section 6.1, i.e., an Itanium workstation with 2GB of RAM.

7.4.1 Scanning

In an idle system with plenty of free memory, the compactor quickly reaches a steady state
in which it keeps scanning physical memory unsuccessfully trying to find pages to move
that would increase contiguity in the system. This state is reached because as memory gets
compacted, the compactor starts targeting larger chunks to evacuate, since small ones do
not contribute to any increase in the buddy coverage. However, there is a point at which no
large chunk can be evacuated because all potential candidates contain wired pages. After
an unsuccessful scan cycle the compactor could sleep until memory status changes, but in
our implementation it keeps scanning.

In such a steady state, provided there are no other idle-loop tasks, the compactor com-
pletes about 390 full memory scans per second in our 2GB platform. While scanning rate
is irrelevant in steady state, faster rates means less time spent scanning whenever there is
compaction work to do. The scanning rate can be increased with two simple optimizations.

First, the compactor can “jump” over free blocks, since there is no need to scan every
base page; the way the buddy allocator is implemented allows it to determine the presence
and size of a free block on hitting the first page of the block.

Second, when hitting a wired page, the compactor can ignore an entire block of pages



82

and continue scanning after that block. The size of such block is given by the minimum
block size the compactor is interested in, which is precomputed at the beginning of each
run. From the definition of buddy coverage, that minimum size corresponds to the size of
the 7™ largest free chunk, because the buddy coverage will not change if chunks smaller
than that are made available.

With these optimizations the scanning rate increases to 3470 full scans per second for
the same scenario as above. As memory gets closer to full utilization, the rate gets slower
and approaches the original value, reaching a minimum of 420 scans per second, because
the compactor finds fewer and smaller free chunks to skip, and it also ignores only small
regions surrounding a wired page because the minimum candidate size is smaller in such

conditions.

7.4.2 Effectiveness

To test the effectiveness of the compactor, we start from a state of maximum memory
fragmentation where every other physical page is free. To achieve this state, we force the
system to use all the available memory for large reservations, then populate every other
page in those reservations, and finally break all the reservations. For this purpose only,
we expose the reservation preemption function through a system call. This way, a simple
user process that maps a 1.9GB memory region and touches every other page in the region
before using this system call will bring memory to a fully fragmented state, where there are
116576 single-page chunks in the free lists.

At a CPU utilization close to 99%, since there are no other active tasks in the system,
the compactor takes 4.5 seconds to reach steady state. In that time it migrates 85027 pages
(at a rate of 147MB per second) to make twelve 64MB chunks, ten 16MB chunks, two 4MB
chunks, and a few smaller ones. The same level of compaction could have been achieved
by moving only 61550 pages. The extra 23487 pages is therefore the cost of the algorithm’s
greed and rush.

Next, we repeat the experiment but with memory fragmented in a random manner: the



83

1.9GB address space of the process is populated by alternating allocated chunks and unused
chunks. These chunks have a random length, measured in pages, between 1 and 2", where
n is uniformly distributed between 1 and 9. The graph in Figure 7.2 shows how the buddy
coverage increases as a function of the number of migrated pages. As expected, the curve
has a convex shape, demonstrating the fact that the algorithm gives preference to migrating
the pages that provide the largest coverage increase. The curve has some local concavities,
due to the fact that the algorithm is not able to examine all possible candidates in each

cycle, and possibly also due to small changes in memory status while the algorithm runs.

1000 T T T T T T

900

800

700

o
2 600 4
(4]
o
o
¢  s00 .
(=}
O
400 .
300 .
200 .
100 Il Il Il Il Il Il
0 10000 20000 30000 40000 50000 60000 70000
Pages moved
Figure 7.2 : Buddy coverage as a function of number of page migrations.
743 Impact

To measure the impact of the compactor, we again start from a state of full memory frag-
mentation, and run a kernel build, excluding the final linking phase. If the cache is cold,

the blocking time due to 1/O leaves about 4% of CPU to the idle loop, in what can be con-



84

sidered a fairly common scenario. The compactor gets most of the cycles of the idle loop,
since the page zeroing task takes only one fifth of these cycles. In the roughly 90 seconds
that the build takes, the compactor is able to move 47768 pages to reach a buddy coverage
of 722MB. In contrast, without compaction, the buddy coverage remains minimal at 1LMB
throughout the experiment.

On the other hand, the kernel build takes longer when the compactor is making use
of the idle cycles, but only by 2.2%. This is due to the cache pollution effect of page
migration, and to the fact that the FreeBSD kernel is not preemptible. As a consequence of
the latter, when the build process becomes ready — in spite of its higher priority — it still

has to wait for the compactor to reach a yield point before acquiring the CPU.

7.4.4 Overall

We now repeat the experiment of Section 5.5.1, where we run FFTW four times in sequence
after the web server benchmark. This time we use the compactor in place of the contiguity-
aware page daemon as a fragmentation control mechanism.

To make the fragmenting effect of the web server noticeable, and also to run this ex-
periment under the same conditions as the one in Chapter 5, we fooled the system into
believing that the total physical memory was only 512MB.

When the web server terminates, the amount of free memory in the system is only
21MB, fragmented to the extent that it provides a buddy coverage of 17MB. Since FFTW
starts immediately, the compactor gets to relocate only 12 pages using the few idle cycles
that are available while FFTW’s binary is read form disk. Once FFTW consumes most of
the free memory, the page eviction mechanism is used to keep a pool of free pages. This
pool provides very little contiguity because pages are not evicted in physical order, but in
LRU order. As a consequence, FFTW runs with no speedup because it gets insufficient
TLB coverage. With superpages no larger than 1MB, its TLB coverage is only 35MB,
representing 14% of its 247MB footprint. With no available cycles to perform relocation,

subsequent runs of FFTW are no different, because they get the same physical memory



85

pages.
Figure 7.3 shows how speedup changes when a 2-second pause is inserted before each

FFTW run, mimicking an interactive workstation session. While the compactor is able
to make most of the free 21MB contiguous, providing three 4MB superpages, it does not
significantly change the coverage that the first FFTW run obtains. However, once this
instance of FFTW terminates and returns its memory to the system, there are 266MB of
free memory for the compactor to make contiguous. As a consequence, the next FFTW runs

obtain enough contiguity to build twelve 16MB superpages, enough to reach full speedup.

2 [ONo pause M 2-sec pause

Best case speedu
o
=]
D 1
0]
o
0
0
1 2 3 4
FFTW runs
i .
{time | >

Figure 7.3 : Compaction in a busy versus partially busy system.

7.5 Discussion

This chapter showed that memory compaction in the idle loop is a viable and low-impact
mechanism to restore contiguity in a system with fragmented memory.

Page replacement biasing, as described in Section 4.10.1, is an alternative fragmenta-
tion control mechanism. Although we did not run these two mechanisms together, we claim
that they can be used simultaneously as complementary approaches. Compaction requires
two elements that are not always present: available CPU cycles and free memory. Page

replacement biasing, in contrast, performs well both in busy systems, because it requires a



86

minimal amount of CPU just to decide what pages to evict, and in low memory situations,
because it regains contiguity regardless of the amount free memory. On the other hand,
it is a reactive mechanism that adjusts its work according to the perceived need for conti-
guity, which may take longer and not necessarily provide enough contiguity to match the
requirements of the application that runs next.

The maximum amount of contiguity that the eviction-based mechanism can recover is
limited by the distribution of wired and active pages in physical memory. For a compaction-
based mechanism like the one described in this chapter, it is limited by wired pages and
the amount of free memory. In the best case it will make all of free memory contiguous;
if there is a small amount of free memory, it will be of little help for a contiguity-hungry
application. However, it is conceivable to drop this limitation if the compactor moves pages
around trying to make the replacement order match physical order. In an ideal and extreme
case, assuming LRU page replacement, the compactor would place all free memory at
the lowest addresses, followed by the least recently used pages, and so on, with the most
recently used pages in the highest addresses. In this case the job of the page daemon would
be nothing more than to move upward the physical address mark that divides free memory
from used memory, increasing both free memory and contiguity at the same time.

Another approach to fragmentation control also based in page migration would be to
use spare CPU cycles to relocate existing pages and build superpages to increase the TLB
coverage for currently running processes. We did not consider this approach since it is
much more likely to have free cycles between process runs than during a process run, and
hence it is better to compact memory in preparation for future runs than to fix the memory
layout of currently running processes.

Memory compaction will become more attractive with the new generation of memory
controllers that allow memory movement without the intervention of the processor, and
hence without cache pollution [41]. Note that our cost/benefit algorithm does not need
to be changed in this new scenario, since the main cost of moving pages will still be the

opportunity cost.



87

Chapter 8

Concluding remarks

In this final chapter we show how this thesis compares with previous work on superpages,
describe areas that were not explored but still look promising, and then present our conclu-

sions.

8.1 Comparison with previous work

Previous work relating to superpages was described in detail in Chapter 3. It includes
superpage support available in some commercial operating systems [28, 85], which lacks
the transparency that our solution offers.

Here we revisit the two previous efforts that lie in the area of transparent support for
superpages without unconventional hardware support. They explore solutions for spe-
cific points in the problem space, omitting matters such as those derived from the coarse
dirty/reference information in superpages. This thesis offers an integral solution that tack-
les all the issues.

Talluri and Hill were the first to propose the use of reservations as a mechanism to deal
with the allocation problem [87]. Their study is, however, limited to the support of only
one superpage size. We proved in Sections 5.4 and 6.6.3 that, in order to fully realize the
potential of superpages, multiple superpage sizes are necessary, which our system supports
in a scalable way. Talluri and Hill also do not address fragmentation control, which is
fundamental to provide sustainable benefits.

Page relocation is used by Romer et al. [71] in a different way than the memory com-
pactor described in the previous chapter. They relocate pages to make them contiguous and

create a superpage whenever a cost/benefit analysis determines that the benefits are likely



88

to outweigh the copying costs. Apart from the fact that TLB misses need to be monitored,
making them more expensive, the problem with the proposed approach is that the relocation
costs must be paid even if there is plenty of contiguity available.

On the other hand, since the system creates superpages only when and where needed, it
conserves contiguity better than our solution. Fragmentation, however, cannot be avoided,
but the authors do not extend the design to address the case when a contiguous memory

region is not available as a destination for the pages to be relocated.

8.2 Unexplored alternatives

The design space for a complete solution to the problem of transparently supporting super-
pages proved to be vast. Here we describe some promising areas that we did not explore.

For the allocation problem an interesting option is to use what we call implicit reserva-
tions. In that approach, when a frame is needed for a page that has no implicit reservation,
the page is placed in a region of physical memory that has enough free frames to create a
superpage of the desired size. However, no reservation is explicitly made; the sole presence
of the page constitutes an implicit reservation on the neighboring frames since unrelated
pages will prefer to be assigned to other, less crowded regions of physical memory.

This model can be refined to consider a region crowded based not just on the free or
occupied status of its frames, but also on the recency of the last access to occupied frames.
One advantage of this approach is that, in the same way that the implicit reservations be-
come smaller on memory pressure, they can become larger if pressure decreases. Another
is that there is no hard limit on what is available for allocating a contiguous region: regions
with active pages are not unavailable, but just relatively less available than regions with
inactive pages. For that reason, this approach subsumes the contiguity restoration mecha-
nism based on page replacement biasing. This mechanism, however, has to deal with many
decisions that involve complex trade-offs, and seems difficult to implement without a steep
bookkeeping overhead.

For promotions, our opportunistic policy that incrementally creates superpages may



89

be subject to a potentially high page-table overhead in the worst case. We tackle this
problem by supporting a reduced number of sizes on a per-reservation basis, as described
in Section 6.6.4. An alternative is to delay promotions a little so that when a reservation
gets fully populated quickly it will become a superpage at once without intermediate steps.
An adversary can still force the overhead of incremental promotions, but it would be a
much more convoluted case, especially if the delay is measured in virtual time. Apart from
introducing another parameter that must be tuned, the disadvantage is a potentially smaller
speedup in some cases, since superpages are not created as quickly as they could be.

Another technique that can be used to improve the effectiveness of superpages when
contiguity is scarce is to rely on past history to predict the future, and use appropriate
amounts of contiguity to create superpages only where it is likely that they provide ben-
efits. For instance, our experience shows that most processes have a minor overhead in
instruction TLB misses. This fact could be used to simply not waste contiguity in memory
regions that hold code. Or, instead of treating all processes equally, we could use code-
segment superpages only for those processes that are running a binary that has shown high
instruction TLB miss overhead in the past, provided it is feasible to monitor TLB misses.
One issue that this approach must consider is that process behaviour, particularly data TLB
miss overhead, is likely to depend on the input size and characteristics.

Another area that has room for further research is what to do with extra processor cycles
in the idle loop, after the compactor has done its part. In the previous chapter we already
hinted at the idea of reducing the impact of the contiguity-aware page daemon, which
is caused mainly by the deviation of the page replacement algorithm from the original
approximate LRU. By moving pages around in a way such that the pages to be chosen next
according to the original replacement algorithm are physically contiguous, this deviation
can be minimized. Similarly, inactive pages that wind up as part of a reservation can
be moved elsewhere to avoid breaking the reservation if such pages are accessed again.
Finally, the zeroing out of free pages can be extended to consider pages that are part of

reservations.



90

8.3 Conclusions

Superpages are physical pages of large sizes, which may be used to increase TLB cover-
age and thus improve application performance because of fewer TLB misses. However,
supporting superpages poses several challenges to the operating system, in terms of super-
page allocation, promotion trade-offs, and fragmentation control. This dissertation ana-
lyzes these issues and presents a complete, transparent, and effective solution to the prob-
lem of superpage management in operating systems. It describes a practical design and
demonstrates that it can be integrated into an existing general-purpose operating system.

The system balances various trade-offs by using preemptible reservation-based alloca-
tion for superpages, an opportunistic policy to determine reservation sizes, and incremental
promotion and speculative demotion techniques. The system is evaluated on a range of
real workloads and benchmarks, on two different platforms, observing performance ben-
efits of 30% to 60% in several cases. The overall improvement for the CPU2000 integer
benchmarks is 11.2% in an Alpha platform and 12.7% in an Itanium-based machine. The
overheads are small, and the system is robust even in pathological cases.

Support for multiple page sizes, from small to very large ones is important because
superpage size requirements are different not only across processes, but sometimes also
within processes. The system supports multiple sizes in a way that scales to very large
superpages. However, typical page-table designs are not friendly towards supporting many
sizes at once. To keep page-table overhead low, the system dynamically picks a limited
number of sizes to support. The way in which these sizes are picked match the actual
requirements very well, and hence the worst-case page-table overhead is reduced with no
noticeable impact in the speedup achieved in the benchmarks.

Contiguity restoration is indispensable to sustain these benefits under complex work-
load conditions and memory pressure. Two low-impact complementary techniques that ef-
fectively keep memory fragmentation bounded were proposed and evaluated. One is based
in a contiguity-aware page replacement algorithm, and the other is a greedy superpage-

oriented compaction algorithm.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

91

Bibliography

A.W. Appel and K. Li. Virtual memory primitives for user programs. In Proceedings
of the Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 96-107. ACM Press, 1991.

T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Streamlining data cache ac-
cess with fast address calculation. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 369-380. ACM Press, 1995.

D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow. The
NAS Parallel Benchmarks 2.0. Report NAS-95-020, NASA Ames Research Center,
Moffett Field, CA, 1995.

K. Bala, M. F. Kaashoek, and W. E. Weihl. Software prefetching and caching for
translation lookaside buffers. In Proceedings of the First Symposium on Operating

Systems Design and Implementation, pages 243-253, 1994.

E. Balkovich, W. Chiu, L. Presser, and R. Wood. Dynamic memory repacking.
Communications of the ACM, 17(3):133-138, 1974.

O. Ben-Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman. An algo-
rithm for parallel incremental compaction. In Proceedings of the Third International
Symposium on Memory Management, pages 100-105, Berlin, Germany, June 2002.
ACM Press.

B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen. Avoiding conflict misses

dynamically in large direct-mapped caches. In Proceedings of the Sixth International



[8]

[9]

[10]

[11]

[12]

[13]

[14]

92

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 158-170, San Jose, CA, 1994.

D. Black, J. Carter, G. Feinberg, R. MacDonald, S. Mangalat, E. Shienbrood, J. V.
Sciver, and P. Wang. OSF/1 virtual memory improvements. In USENIX, editor,
Proceedings of the USENIX Mach Symposium, pages 87-103, Berkeley, CA, 1991.
USENIX.

D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill, and R. V. Baron. Translation
lookaside buffer consistency: a software approach. In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 113-122, New York, NY, 1989. ACM Press.

A. Braunstein, M. Riley, and J. Wilkes. Improving the efficiency of UNIX file buffer
caches. In Proceedings of the 12th ACM Symposium on Operating System Princi-
ples, pages 71-82, Dec. 1989.

R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling
and page migration for multiprocessor computer servers. In Proceedings of the 6th
International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 12—-24, 1994,

C. Chao, M. Mackey, and B. Sears. Mach on a virtually addressed cache architecture.
In Mach Workshop Conference Proceedings, October 4-5, 1990. Burlington, VT,
Berkeley, CA, 1990. USENIX.

J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based study of TLB perfor-
mance. In Proceedings the 19th Annual International Symposium on Computer Ar-
chitecture, pages 114-123, Gold Coast, Australia, May 1992.

R. Cheng. Virtual address cache in UNIX. In Proceedings of the Summer 1987
USENIX Conference: Phoenix, AZ, pages 217-224, Berkeley, CA, Summer 1987.
USENIX.



93

[15] T. cker Chiueh and R. H. Katz. Eliminating the address translation bottleneck for
physical address cache. In Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
137-148, 1992.

[16] D. W. Clark and J. S. Emer. Performance of the VAX-11/780 translation buffer:
Simulation and measurement. ACM Transactions Computer Systems, 3(1):31-62,
Feb. 1985.

[17] E. Cooper, S. Nettles, and I. Subramanian. Improving the performance of SML
garbage collection using application-specific virtual memory management. In Pro-
ceedings of the 1992 ACM Conference on LISP and Functional Programming, pages
43-52. ACM Press, 1992.

[18] P.J. Denning. The working set model for program behavior. Communications of the
ACM, 11(5):323-333, 1968.

[19] P.J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153-189, 1970.
[20] P. J. Denning. Virtual memory. ACM Computing Surveys, 28(1):213-216, 1996.

[21] C. Dougan, P. Mackeras, and V. Yodaiken. Optimizing the idle task and other MMU
tricks. In Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI1°99), pages 229-237, 1999.

[22] R. P. Draves. Page replacement and reference bit emulation in Mach. In Proceed-
ings of the USENIX Mach Symposium, pages 201-212, Berkeley, CA, USA, 1991.
USENIX.

[23] B. et al. A 32 bit microprocessor with on-chip virtual memory management. In
Proceedings of the IEEE International Solid State Conference, pages 178-179, 1984.

[24] Z. Fang, L. Zhang, J. Carter, S. McKee, and W. Hsieh. Reevaluating online su-

perpage promotion with hardware support. In Proceedings of the 7th International



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

04

IEEE Symposium on High Performance Computer Architecture, Monterrey, Mexico,
Jan. 2001.

FIPS 180-1. Secure Hash Standard. Technical Report Publication 180-1, Federal
Information Processing Standard (FIPS), National Institute of Standards and Tech-

nology, US Department of Commerce, Washington D.C., Apr. 1995.

J. Fotheringham. Dynamic storage allocation in the atlas computer, including an
automatic use of a backing store. Communications of the ACM, 4(10):435-436,
1961.

M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, volume 3, Seattle, WA, 1998.

N. Ganapathy and C. Schimmel. General purpose operating system support for mul-
tiple page sizes. In Proceedings of the USENIX 1998 Annual Technical Conference,
Berkeley, CA, 1998.

R. Gingell, J. Moran, and W. Shannon. Virtual memory architecture in SunOS.
In Proceedings of the Summer 1987 USENIX Technical Conference, pages 81-94.
USENIX, June 1987.

J. R. Goodman. Coherency for multiprocessor virtual address caches. In Pro-
ceedings of the Second International Conference on Architectual Support for Pro-
gramming Languages and Operating Systems, pages 72-81. IEEE Computer Society
Press, 1987.

B. Haddon and W. Waite. A compaction procedure for variable length storage ele-
ments. The Computer Journal, 10(2):162-165, Aug. 1967.

K. Harty and D. R. Cheriton. Application-controlled physical memory using external

page-cache management. Technical Report CS-TR-91-1394, Stanford University,



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

95

Department of Computer Science, Oct. 1991.

J. L. Hennessy and D. A. Patterson. Computer Architecture—A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Los Altos, CA, second edition, 1996.

J. L. Hennessy and D. A. Patterson. Computer Architecture—A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Los Altos, CA, third edition, 2002.

J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millen-
nium. IEEE Computer, 33(7):28-35, July 2000.

V. Henson. An analysis of compare-by-hash. In Proceedings of the 9th Workshop on
Hot Topics in Operating Systems (HotOS 1X), Berkeley, CA, May 2003. USENIX.

J. Huck and J. Hays. Architectural support for translation table management in large
address space machines. In Proceedings of the 20th Annual International Sympo-
sium on Computer Architecture, pages 39-51, San Diego, CA, May 1993. IEEE

Computer Society Press.

L. Iftode, J. P. Singh, and K. Li. Understanding the performance of shared virtual
memory from an applications perspective. In Proceedings of the 23rd Annual Inter-
national Symposium on Computer Architecture, pages 122-133. ACM Press, May
1996.

Imagemagick. http://www.imagemagick.org.

J. Inouye, R. Konuru, J. Walpole, and B. Sears. The effects of virtually addressed
caches on virtual memory design and performance. ACM SIGOPS Operating Sys-
tems Review, 26(4):14-29, 1992.

Intel 80321 1/O processor DMA and AAU library APIs and testb ench. Technical
Report 273921-001, Intel Corp, 2001.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

96

B. Jacob and T. Mudge. Software-managed address translation. In Proceedings of
the Third International Symposium on High Performance Computer Architecture,

pages 156-167, Los Alamitos, CA, 1997. IEEE Computer Society Press.

B. Jacob and T. Mudge. Virtual memory in contemporary microprocessors. IEEE
Micro, 18(4):60-75, July/Aug. 1998.

T. Kagimasa, K. Takahashi, T. Mori, and S. Yoshizumi. Adaptive storage manage-
ment for very large virtual/real storage systems. In Proceedings of the 18th Interna-
tional Symposium on Computer Architecture, pages 372-379, New York, NY, June
1991. ACM Press.

G. B. Kandiraju and A. Sivasubramaniam. Characterizing the d-TLB behavior of
SPEC CPU2000 benchmarks. In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, Marina del Rey, CA, June
2002.

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, Upper Saddle
River, NJ, 1992.

R. E. Kessler and M. D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems, 10(4):338-359, Apr. 1992.

R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive implementations
of set-associativity. In Proceedings of the 16th Annual International Symposium
on Computer Architecture, pages 131-139, Jerusalem, Israel, 1989. IEEE Computer

Society Press.

Y. A. Khalidi, M. Talluri, M. N. Nelson, and D. Williams. Virtual memory support
for multiple page sizes. In Proceedings of the Fourth IEEE Workshop on Workstation
Operating Systems, Napa, CA, 1993.



97

[50] J.-S. Kim and Y. Hsu. Memory system behavior of Java programs: Methodology
and analysis. In Proceedings of the International Conference on Measurements and

Modeling of Computer Systems, pages 264-274. ACM Press, 2000.

[51] D. E. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algo-
rithms. Addison-Wesley, Massachusetts, 1968.

[52] F. F. Lee. Study of ‘look aside’ memory. IEEE Transactions on Computers,
18(11):1062-1064, 1960.

[53] R. B. Lee. Precision architecture. Computer, 22(1):78-91, Jan. 1989.

[54] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems (TOCS), 7(4):321-359, 1989.

[55] K. Li,J.F. Naughton,and J. S. Plank. Real-time, concurrent checkpoint for parallel
programs. In Second ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 79-88. ACM Press, 1990.

[56] W. L. Lynch, B. K. Bray, and M. J. Flynn. The effect of page allocation on caches.
In Proceedings of the 25th Annual International Symposium on Microarchitecture,

pages 222-225. IEEE Computer Society Press, 1992.

[57] J. Mauro and R. McDougall. Solaris Internals. Prentice-Hall, Upper Saddle River,
NJ, 2001.

[58] M. McKusick, K. Bostic, M. Karels, and J. Quarterman. The Design and Implemen-
tation of the 4.4BSD Operating System. Addison-Wesley, Reading, MA, 1996.

[59] M. Milenkovic. Microprocessor memory management units. IEEE Micro, 10(2):70—
85, Apr. 1990.

[60] J. C. Mogul. Big memories on the desktop. In Proceedings of the Fourth IEEE
Workshop on Workstation Operating Systems, Napa, CA, Oct. 1993.



98

[61] D. Mosberger and S. Eranian. 1A-64 Linux kernel: design and implementation.
Hewlett-Packard professional books. Prentice-Hall PTR, Upper Saddle River, NJ,
2002.

[62] J. Navarro, S. lyer, P. Druschel, and A. Cox. Practical, transparent operating system
support for superpages. In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI°02), Boston, MA, Dec. 2002.

[63] M. Nelson, B. Welch, and J. Ousterhout. Caching in the sprite network file system.
Operating Systems Review, 21(5):3-4, 1987.

[64] Y. Park, R. Scott, and S. Sechrest. Virtual memory versus file interfaces for large,
memory-intensive scientific applications. In Proceedings of Supercomputing’96,
Pittsburgh, PA, Nov. 1996. IEEE.

[65] J. L. Peterson and T. A. Norman. Buddy systems. Communications of the ACM,
20(6):421-431, June 1977.

[66] J.  Poskanzer. thttpd -  tiny/turbo/throttling  HTTP  server.

http://www.acme.com/software/thttpd.

[67] J. Protic, M. Tomasevi¢, and V. Milutinovi¢. Distributed shared memory: concepts

and systems. IEEE Press, Aug. 1997.

[68] B. Randell and C. J. Kuehner. Dynamic storage allocation systems. Communications
of the ACM, 11(5):297-306, 1968.

[69] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Bar, D. Black, W. Bolosky, and
J. Chew. Machine-independent virtual memory management for paged uniprocessor
and multiprocessor operating system. IEEE Transactions on Computers, C-37:896—
908, 1988.

[70] T.H.Romer, D. Lee, B. N. Bershad, and J. B. Chen. Dynamic page mapping policies

for cache conflict resolution on standard hardware. In USENIX, editor, Proceedings



[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

99

of the First USENIX Symposium on Operating Systems Design and Implementation,
Monterey, CA, pages 255-266, Berkeley, CA, Nov. 1994. USENIX.

T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. Bershad. Reducing TLB and
memory overhead using online superpage promotion. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture, Santa Margherita, Italy,
June 1995.

M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact
of architectural trends on operating system performance. In Proceedings of the 15th

Symposium on Operating Systems Principles, Copper Mountain, CO, 1995.

M. Satyanarayanan and D. P. Bhandarkar. Design trade-offs in VAX-11 translation
buffer organization. Computer, 14(12):103-111, Dec. 1981.

M. Satyanarayanan and D. P. Bhandarkar. Design trade-offs in VAX-11 translation
buffer organization. Computer, 14(12):103-111, Dec. 1981.

M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J. Kistler.
Lightweight recoverable virtual memory. ACM Transactions on Computer Systems,
12(1):33-57, Feb. 1994.

A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-based TLB preloading. In
Proceedings of the 27th Annual International Symposium on Computer Architecture,
Vancouver, Canada, 2000. ACM SIGARCH, IEEE.

J. E. Shore. On the external storage fragmentation produced by first-fit and best-fit

allocation strategies. Communications of the ACM, 18(8):433-440, 1975.

A. Silberschatz and P. B. Galvin. Operating System Concepts. Addison Wesley, 4.
edition, 1994,

[79] R. L. Sites and R. T. Witek. Alpha Architecture Reference Manual. Digital Press,

Boston, MA, 1998.



[80]

[81]

[82]
[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

100

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM (JACM), 32(3):652-686, 1985.

A. J. Smith. Bibliography on paging and related topics. Operating Systems Review,
12(4):39-49, Oct. 1978.

A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, 1982.
SPARCG64-I11 User’s Guide. HAL Computer Systems, Campbell, CA, 1998.
W. Stallings. Operating Systems. Prentice Hall, Englewood CIiff, NJ, 1997.

I. Subramanian, C. Mather, K. Peterson, and B. Raghunath. Implementation of mul-
tiple pagesize support in HP-UX. In Proceedings of the USENIX 1998 Annual Tech-
nical Conference, Berkeley, CA, 1998.

M. Talluri. Use of Superpages and Subblocking in the Address Translation Hierar-
chy. PhD thesis, University of Wisconsin, Madison, 1995.

M. Talluri and M. D. Hill. Surpassing the TLB performance of superpages with
less operating system support. In Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, Oct. 1994.

M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page table for 64-bit address
spaces. In Proceedings of the 15th Symposium on Operating Systems Principles,
Copper Mountain, CO, 1995.

M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson. Tradeoffs in supporting two
page sizes. In Proceedings the 19th Annual International Symposium on Computer

Architecture, Gold Coast, Australia, May 1992.

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood CIiff, NJ,
1992.



101

[91] G. Taylor, P. Davies, and M. Farmwald. The TLB slice—a low-cost high-speed
address translation mechanism. In Proceedings of the 17th Annual International

Symposium on Computer Architecture, pages 355-363. ACM Press, 1990.

[92] P. J. Teller. Translation-lookaside buffer consistency. Computer, 23(6):26—36, June
1990.

[93] R. Uhlig, D. Nagle, T. Stanley, T. Mudge, S. Sechrest, and R. Brown. Design
tradeoffs for software-managed TLBs. ACM Transactions on Computer Systems,
12(3):175-205, Aug. 1994.

[94] U. Vahalia. UNIX Internals. Prentice-Hall, Upper Saddle River, NJ, 1996.

[95] B. Wald. Utilization of a multiprocessor in command control. Proceedings of the
IEEE, 54(12):1885-1888, 1966.

[96] W. H. Wang, J.-L. Baer, and H. M. Levy. Organization and performance of a two-
level virtual-real cache hierarchy. In Proceedings of the 16th Annual International

Symposium on Computer Architecture, pages 140-148. ACM Press, 19809.

[97] A. Wiggins, S. Winwood, H. Tuch, and G. Heiser. Legba: Fast hardware support for
fine-grained protection. In Proceedings of the 8th Australia-Pacific Computer Sys-
tems Architecture Conference (ACSAC’2003), Aizu-Wakamatsu City, Japan, Sept.
2003.

[98] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, J. M. Pendleton, S. A. Ritchie,
G. Taylor, R. H. Katz, and D. A. Patterson. An in-cache address translation mech-
anism. In Proceedings of the 13th Annual International Symposium on Computer

Architecture, Tokyo, Japan, 1986. ACM.

[99] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,

D. Black, and R. Baron. The Duality of Memory and Communication in the im-



102

plementation of a Multiprocessor Operating System. In Proceedings of the 11th

Symposium on Operating System Principles, 1987.

[100] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter, W. C.
Hsieh, and S. A. McKee. The impulse memory controller. IEEE Transactions on
Computers, 50(11):1117-1132, 2001.



