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Ordered Topological Spaces and Compactifications Connectedness Remainders

Ordered topological space (X , τ,≤)
(set, topology, partial order)

Compatibility between τ and ≤:
convexity: every point of X has a τ -nbhd base of ≤-convex sets.

T2-ordered: ≤ is closed in X × X
i.e., xλ ≤ yλ ∀λ and (xλ, yλ)→ (x , y)⇒ x ≤ y .

T3.5-ordered:
(a) x 6≤ y ⇒ ∃ contin increasing f : X → R, f (x) > f (y)
(b) F closed, a 6∈ F ⇒ ∃ contin incr f : X → [0, 1],
contin decr g : X → [0, 1] such that f (a) = g(a) = 1 and
f (x) ∧ g(x) = 0 ∀x ∈ F .
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An Ordered Compactification (X ∗, τ∗,≤∗) of (X , τ,≤):

(X ∗, τ∗,≤∗) is compact T2-ordered

(X , τ) is dense in (X ∗, τ∗)

(X , τ,≤) has an ordered compactification if and only if it is
T3.5-ordered.
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Ordered Topological Spaces and Compactifications Connectedness Remainders

The Stone-Čech compactification βX :
C ∗(X ) = {contin bounded functions f : X → R}

f ∈ C ∗(X )⇒ f (X ) ⊆ compact If
The evaluation map

e : X →
∏

f ∈C∗(X )

If ⊆ RC∗(X )

defined by e(x) =
∏

f ∈C∗(X ) f (x) is an embedding iff X is
T3.5

e : X → cl(e(X )) = βX ⊆
∏

f ∈C∗(X )

If
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The ordered Stone-Čech compactification βoX :
C ∗↑(X ) = {contin bounded increasing functions f : X → R}
f ∈ C ∗↑(X )⇒ f (X ) ⊆ compact If
The evaluation map

e : X →
∏

f ∈C∗↑(X )

If ⊆ RC∗↑(X )

defined by e(x) =
∏

f ∈C∗↑(X ) f (x) is an embedding iff X is
T3.5-ordered

e : X → cl(e(X )) = βoX ⊆
∏

f ∈C∗↑(X )

If
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A ⊆ X is C ∗-embedded in (X , τ) iff every f ∈ C ∗(A) has an
extension f̂ ∈ C ∗(X ).

X is C ∗-embedded in βX .

Thm: A is C ∗-embedded in X iff clβXA = βA.
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Proof: If A,B is a separation of X , ∃ contin surjection
s : X → {0, 1} with s(A) = 0, s(B) = 1. Extend s to
ŝ : βX → {0, 1}. Then ŝ(clβXA) = 0 and ŝ(clβXB) = 1, so clβXA
and clβXB from a separation of
βX = clβX (X ) = clβX (A ∪ B) = clβXA ∪ clβXB.
Also, A and B are C ∗-embedded in X :

For f ∈ C ∗(A), f : A→ [−M,M], extend it to X by taking
f̂ (B) = M + 1.
Thus, clβXA = βA and clβXB = βB, so βA, βB is a separation of
βX .
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Would this work for ordered compactifications?

Only if we use “ordered-connectedness” defined to be: there exists
no continuous increasing surjection s : X → {0, 1}.

This would require A to be a down-set and B to be an up-set, and
would not allow any non-convex sets A,B in any separation.

This is too restrictive to be useful.
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Thm: If A,B form a separation of a locally convex totally ordered
topological space X and clβoXA ∩ clβoXB = ∅, then βoA and βoB
form a separation of βoX .

Example: clβoXA ∩ clβoXB need not be ∅.

a a a a a aa a a a a aA A AB B B
· · · · · ·

X = A ∪ B
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βoX

∞ ∈ clβoXA ∩ clβoXB



Ordered Topological Spaces and Compactifications Connectedness Remainders

Thm: If A,B form a separation of a locally convex totally ordered
topological space X and clβoXA ∩ clβoXB = ∅, then βoA and βoB
form a separation of βoX .

Proof: It suffices to show that if A,B is a separation of a totally
ordered space X , then A and B are C ∗↑-embedded in X.
If g : A→ [−M,M] ⊆ R is in C ∗↑(A), extend g to ĝ : X → R as
follows:
For b ∈ B, take

ĝ(b) = −M − 1 if (←, b] ∩ A = ∅
ĝ(b) = sup(g((←, b] ∩ A)) otherwise.

ĝ is a contin increasing extension of g , so A is C ∗↑-embedded.
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ĝ(b) = sup(g((←, b] ∩ A)) otherwise.
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For b ∈ B, take
ĝ(b) = −M − 1 if (←, b] ∩ A = ∅
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We have shown: if A,B is a separation of a totally ordered space
X , then

A and B are C ∗↑-embedded in X

βoA and βoB form a separation of βoX .

These results do not hold for partially ordered topological spaces.
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Example: Consider the subspace X = A ∪ B of R2 shown, with the
“up” order (a, b) ≤ (c , d) iff a = c , b ≤ d .

Here is a continuous increasing function f defined on A which
cannot be extended to B.

wn ≤ xn; yn ≤ zn, so 1 = f (wn) ≤ f (xn) and f (yn) ≤ f (zn) = 0.
Taking the limit shows that 1 ≤ f̂ (b) ≤ 0 for any continuous incr
extension f̂ .
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An open question:
For which topological spaces X is X ≈ βX − X ?

βX − X is the Stone-Čech remainder of X .

For which totally ordered topological spaces X is X ≈ βoX − X ?

NONE. We will sketch the proof.
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Suppose f : X → βoX − X is a homeomorphism and an order
isomorphism. Extend f to f̂ : βoX → βoX .

The largest/smallest element of βoX is in X .
If the smallest element a were in βoX − X , then there exists a

decreasing net in X converging to a, so X has no smallest element.
But X ≈ βoX − X would imply βoX − X , and thus βoX , has no
smallest element.

f̂ has no fixed points.
Engelking: If X is dense in T2 space B, f̂ : B → Y is

continuous, and f̂ |X is a homeomorphisms into Y , then
f̂ (B − X ) ∩ f̂ (X ) = ∅.
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C = {x ∈ X : f (x) > x} and D = {x ∈ X : f (x) < x} is a
separation of X .

clβoXC = {x ∈ βoX : f̂ (x) > x} and

clβoXD = {x ∈ βoX : f̂ (x) < x} are disjoint, so by a previous
theorem, βoC and βoD are a separation of βoX , and it follows
that f̂ |C is a homeomorphism and order isomorphism from C to
βoC − C .
Thus the largest element w of βoC is in C , so

f̂ (w) < w ∈ C .

But w ∈ C ⇒ f̂ (w) > w . So, no such f exists.
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