The small inductive dimension in Alexandroff spaces

Vitalij A.Chatyrko

June 21, 2012

This is a joint talk with S.-E. Han and Y. Hattori.

Definition (Johnstone, 1982)

A topological space X is called *Alexandroff* if for each point $x \in X$ there is the minimal open set V(x) containing x.

Alexandroff spaces were first considered by Alexandroff in 1937 under the name of "discrete spaces".

Remark

If X is a T₀-space and $x, y \in X$ then V(x) = V(y) iff x = y.

Moreover, if X is a T_1 -space then $V(x) = \{x\}$ for each point $x \in X$, i.e. an Alexandroff space X is a T_1 -space iff X is discrete.

Alexandroff spaces appear by a natural way in studies of topological models of digital images (Kronheimer, 1992). They are quotient spaces of the Euclidean spaces \mathbb{R}^n defined by special decompositions.

Problem

What is the dimension of such spaces ?

Remark

Since Alexandroff spaces are non-trivial only with the axioms lower than T_1 , the standard dimensions ind, Ind, dim can not be used.

Definition (Pears, Dimension theory of general spaces, 1975)

Let X be a space and n an integer ≥ 0 . Then

(a) ind
$$X = -1$$
 iff $X = \emptyset$;

(b) ind X ≤ n iff for each point x ∈ X and each open set V containing x there is an open set W such that x ∈ W ⊂ V and ind Bd_XW < n;</p>

(c) ind $X = \infty$ iff ind $X \le n$ does not valid for each integer $n \ge 0$.

It is easy to see that if ind X = n for some integer $n \ge 0$ then the cardinality of X is greater than n. Recall also that for any space X and any subspace Y of X we have ind $Y \le \text{ind } X$. In 1993 P. Wiederhold and R. G. Wilson started to study the behavior of the small inductive dimension ind in the Alexandroff T_0 -spaces. In particular,

• they proved the product theorem: ind $(X \times Y) \leq \text{ind } X + \text{ind } Y$ for non-empty Alexandroff T_0 -spaces X, Y;

• they showed that if (X, τ) is an Alexandroff T_0 -space and \leq_{τ} is its specification order (i.e. $x \leq y$ iff $x \in Cl_X(\{y\})$) then ind (X, τ) is equal to the partial order dimension of (X, τ) defined as the supremum of all lengths of chains in (X, \leq_{τ}) .

• they established that the quotient spaces of the Euclidean spaces \mathbb{R}^n defined by some standard decompositions based on the model of Kronheimer have the dimension ind equal to n.

Proposition 1

Let X be an Alexandroff space and $X = X_1 \cup X_2$, where X_i , i = 1, 2, is closed in X. Then ind $X = \max\{ \text{ ind } X_1, \text{ ind } X_2 \}$.

Proposition 2

Let X and Y be non-empty Alexandroff spaces. Then ind $(X \times Y) = \text{ind } X + \text{ind } Y$.

Remark

Unlike to P. Wiederhold and R. G. Wilson product theorem we have equality.

Definition (Khalimsky, 1969)

The Khalimsky line K is the topological space (\mathbb{Z}, τ) , where \mathbb{Z} is the set of integers and τ is the topology of \mathbb{Z} generated by the base $\mathcal{B} = \{\{2k+1\}, \{2k-1, 2k, 2k+1\} : k \in \mathbb{Z}\}.$

Note that K is a connected Alexandroff T_0 -space with ind K = 1.

Remark

Khalimsky spaces $K^n, n \ge 1$, are widely considered in the digital topology.

It is well known that ind $K^n = n, n \ge 1$.

We present the following statement.

Theorem (A characterization of k-dimensional sets of K^n , $k \leq n$.)

Let A be a subspace of K^n for some natural number n and k a natural number with $k \le n$. Then ind $A \ge k$ iff A contains an element of the family $\mathbb{S}(k, n)$.

The family S(k, n) will be defined below.

• First let us consider the family $\mathbb{S}(n)$, $n \geq 1$, which consists of subsets P of K^n of cardinality n+1, described as follows. For each $P \in \mathbb{S}(n)$ there exist a sequence a_1, \ldots, a_n of n even integers, a sequence b_1, \ldots, b_n of *n* odd integers and a bijection $\sigma: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that (a) $|a_i - b_i| = 1$ for each i < n, (b) $P = \{x_1, \dots, x_{n+1}\}$, where $x_1 = (a_1, \dots, a_n)$, $x_{n+1} = (b_1, \ldots, b_n)$ and for each $i \leq n$ the point x_{i+1} is obtained from the point x_i through replacing in the $\sigma(i)$ -th coordinate the even number $a_{\sigma(i)}$ by the odd number $b_{\sigma(i)}$. • Let k be any integer with 0 < k < n.

Put $\mathbb{S}(k,n) = \{P : P \subset S, S \in \mathbb{S}(n) \text{ and } |P| = k+1\}.$

Recall that a subset A of the Euclidean space \mathbb{R}^n is *n*-dimensional iff A contains a non-empty open subset of \mathbb{R}^n . Since the Euclidean topology is regular this equivalence can be rewritten as follows: a subset A of the Euclidean space \mathbb{R}^n is *n*-dimensional iff A contains the closure of a non-empty open subset of \mathbb{R}^n . In the space K^n , the closure $\operatorname{Cl}_{K^n} V(x)$ of the minimal open neighborhood V(x) of $x = (x_1, \ldots, x_n) \in K^n$ with m odd coordinates contains exactly $2^{2n-m} \cdot n!$ different *n*-dimensional in the sense of ind subsets of cardinality n + 1.

A decomposition of K^n into n + 1 discrete subsets

• For each $0 \le j \le n$ put $Z_j = \{(x_1, \dots, x_n) \in K^n : |\{i \le n : x_i \text{ is an even number}\}| = j\}.$

• Note that the sets Z_j , $0 \le j \le n$, are disjoint, and $K^n = \bigcup_{i=0}^n Z_i$.

• Furthermore, since each Z_i contains no elements of family $\mathbb{S}(1, n)$, it follows from the Theorem that ind $Z_i = 0$ for each $j \leq n$.

We have also the following additional property of the sets Z_i , i = 0, 1, ...

Corollary

Let A be a subset of K^n with ind A = n and $A_i = A \cap Z_i$. Then, ind $(\bigcup_{i=1}^k A_{j_i}) = k - 1$ for any $0 \le j_1 < \cdots < j_k \le n$.

Question

Let A be a subspace of K^n with ind $A = k < n, k \ge 1$. Are there disjoint subsets A_0, \ldots, A_k of A such that ind $(\bigcup_{i=1}^m A_{j_i}) = m - 1$ for any $0 \le j_1 < \cdots < j_m \le k$?

Remark

• One can consider a natural transfinite extension of ind the dimension trind for which the corresponding sum and product (however, the inequality) theorems are valid.

• Moreover, for each ordinal α there is an Alexandroff space $X(\alpha)$ such that trind $X(\alpha) = \alpha$.

Thank you!