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CL(X ) denote the hyperspace of non-empty closed sets

of X with the Vietoris topology. K(X ) is the subspace of

compact sets.

The Vietoris topology has the sets of the form

V+ = {A ∈ CL(X ) : A ⊆ V} and V− = {A ∈ CL(X ) : A∩V 6= ∅}

like a subbase, when V is an open set of X .

Given open sets of X , U1, . . . Un, define

< U1, ...Un >= {T ∈ CL(X ) : T ∈ ∪1≤k≤nU+
k , T ∈ U−

k }.
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Theorem

(M.) CL(X ) is:

1 T2 iff X is T3,

2 T3 iff CL(X ) is Tychonoff iff X is T4,

3 T4 iff CL(X ) is compact iff X is compact.

Theorem

(M.) K(X ) is:

1 T2 iff X is T2,

2 T3 iff X is T3,

3 Tychonoff iff X is Tychonoff.
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About the normality of K(X )

Theorem

(M.) K(X ) is metrizable iff X is it.

Note that CL(X ) is metrizable iff X is compact metrizable.

Theorem

(Moresco and Artico) If L is the Sorgenfrey line then K(L)
is not normal.
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Theorem

Let γ an ordinal number.

1 if cof (γ) = ω then K([0, γ)) is normal.

2 (K.) if cof (γ) > ω then K([0, γ)) is normal iff γ is

regular.

3 (K. Hirata) if cof (γ) > ω then K([0, γ)) is

orthocompact iff γ is regular.

Questions:

1 For which other class of spaces the hyperspace K is

normal?.

2 Are there conditions C such that: K(X ) is normal iff X

has C?.
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Theorem

(G.) CL(X ) is:

1 ω-boundded (ultrapseudocompact) iff X is it,

2 p-compact (p-pseudocompact) iff X is it,

3 α-boundded iff X is it.

Questions: Are there conditions C such that: CL(X ) is

countable compact (pseudocompact) iff X has C?
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In K(X ).

Theorem

(A.O.T.) TFSE:

1 X is α-hyperbounded,

2 K(X ) is initially α-compact.

3 K(X ) is α-bounded, and

4 K(X ) is α-hyperbounded.

Milovančević made this prove for α = ω
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Theorem

(A.O.T.) Let X be a space. Then the next statements arte

equivalent:

1 X is pseudo-ω-bounded,

2 K(X ) is pseudo-ω-bounded,

3 K(X ) pseudo-D-bounded for some D ⊆ N
∗,

4 K(X ) is strongly-p-pseudocompact for some p ⊆ N
∗,

5 K(X ) is p-pseudocompact for some p ⊆ N
∗ and

6 K(X ) is pseudocompact.
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Pseudocompactness has a different approach. Let

I : CL(X ) −→ CL(βX ) : I(A) = ClβxA.

When β(CL(X )) = CL(βX )? or when is CL(X ) is natural

(I) C∗-embedded in CL(βX )?

Theorem

Let X be normal.

1 (K.G.) If β(CL(X )) = CL(βX ) then CL(X ) (and so

CL(X )× CL(X )) is pseudocompact.

2 (G.) If CL(X )× CL(X ) is pseudocompact then

β(CL(X )) = CL(βX ).

Natsheh proved the converse but we think it is wrong.
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Question: When is K(X ) C∗-embedded in CL(X )? Is

there some relation betwen this problem and the problem:

When is β(CL(X )) = CL(βX )?

Theorem

(H.) If K(X ) is normal and C∗-embedded in CL(X ) then

K(X ) is ω-boundded (and so K(X ) is C-embedded in

CL(X )).

So if K(X ) is normal and C∗-embedded in CL(X ) then

β(CL(X )) = CL(βX ) and the converse is not true. We

don’t know wath happens if K(X ) is not normal.
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Corollary

Let X be a metrizable space. Then K(X ) is C∗-embedded

in CL(X ) iff X is a compact space.

Theorem

(A. O. T.) Suppose K(X ) is normal and C∗-embedded in

CL(X ). TFAE:

1 X is τ -bounded,

2 X is τ -hyperbounded,

3 K(X ) is τ -pseudocompact,

4 K(X ) is initially τ -compact,

5 K(X ) is τ -bounded, and

6 K(X ) is τ -hyperbounded.
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Theorem

(A. O. T.) Suppose K(X ) is C∗-embedded in CL(X ).
TFAE:

1 X is compact,

2 X is σ-compact,

3 K(X ) is compact,

4 K(X ) is σ-compact,

5 K(X ) is Lindelöf,

6 K(X ) is paracompact,

7 K(X ) is normal and metacompact,

8 CL(X ) is compact, and

9 CL(X ) is σ-compact.
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Our main result:

Theorem

(K. O. R.) Let γ be an ordinal number. TFAE:

1 K([0, γ)) is C-embedded in CL([0, γ)).

2 K([0, γ)) is C∗-embedded in CL([0, γ)).

3 cof (γ) 6= ω
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Theorem

(K. O.) Let γ be an infinite ordinal number. TFAE:

1 cof (γ) 6= ω,

2 [0, γ) is pseudocompact,

3 β(CL([0, γ))) = CL(β([0, γ))),

4 β(K([0, γ))) = K(β([0, γ))),

5 β(CL([0, γ))) = CL([0, γ]), and

6 β(K([0, γ))) = K([0, γ]).
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Theorem

1 (M.) K(X ) is 0-dimensional iff X is it.

2 (K. T.) CL(ω) is strong 0-dimensional.

3 (K. T.) K([0, γ)) is strong 0-dimensional for every γ.

Theorem

1 (O. O.) If cof (γ) 6= ω then CL(ω) is strong

0-dimensional.

2 (O.) If cof (γ) 6= ω then K([0, γ)) is strongly

0-dimensional.
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