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1 Uniform class.

1.1 Definition.

A class K of metric spaces is said to be uniform, if it has two following

properties: (a) diameters of its elements bounded by number d and (b) for
every € > 0 there exist an integer n(¢) such that every element of this class
has an e-net the number of elements of which is less than or equal to n(e).
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1.2 Uniformity and isometrical embeddings

It was proved in [2]? (see also [1]°) that if a class K is uniform, then there
is a totally bounded metric space (and consequently a compact metric
space), which isometrically contains all elements of this class. So,
properties (a) and (b) of a class K are necessary and sufficient conditions
for the existence of a compact metric space containing isometrically every
element of this class.

?J. Tits, Groupes a croissance polynomiale, Séminaire Bourbaki, 23 (1980-1981),
Expposé No. 572.

bS.D. lliadis, Universal Spaces and Mappings, North-Holland Mathematics Studies,
198, Elsevier Science B.V., Amsterdam, 2005, xvi+559 pp.
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1.3 Uniformity and dimension

It was proved in [1] that if a class K is uniform and every its element has
dimension < n € w, then there is a totally bounded metric space of
dimension < n, which isometrically contains every space from K. In
general, this totally bounded space is not compact.
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1.4 Classes F; and FY

The class [F1 of all finite metric spaces with diameter < 1 is not uniform.
So, for this class there is no compact metric space, which isometrically
contains every element of F;. On the other hand, its subclass F7, n € N of
all finite metric spaces containing < n points is uniform, and, therefore,
there is a totally bounded zero-dimensional space T, isometrically
containing every element of F]. However, it is not known if the completion
of T is zero-dimensional.

It will be proved, without using construction from [1], the existence of a
metric on the Cantor set C such that every element of F/ is isometrically
embeded in C. So, this gives a positive answer to the question posed by S.
[liadis.
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2 Definitions and notation.

2.1 The map ¢
The set of natural numbers is denoted by N. We fix n € N.
Let N be the number of pairs (i,;), 1 < i <j < n, thatis N = @ We
fix a map

o: {(h)I1<ij<nt = {1,2,...,N},

which is one-to-one on the set {(/,/)|1 < i <j < n} and satisfies the
following property:

(P(iuj) = 90(.j7 i)'

(Such a map exists by definition of N.)
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2.2 Metric on R™

The set of real numbers is denoted by R . For m € N, R™ denotes the set:

Rm:{(xl,"' ,Xm)|X1,"' s Xm ER},

on which we consider the metric pgm: R™ — R, such that for every two
points X = (Xla e 7Xm)' }_/ = (yla e 7ym)'

m
prm(X, ¥) = Z Ixi — yil.
i=1

(In what follows, m = N and the metric ppn will be denoted by p.)
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3 The Cantor set and the function .

3.1 Construction of the Cantor set

We will construct the Cantor set in segment [0, 2], by considering system of
intervals Iy = (ak, bx), k € N, by > ak, which satisfies following properties:

Q@ For every k € N, [ax, bx] C (0,2).

@ For every k # m, [ak, bx] N [am, bm] = 0.

o Ziozl(bk - ak) = 1.

Q The set [0,2] \ (Uy—; k) doesn’t contain an interval.
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The set
C=1002\ | J
keN

is closed, compact, zero-dimensional and doesn’t contain isolated points,
consequently it is the Cantor set. B
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3.3 Function ¢

Define the function ¢: C — R setting for every point x € C

P(x)=x—= > (bm—am).

meN, bp<x

3.4 Lemma

| \

Function v satisfies following properties:
© 1 is nondecreasing,

@ Forevery x,y € C:

[Y(x) = ()| < Ix =yl

@ ¢ is continuous map of C on [0, 1].
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4 The space X.

4.1 Compactum K

Consider unit cube in RV
QN ={(x1,...,xn)| 0 < x <1, 1<s< NY
and its subset
KO = {1, xw) € Q] xp(ihy < Xp(i) + Xo(iskys 1 < iy k <}

Let

K={(x1,...,xn) € CN| (¥(x1),...,0(xn)) € K°}.

4.2 Remark
The set K is closed (as a preimage of a closed set by continuous map),
bounded, and consequently compact.
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4.3 Parameters

For convenience of notation, denote the number v(xs) by x°, where
1 < s < N. Numbers x°, for 1 < s < N, is called parameters of the point
x=(x1,...,xn) € K.
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4.4 Space X
Let Ki, i=1,---,n, be copies of the metric compactum K and 7; the
corresponding isometry K; on K. Disjoint union of this copies is denoted by
Xo:

Xo = |_| K;.

1<i<n

Let 7 be the map of X on K, which coinsides with 7; on K;, i =1,--- ,n.
Let also

Sk = U{Ki x K; C Xo x Xo|1 < i< n},
Sr={(a,b) € Xo x Xo| 31 < i,j < n: a € K;, b€ K, m(a) = m(b)},
S=5SkUS;,.
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5 The pseudometric px, on X.

5.1 The map po

Let pg: S — R be a map defined as follows:

po(a, b) = {p(”(a), ?ﬁb)), if a,b € Ki,
; (r(a))?(),  ifae K, beK; i) n(a)=m(b).

By definition, the map pg is symmetrical and non-negative.
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5.3 The notion of a way

Any sequence a1, ap, ...am € Xo, which satisfies condition
Vi<i<m: (a,-,a,-+1) €S,

is called a way between a = a; and b = ap,. The set of all ways between a
and b is denoted by W(a, b).

5.4 The pseudometric px, on X,

Let for every a, b € Xp:

/-1

a,b) = inf %3+ 1)
pXO( ) (a1,...,a))eW(a,b) EPO( )

It is obvious, that px, is pseudometric.
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5.5 Proposition

Q If a,b € K;, then
pXo(av b) = pO(aa b) = p(ﬂ-(a)7 7T(b))
Q Ifac Ki,be Kj,(a,b) € S, then

px,(a,b) = po(a, b) = (r(a))?¥).
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6 The main result.

6.1 The space X;

Let C;, i=1,---,n, be copies of the Cantor cube CN and 6; the
corresponding isometry C; on CN. The disjoint union of this copies is

denoted by X;:
X, = || G

1<i<n

Let 0 be the map of X; on CV, which coinsides with 6; on C;,
i=1,---,n. Obviously, the set X naturaly contained in X;y. Then, the
pseudometric px, can be extended to pseudometric px, on X; as follows:
for every a € G, b € C; we set

px,(a, b) = Ce,gl’ic;\%{p(@(a)v m(c)) + pxo(c, d) + p(x(d), 6(b))}-
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6.2 The metric space T

The pseudometric px, naturally defines a metric pp on the factor space
T = X;/~, where

x~y < px,(x y) =0.
Let o be the natural map X; on T. By construction, the space T is

compact, zero-dimensional and doesn’t contain isolated points. So, it is
homeomorphic to the Cantor set.
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6.3 Theorem

For every (M, pp) € F{ and for every numeration of elements of M:

M= {M,...Mp}
there exist points a1, ...an, € T such that

pm(Mi, M) = pr(a;, aj).

Therefore, T contains isometrically all ellements of FY.
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Proof in case m = n

Consider collection (df, ..., dy) of distances between points of a space
(M, pM) S FT:
dy(ijy = pm(Mi, M;).

There exists point x € K° such that x; = d;. For this point there is one (or
more) point b € K such that b’ = x;. Consider different points
bi,...b, € X; such that 0(b;) = b. By the definition of pseudometric on
Xli

le(bi’ bj) = dgo(i,j) = pM(Mi7 Mj)'

Then points a; = o(b;) are required points.
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Thank you!
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