Isometrical embeddings of finite metric spaces

A. Oblakova

Moscow State University

May 23

1.1 Definition.

A class \mathbb{K} of metric spaces is said to be uniform, if it has two following properties: (a) diameters of its elements bounded by number **d** and (b) for every $\varepsilon > 0$ there exist an integer $\mathbf{n}(\varepsilon)$ such that every element of this class has an ε -net the number of elements of which is less than or equal to $\mathbf{n}(\varepsilon)$.

1.2 Uniformity and isometrical embeddings

It was proved in $[2]^a$ (see also $[1]^b$) that if a class \mathbb{K} is uniform, then there is a totally bounded metric space (and consequently a compact metric space), which isometrically contains all elements of this class. So, properties (a) and (b) of a class \mathbb{K} are necessary and sufficient conditions for the existence of a compact metric space containing isometrically every element of this class.

^aJ. Tits, *Groupes à croissance polynomiale*, Séminaire Bourbaki, 23 (1980-1981), Expposé No. 572.

^bS.D. Iliadis, *Universal Spaces and Mappings*, North-Holland Mathematics Studies, 198, Elsevier Science B.V., Amsterdam, 2005, xvi+559 pp.

1.3 Uniformity and dimension

It was proved in [1] that if a class \mathbb{K} is uniform and every its element has dimension $\leq n \in \omega$, then there is a totally bounded metric space of dimension $\leq n$, which isometrically contains every space from \mathbb{K} . In general, this totally bounded space is not compact.

1.4 Classes \mathbb{F}_1 and \mathbb{F}_1^n

The class \mathbb{F}_1 of all finite metric spaces with diameter ≤ 1 is not uniform. So, for this class there is no compact metric space, which isometrically contains every element of \mathbb{F}_1 . On the other hand, its subclass \mathbb{F}_1^n , $n \in \mathbb{N}$ of all finite metric spaces containing $\leq n$ points is uniform, and, therefore, there is a totally bounded zero-dimensional space T, isometrically containing every element of \mathbb{F}_1^n . However, it is not known if the completion of T is zero-dimensional.

1.5 Main result

It will be proved, without using construction from [1], the existence of a metric on the Cantor set C such that every element of \mathbb{F}_1^n is isometrically embedded in C. So, this gives a positive answer to the question posed by S. Iliadis.

2.1 The map φ

The set of natural numbers is denoted by \mathbb{N} . We fix $n \in \mathbb{N}$. Let N be the number of pairs (i, j), $1 \leq i < j \leq n$, that is $N = \frac{n \cdot (n-1)}{2}$. We fix a map

$$\varphi\colon \{(i,j)|1\leqslant i,j\leqslant n\} \to \{1,2,\ldots,N\},\$$

which is one-to-one on the set $\{(i,j)| 1 \le i < j \le n\}$ and satisfies the following property:

$$\varphi(i,j)=\varphi(j,i).$$

(Such a map exists by definition of N.)

2.2 Metric on \mathbb{R}^m

The set of real numbers is denoted by $\mathbb R$. For $m\in\mathbb N$, $\mathbb R^m$ denotes the set:

$$\mathbb{R}^m = \{(x_1, \cdots, x_m) | x_1, \cdots, x_m \in \mathbb{R}\},\$$

on which we consider the metric $\rho_{\mathbb{R}^m} \colon \mathbb{R}^m \to \mathbb{R}$, such that for every two points $\bar{x} = (x_1, \cdots, x_m)$, $\bar{y} = (y_1, \cdots, y_m)$,

$$\rho_{\mathbb{R}^m}(\bar{x},\bar{y})=\sum_{i=1}^m|x_i-y_i|.$$

(In what follows, m = N and the metric $\rho_{\mathbb{R}^N}$ will be denoted by ρ .)

3.1 Construction of the Cantor set

We will construct the Cantor set in segment [0, 2], by considering system of intervals $I_k = (a_k, b_k)$, $k \in \mathbb{N}$, $b_k > a_k$, which satisfies following properties:

• For every
$$k \in \mathbb{N}$$
, $[a_k, b_k] \subset (0, 2)$.

3 For every
$$k \neq m$$
, $[a_k, b_k] \cap [a_m, b_m] = \emptyset$.

$$) \sum_{k=1}^{\infty} (b_k - a_k) = 1.$$

• The set $[0,2] \setminus (\bigcup_{k=1}^{\infty} I_k)$ doesn't contain an interval.

3.2 Lemma

The set

$$C = [0,2] \setminus \bigcup_{k \in \mathbb{N}} I_k$$

is closed, compact, zero-dimensional and doesn't contain isolated points, consequently it is the Cantor set. ■

3.3 Function ψ

Define the function $\psi \colon \mathcal{C} o \mathbb{R}$ setting for every point $x \in \mathcal{C}$

$$\psi(x) = x - \sum_{m \in \mathbb{N}, b_m \leq x} (b_m - a_m).$$

3.4 Lemma

Function ψ satisfies following properties:

- $\bigcirc \psi$ is nondecreasing,
- **2** For every $x, y \in C$:

$$|\psi(x) - \psi(y)| \leq |x - y|,$$

• ψ is continuous map of C on [0, 1].

4.1 Compactum K

Consider unit cube in \mathbb{R}^N

$$Q^{N} = \{(x_{1}, \ldots, x_{N}) | 0 \leqslant x_{s} \leqslant 1, \ 1 \leqslant s \leqslant N\}$$

and its subset

$$\mathcal{K}^{0} = \{(x_{1}, \ldots, x_{N}) \in Q^{N} | x_{\varphi(i,k)} \leqslant x_{\varphi(i,j)} + x_{\varphi(j,k)}, 1 \leqslant i, j, k \leqslant n\}.$$

Let

$$\mathcal{K} = \{ (x_1, \ldots, x_N) \in \mathcal{C}^N | (\psi(x_1), \ldots, \psi(x_N)) \in \mathcal{K}^0 \}$$

4.2 Remark

The set K is closed (as a preimage of a closed set by continuous map), bounded, and consequently compact.

4.3 Parameters

For convenience of notation, denote the number $\psi(x_s)$ by x^s , where $1 \leq s \leq N$. Numbers x^s , for $1 \leq s \leq N$, is called **parameters** of the point $x = (x_1, \ldots, x_N) \in K$.

4.4 Space X_0

 S_{π}

Let K_i , $i = 1, \dots, n$, be copies of the metric compactum K and π_i the corresponding isometry K_i on K. Disjoint union of this copies is denoted by X_0 :

$$\mathbf{X}_0 = \bigsqcup_{1 \leqslant i \leqslant n} \mathbf{K}_i$$

Let π be the map of X_0 on K, which coinsides with π_i on K_i , $i = 1, \dots, n$. Let also

$$egin{aligned} &S_{\mathcal{K}}=\cup\{\mathcal{K}_i imes\mathcal{K}_i\subset X_0 imes X_0|1\leqslant i\leqslant n\},\ =\{(a,b)\in X_0 imes X_0|\;\exists 1\leqslant i,j\leqslant n\colon a\in \mathcal{K}_i,\;b\in \mathcal{K}_j,\;\pi(a)=\pi(b)\}\ &S=S_{\mathcal{K}}\cup S_{\pi}. \end{aligned}$$

5.1 The map ρ_0

Let $ho_0\colon \mathcal{S} o \mathbb{R}$ be a map defined as follows:

$$\rho_0(a,b) = \begin{cases} \rho(\pi(a), \pi(b)), & \text{if } a, b \in K_i, \\ (\pi(a))^{\varphi(i,j)}, & \text{if } a \in K_i, \ b \in K_j, \ i \neq j, \ \pi(a) = \pi(b). \end{cases}$$

5.2 Remark

By definition, the map ho_0 is symmetrical and non-negative.

5.3 The notion of a way

Any sequence $a_1, a_2, ..., a_m \in X_0$, which satisfies condition

$$\forall 1 \leqslant i < m : (a_i, a_{i+1}) \in S,$$

is called a way between $a = a_1$ and $b = a_m$. The set of all ways between a and b is denoted by W(a, b).

5.4 The pseudometric ho_{X_0} on X_0

Let for every $a, b \in X_0$:

$$\rho_{X_0}(a, b) = \inf_{(a_1, \dots, a_l) \in W(a, b)} \sum_{i=1}^{l-1} \rho_0(a_i, a_i + 1).$$

It is obvious, that ho_{X_0} is pseudometric.

5.5 Proposition

• If $a, b \in K_i$, then

$$\rho_{X_0}(a,b) = \rho_0(a,b) = \rho(\pi(a), \pi(b)).$$

2 If $a \in K_i, b \in K_j, (a, b) \in S_{\pi}$, then

$$ho_{\mathrm{X}_0}(\mathsf{a},\mathsf{b})=
ho_0(\mathsf{a},\mathsf{b})=(\pi(\mathsf{a}))^{arphi(i,j)}.$$

6.1 The space X_1

Let C_i , $i = 1, \dots, n$, be copies of the Cantor cube C^N and θ_i the corresponding isometry C_i on C^N . The disjoint union of this copies is denoted by X_1 :

$$X_1 = \bigsqcup_{1 \leqslant i \leqslant n} C_i.$$

Let θ be the map of X_1 on C^N , which coinsides with θ_i on C_i , $i = 1, \dots, n$. Obviously, the set X_0 naturaly contained in X_1 . Then, the pseudometric ρ_{X_0} can be extended to pseudometric ρ_{X_1} on X_1 as follows: for every $a \in C_i, b \in C_j$ we set

$$ho_{\mathrm{X}_1}(\mathbf{a},\mathbf{b}) = \min_{\mathbf{c}\in\mathcal{K}_i, \mathbf{d}\in\mathcal{K}_j} \{
ho(heta(\mathbf{a}),\pi(\mathbf{c})) +
ho_{\mathrm{X}_0}(\mathbf{c},\mathbf{d}) +
ho(\pi(\mathbf{d}), heta(\mathbf{b}))\}.$$

6.2 The metric space T

The pseudometric ρ_{X_1} naturally defines a metric ρ_T on the factor space $T=X_1/\!\!\sim\!\!,$ where

$$x \sim y \Leftrightarrow \rho_{X_1}(x, y) = 0.$$

Let σ be the natural map X_1 on T. By construction, the space T is compact, zero-dimensional and doesn't contain isolated points. So, it is homeomorphic to the Cantor set.

6.3 Theorem

For every $(M, \rho_M) \in \mathbb{F}_1^n$ and for every numeration of elements of M:

$$M = \{M_1, \dots M_m\}$$

there exist points $a_1, \ldots a_m \in T$ such that

$$\rho_M(M_i, M_j) = \rho_{\mathrm{T}}(a_i, a_j).$$

Therefore, T contains isometrically all ellements of \mathbb{F}_1^n .

Proof in case m = n

Consider collection (d_1, \ldots, d_N) of distances between points of a space $(M, \rho_M) \in \mathbb{F}_1^n$:

$$d_{\varphi(i,j)} = \rho_M(M_i, M_j).$$

There exists point $x \in K^o$ such that $x_i = d_i$. For this point there is one (or more) point $b \in K$ such that $b^i = x_i$. Consider different points $b_1, \ldots, b_n \in X_1$ such that $\theta(b_i) = b$. By the definition of pseudometric on X_1 :

$$\rho_{\mathrm{X}_1}(b_i, b_j) = d_{\varphi(i,j)} = \rho_{\mathcal{M}}(\mathcal{M}_i, \mathcal{M}_j).$$

Then points $a_i = \sigma(b_i)$ are required points.

Thank you!

S.D. Iliadis, Universal Spaces and Mappings, North-Holland Mathematics Studies, 198, Elsevier Science B.V., Amsterdam, 2005, xvi+559 pp.

J. Tits, *Groupes à croissance polynomiale*, Séminaire Bourbaki, 23 (1980-1981), Expposé No. 572.