▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Connectedness and the Stone-Čech Ordered Compactifications

Sinem Karatas, Tom Richmond tom.richmond@wku.edu

Caserta Workshop

June 25-29, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ordered topological space (X, τ, \leq) (set, topology, partial order)

Ordered topological space (X, τ, \leq) (set, topology, partial order)

Compatibility between τ and \leq : convexity: every point of X has a τ -nbhd base of \leq -convex sets.

Ordered topological space (X, τ, \leq) (set, topology, partial order)

Compatibility between τ and \leq : convexity: every point of X has a τ -nbhd base of \leq -convex sets.

 $\begin{array}{l} T_2\text{-ordered:} \leq \text{ is closed in } X \times X \\ \text{ i.e., } x_\lambda \leq y_\lambda \; \forall \lambda \; \text{and} \; (x_\lambda, y_\lambda) \to (x, y) \Rightarrow x \leq y. \end{array}$

Ordered topological space (X, τ, \leq) (set, topology, partial order)

Compatibility between τ and \leq : convexity: every point of X has a τ -nbhd base of \leq -convex sets.

$$\begin{array}{l} T_2\text{-ordered:} \leq \text{ is closed in } X \times X \\ \text{ i.e., } x_\lambda \leq y_\lambda \; \forall \lambda \; \text{and} \; (x_\lambda, y_\lambda) \to (x, y) \Rightarrow x \leq y. \end{array}$$

 $T_{3.5}\text{-ordered:}$ (a) $x \not\leq y \Rightarrow \exists$ contin increasing $f : X \to \mathbb{R}$, f(x) > f(y)(b) F closed, $a \notin F \Rightarrow \exists$ contin incr $f : X \to [0, 1]$, contin decr $g : X \to [0, 1]$ such that f(a) = g(a) = 1 and $f(x) \land g(x) = 0 \quad \forall x \in F$.

An Ordered Compactification (X^*, τ^*, \leq^*) of (X, τ, \leq) :

An Ordered Compactification (X^*, τ^*, \leq^*) of (X, τ, \leq) :

• (X^*, τ^*, \leq^*) is compact T₂-ordered

An Ordered Compactification (X^*, τ^*, \leq^*) of (X, τ, \leq) :

- (X^*, τ^*, \leq^*) is compact T₂-ordered
- (X, τ) is dense in (X^*, τ^*)

An Ordered Compactification (X^*, τ^*, \leq^*) of (X, τ, \leq) :

- (X^*, τ^*, \leq^*) is compact T₂-ordered
- (X, τ) is dense in (X^*, τ^*)

 (X, τ, \leq) has an ordered compactification if and only if it is $T_{3.5}$ -ordered.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Stone-Čech compactification βX : $C^*(X) = \{\text{contin bounded functions } f : X \to \mathbb{R}\}$ The Stone-Čech compactification βX : $C^*(X) = \{ \text{contin bounded functions } f : X \to \mathbb{R} \}$ $f \in C^*(X) \Rightarrow f(X) \subseteq \text{compact } I_f$

The Stone-Čech compactification βX : $C^*(X) = \{\text{contin bounded functions } f : X \to \mathbb{R}\}$ $f \in C^*(X) \Rightarrow f(X) \subseteq \text{compact } I_f$ The *evaluation map*

$$e: X \to \prod_{f \in C^*(X)} I_f \subseteq \mathbb{R}^{C^*(X)}$$

defined by $e(x) = \prod_{f \in C^*(X)} f(x)$ is an embedding iff X is $T_{3.5}$

$$e: X o cl(e(X)) = eta X \subseteq \prod_{f \in C^*(X)} I_f$$

The ordered Stone-Čech compactification $\beta_o X$: $C^{*\uparrow}(X) = \{\text{contin bounded increasing functions } f : X \to \mathbb{R}\}$ $f \in C^{*\uparrow}(X) \Rightarrow f(X) \subseteq \text{compact } I_f$ The *evaluation map*

$$e: X \to \prod_{f \in C^{*\uparrow(X)}} I_f \subseteq \mathbb{R}^{C^{*\uparrow(X)}}$$

defined by $e(x) = \prod_{f \in C^{*\uparrow(X)}} f(x)$ is an embedding iff X is $T_{3.5}$ -ordered

$$e:X
ightarrow cl(e(X))=eta_oX\subseteq\prod_{f\in C^{*\uparrow(X)}}l_f$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$A \subseteq X$ is C^* -embedded in (X, τ) iff every $f \in C^*(A)$ has an extension $\hat{f} \in C^*(X)$.

 $A \subseteq X$ is C^* -embedded in (X, τ) iff every $f \in C^*(A)$ has an extension $\hat{f} \in C^*(X)$.

X is C^* -embedded in βX .

 $A \subseteq X$ is C^* -embedded in (X, τ) iff every $f \in C^*(A)$ has an extension $\hat{f} \in C^*(X)$.

X is C^* -embedded in βX .

Thm: A is C^{*}-embedded in X iff $cI_{\beta X}A = \beta A$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $A \subseteq X$ is C^{\uparrow} -embedded in (X, τ, \leq) iff every $f \in C^{\uparrow}(A)$ has an extension $\hat{f} \in C^{\uparrow}(X)$.

 $A \subseteq X$ is $C^{*\uparrow}$ -embedded in (X, τ, \leq) iff every $f \in C^{*\uparrow}(A)$ has an extension $\hat{f} \in C^{*\uparrow}(X)$.

X is C^{\uparrow} -embedded in $\beta_o X$.

 $A \subseteq X$ is $C^{*\uparrow}$ -embedded in (X, τ, \leq) iff every $f \in C^{*\uparrow}(A)$ has an extension $\hat{f} \in C^{*\uparrow}(X)$.

X is C^{\uparrow} -embedded in $\beta_o X$.

Thm: A is $C^{*\uparrow}$ -embedded in X iff $cI_{\beta_o X}A = \beta_o A$.

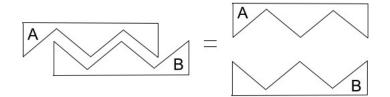
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If A, B is a separation of (X, τ) , then $\beta A, \beta B$ is a separation of βX .

・ロト ・聞ト ・ヨト ・ヨト

э

If A, B is a separation of (X, τ) , then $\beta A, \beta B$ is a separation of βX .



Proof: If A, B is a separation of X, \exists contin surjection $s: X \to \{0, 1\}$ with s(A) = 0, s(B) = 1. Extend s to $\hat{s}: \beta X \to \{0, 1\}$. Then $\hat{s}(cl_{\beta X}A) = 0$ and $\hat{s}(cl_{\beta X}B) = 1$, so $cl_{\beta X}A$ and $cl_{\beta X}B$ from a separation of $\beta X = cl_{\beta X}(X) = cl_{\beta X}(A \cup B) = cl_{\beta X}A \cup cl_{\beta X}B$. Also, A and B are C*-embedded in X: For $f \in C^*(A), f: A \to [-M, M]$, extend it to X by taking $\hat{f}(B) = M + 1$. Thus, $cl_{\beta X}A = \beta A$ and $cl_{\beta X}B = \beta B$, so $\beta A, \beta B$ is a separation of βX .

Would this work for ordered compactifications?

Would this work for ordered compactifications?

Only if we use "ordered-connectedness" defined to be: there exists no continuous *increasing* surjection $s : X \to \{0, 1\}$.

Would this work for ordered compactifications?

Only if we use "ordered-connectedness" defined to be: there exists no continuous *increasing* surjection $s : X \to \{0, 1\}$.

This would require A to be a down-set and B to be an up-set, and would not allow any non-convex sets A, B in any separation.

Would this work for ordered compactifications?

Only if we use "ordered-connectedness" defined to be: there exists no continuous *increasing* surjection $s : X \to \{0, 1\}$.

This would require A to be a down-set and B to be an up-set, and would not allow any non-convex sets A, B in any separation.

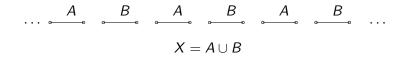
This is too restrictive to be useful.

Thm: If A, B form a separation of a locally convex *totally ordered* topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

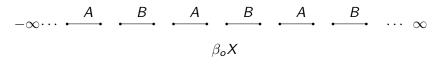
Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cI_{\beta_o X}A \cap cI_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Example: $cl_{\beta_o X}A \cap cl_{\beta_o X}B$ need not be \emptyset .



Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Example: $cl_{\beta_o X}A \cap cl_{\beta_o X}B$ need not be \emptyset .



 $\infty \in cl_{\beta_o X}A \cap cl_{\beta_o X}B$

Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Proof: It suffices to show that if A, B is a separation of a totally ordered space X, then A and B are C^{\uparrow} -embedded in X.

Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Proof: It suffices to show that if A, B is a separation of a totally ordered space X, then A and B are $C^{*\uparrow}$ -embedded in X. If $g : A \to [-M, M] \subseteq \mathbb{R}$ is in $C^{*\uparrow}(A)$, extend g to $\hat{g} : X \to \mathbb{R}$ as follows:

Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Proof: It suffices to show that if A, B is a separation of a totally ordered space X, then A and B are $C^{*\uparrow}$ -embedded in X. If $g : A \to [-M, M] \subseteq \mathbb{R}$ is in $C^{*\uparrow}(A)$, extend g to $\hat{g} : X \to \mathbb{R}$ as follows:

For $b \in B$, take

$$\hat{g}(b) = -M - 1$$
 if $(\leftarrow, b] \cap A = \emptyset$
 $\hat{g}(b) = \sup(g((\leftarrow, b] \cap A))$ otherwise.

Thm: If A, B form a separation of a locally convex totally ordered topological space X and $cl_{\beta_o X}A \cap cl_{\beta_o X}B = \emptyset$, then $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

Proof: It suffices to show that if A, B is a separation of a totally ordered space X, then A and B are $C^{*\uparrow}$ -embedded in X. If $g : A \to [-M, M] \subseteq \mathbb{R}$ is in $C^{*\uparrow}(A)$, extend g to $\hat{g} : X \to \mathbb{R}$ as follows:

For $b \in B$, take

 $\hat{g}(b) = -M - 1$ if $(\leftarrow, b] \cap A = \emptyset$

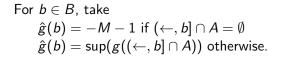
 $\hat{g}(b) = \sup(g((\leftarrow, b] \cap A))$ otherwise.

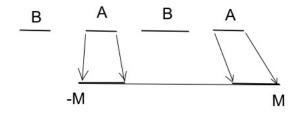
 \hat{g} is a contin increasing extension of g, so A is $C^{*\uparrow}$ -embedded.

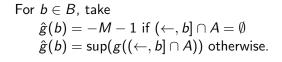
くしゃ (中)・(中)・(中)・(日)

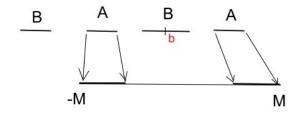
For
$$b \in B$$
, take
 $\hat{g}(b) = -M - 1$ if $(\leftarrow, b] \cap A = \emptyset$
 $\hat{g}(b) = \sup(g((\leftarrow, b] \cap A))$ otherwise.

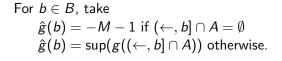
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

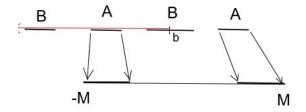


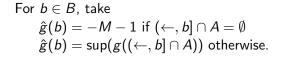


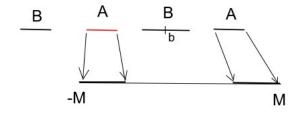


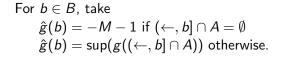


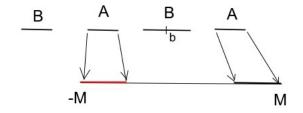


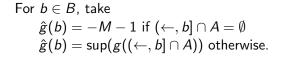


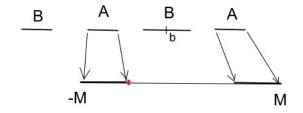






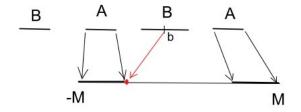


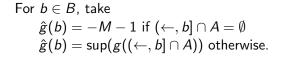


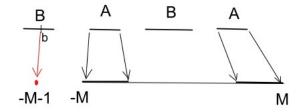


(中) (문) (문) (문) (문)

For
$$b \in B$$
, take
 $\hat{g}(b) = -M - 1$ if $(\leftarrow, b] \cap A = \emptyset$
 $\hat{g}(b) = \sup(g((\leftarrow, b] \cap A))$ otherwise.







We have shown: if A, B is a separation of a totally ordered space X, then

- A and B are $C^{*\uparrow}$ -embedded in X
- $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

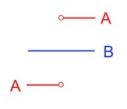
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

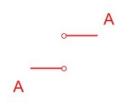
We have shown: if A, B is a separation of a totally ordered space X, then

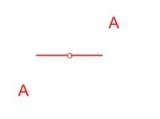
- A and B are $C^{*\uparrow}$ -embedded in X
- $\beta_o A$ and $\beta_o B$ form a separation of $\beta_o X$.

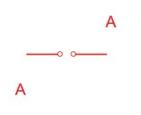
These results do not hold for partially ordered topological spaces.

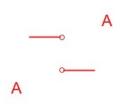
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

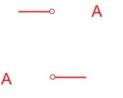




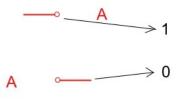








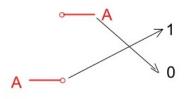
Example: Consider the subspace $X = A \cup B$ of \mathbb{R}^2 shown, with the "up" order $(a, b) \leq (c, d)$ iff $a = c, b \leq d$.

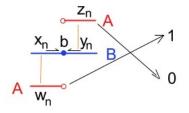


Here is a continuous increasing function f defined on A which cannot be extended to B.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900





 $w_n \leq x_n$; $y_n \leq z_n$, so $1 = f(w_n) \leq f(x_n)$ and $f(y_n) \leq f(z_n) = 0$. Taking the limit shows that $1 \leq \hat{f}(b) \leq 0$ for any continuous increstension \hat{f} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An open question: For which topological spaces X is $X \approx \beta X - X$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An open question: For which topological spaces X is $X \approx \beta X - X$?

 $\beta X - X$ is the Stone-Čech *remainder* of X.

An open question: For which topological spaces X is $X \approx \beta X - X$?

 $\beta X - X$ is the Stone-Čech *remainder* of X.

For which totally ordered topological spaces X is $X \approx \beta_o X - X$?

An open question: For which topological spaces X is $X \approx \beta X - X$?

 $\beta X - X$ is the Stone-Čech *remainder* of X.

For which totally ordered topological spaces X is $X \approx \beta_o X - X$?

NONE. We will sketch the proof.

Suppose $f: X \to \beta_o X - X$ is a homeomorphism and an order isomorphism. Extend f to $\hat{f}: \beta_o X \to \beta_o X$.

Suppose $f : X \to \beta_o X - X$ is a homeomorphism and an order isomorphism. Extend f to $\hat{f} : \beta_o X \to \beta_o X$.

The largest/smallest element of $\beta_o X$ is in X.

Suppose $f : X \to \beta_o X - X$ is a homeomorphism and an order isomorphism. Extend f to $\hat{f} : \beta_o X \to \beta_o X$.

The largest/smallest element of $\beta_o X$ is in X.

If the smallest element *a* were in $\beta_o X - X$, then there exists a decreasing net in *X* converging to *a*, so *X* has no smallest element. But $X \approx \beta_o X - X$ would imply $\beta_o X - X$, and thus $\beta_o X$, has no smallest element.

Suppose $f : X \to \beta_o X - X$ is a homeomorphism and an order isomorphism. Extend f to $\hat{f} : \beta_o X \to \beta_o X$.

The largest/smallest element of $\beta_o X$ is in X.

If the smallest element *a* were in $\beta_o X - X$, then there exists a decreasing net in *X* converging to *a*, so *X* has no smallest element. But $X \approx \beta_o X - X$ would imply $\beta_o X - X$, and thus $\beta_o X$, has no smallest element.

 \hat{f} has no fixed points.

Suppose $f : X \to \beta_o X - X$ is a homeomorphism and an order isomorphism. Extend f to $\hat{f} : \beta_o X \to \beta_o X$.

The largest/smallest element of $\beta_o X$ is in X.

If the smallest element *a* were in $\beta_o X - X$, then there exists a decreasing net in *X* converging to *a*, so *X* has no smallest element. But $X \approx \beta_o X - X$ would imply $\beta_o X - X$, and thus $\beta_o X$, has no smallest element.

\hat{f} has no fixed points.

Engelking: If X is dense in T_2 space B, $\hat{f} : B \to Y$ is continuous, and $\hat{f}|_X$ is a homeomorphisms into Y, then $\hat{f}(B-X) \cap \hat{f}(X) = \emptyset$.

$$C = \{x \in X : f(x) > x\}$$
 and $D = \{x \in X : f(x) < x\}$ is a separation of X.

 $cI_{\beta_o X}C = \{x \in \beta_o X : \hat{f}(x) > x\}$ and $cI_{\beta_o X}D = \{x \in \beta_o X : \hat{f}(x) < x\}$ are disjoint, so by a previous theorem, $\beta_o C$ and $\beta_o D$ are a separation of $\beta_o X$, and it follows that $\hat{f}|_C$ is a homeomorphism and order isomorphism from C to $\beta_o C - C$.

Thus the largest element w of $\beta_o C$ is in C, so

$$\hat{f}(w) < w \in C.$$

But $w \in C \Rightarrow \hat{f}(w) > w$. So, no such f exists.

- G. Bezhanishivili and P.J. Morandi, *Order-Compactification of Totally Ordered Spaces:Revisited*, Order **28** (2011), no. 3, 577-592.
- J. Blatter, Order Compactifications of Totally Ordered Topological Spaces, J. Approximation Theory **13** (1975), 56–65.
- P. Fletcher and W. Lindgren, *Quasi-uniform Spaces*, Lecture Notes in Pure and Applied Math, Vol. 77, Marcel Dekker Inc., NY, 1982.
- L. Gillman and M. Jerison, *Rings of Continuous Functions*, Van Nostrand Mathematical Studies, Princeton NJ, 1960.
- P. P. Jackson, *Iterated Remainders In Compactifications*, Doctoral Thesis, Sheffield, 1980.
- D. C. Kent and T. A. Richmond, *Ordered Cptn of Totally Ordered Spaces*, Internat. J. Math. Math. Sci. **11** (1988) no. 4, 683-694.
- L. Nachbin, *Topology and Order*, Van Nostrand Mathematical Studies, No. 4, Princeton NJ, 1965.
- M. P. Stannett, Internal Topology, Doctoral Thesis, Sheffield, 1986