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Abstract

We give a criterion when a zero-dimensional homogeneous space is h-homogeneous.
Using it, we show that Xω is h-homogeneous for every metric space X with
dim X = 0. Moreover, every homogeneous zero-dimensional separable met-
ric space, which is non-locally compact, is h-homogeneous. We generalize the
Motorov theorem about h-homogeneity of the product of two compacta. In
particular, we prove that the product C × Y is an h-homogeneous space if C
is the Cantor set and Y is a homogeneous zero-dimensional compact space.
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We investigate the relations between homogeneous and h-homogeneous
spaces. The properties of h-homogeneous spaces has been studied by several
authors. Van Mill [1] obtained that every zero-dimensional h-homogeneous
first countable space is homogeneous. Terada [2] proved the following state-
ment.

Theorem 1. Let X be a non-pseudocompact zero-dimensional space. If X
has a π-base consisting of clopen subsets that are homeomorphic to X, then
X is h-homogeneous.

Medini [3] showed that the condition indX = 0 can be dropped in Theo-
rem 1. We suggest a criterion of h-homogeneity for homogeneous paracom-
pact spaces (see Theorem 2). Using it, we show that the notions of homo-
geneity and h-homogeneity are equivalent for a weight-homogeneous metric
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non-locally compact space X with IndX = 0 (see Corollary 1). This implies
that Xω is an h-homogeneous space for any metric space with IndX = 0.
The last statement was proved by Medini [3] under the additional assumption
that X is non-separable.

We describe two cases when the product X × Y is an h-homogeneous
space. Theorem 7 states that this is valid if X is an h-homogeneous non-
pseudocompact zero-dimensional space and Y is a homogeneous zero-dimensional
Lindelöf space. Medini [3] proved that the productX×Y is an h-homogeneous
space if X, Y are h-homogeneous Tyconoff spaces such that X × Y is pseu-
docompact. Motorov [4] announced that the product X × Y of two zero-
dimensional first countable compacta X and Y will be h-homogeneous pro-
vided X is h-homogeneous and Y is homogeneous. We improve the last
statement in the following way (see Theorem 8). X×Y is an h-homogeneous
space if X is an infinite h-homogeneous pseudocompact space and Y is a ho-
mogeneous zero-dimensional compact space. This implies (see Corollary 6)
that the product C×Y is a homogeneous and h-homogeneous space if C is the
Cantor set and Y is a homogeneous zero-dimensional compact space. Hence,
C × Y is n-divisible for each positive integer n.

Thus, the multiplication of a compact space Y by the Cantor set improves
the homogeneous properties of Y . A homogeneous compact space which is
not h-homogeneous was constructed by van Douwen [5]. Motorov [6] gives
an example of a homogeneous zero-dimensional compact which is divisible
by 3 but not divisible by 2.

1. Notation

For all undefined terms and notation see [7]. X ≈ Y means that X and
Y are homeomorphic spaces. Let P be a topological property. Then a space
X is nowhere P if no non-empty open subset of X has property P .

We identify cardinals with initial ordinals; in particular, ω = {0, 1, 2, . . .}.
A space X is called weight-homogeneous if all non-empty open subspaces of
X have the same weight. A family B consisting of non-empty open subsets
of a space X is a π-base if for every non-empty open subset U ⊆ X there
exists V ∈ B such that V ⊆ U .

A clopen set is a set which is both closed and open. A space X is ho-
mogeneous if for any two points x, y ∈ X there exists a homeomorphism
f : X → X with f(x) = y. A space X is called h-homogeneous if every
non-empty clopen subset of X is homeomorphic to X.
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The smallest cardinal number k such that every open cover of a space X
has an open refinement of cardinality ≤ k is called the Lindelöf number of
the space X and is denoted by l(X).

We say that a space X is k-divisible (or divisible by k) if X ≈ Dk ×X,
where Dk is the discrete space of cardinality k.

Lemma 1. 1) Let a space X be k-divisible for an infinite cardinal k. Then
X is k1-divisible for any cardinal k1 ≤ k.

2) Let X be an h-homogeneous zero-dimensional space containing at least
two points. Then X is n-divisible for each positive integer n.

3) Let X be an h-homogeneous ω-divisible space. Then X is non-pseudocompact.

Proof. 1) Consider the cardinal k as a discrete space. Then
X ≈ k ×X ≈ (k1 × k)×X ≈ k1 × (k ×X) ≈ k1 ×X.
2) Fix n > 1. Take two different points a and b. Let U be a clopen

neighborhood of a such that b /∈ U . Since X is h-homogeneous, X ≈ U .
Then U contains at least two different points. Repeating the division, we
conclude that X contains at least n different points x1, . . . , xn. Choose pair-
wise disjoint clopen neighborhoods U1, . . . , Un−1 of the points x1, . . . , xn−1

such that xn /∈ Ui for i < n. Let Un = X \ (U1 ∪ . . . ∪ Un−1). Then
X ≈ U1 ⊕ . . .⊕ Un ≈ n×X.

3) SinceX is ω-divisible, X ≈ ω × U for some clopen U ⊂ X. Define the
function f : X → R by the rule f(x) = i if x ∈ {i}×U . Then f is continuous
and unbounded. Hence, X is a non-pseudocompact space. �

Example. Let Z ⊂ R2 be the union of the square [0, 1] × [0, 1] and the
interval [1, 2]×{0}. Clearly, the product Z×C is not homogeneous, where C
is the Cantor set. Nevertheless, Z × C is n-divisible for each positive integer
n.

2. Indications of h-homogeneity

Theorem 2. Let X be a homogeneous paracompact space of weight k such
that dimX = 0 and X contains a discrete closed subset D of cardinality k.
Then the following statements are equivalent:

(a1) X is an h-homogeneous space,
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(a2) for every non-empty clopen subset U of X there are a non-empty open
V ⊆ X and a discrete family {Vα : α ∈ k} such that ∪{Vα : α ∈ k} ⊆ U
and each Vα ≈ V .

Proof. (a1) ⇒ (a2). Since every paracompact space is collectionwise nor-
mal [7, Theorem 5.1.18], there exists a discrete family {Eα : α ∈ k} of open
subsets of X every member of which contains a one point from D. From
the Vedenissoff theorem [7, Theorem 6.2.5] it follows that indX = IndX = 0
because every paracompact space is normal. Then we may assume that ev-
ery Eα is clopen in X. Put V = X. h-Homogeneity of X implies that each
Eα ≈ V .

Take a non-empty clopen subset U ⊆ X and a homeomorphism f : X →
U . Set Vα = f(Eα). Then the family {Vα : α ∈ k} satisfies (a2).

(a2) ⇒ (a1). Choose a clopen base B for X. Take a U ∈ B. Fix the set
V and the family {Vα : α ∈ k} according to the condition (a2).

Choose a point a ∈ V . From homogeneity of X it follows that for every
point x ∈ X there exists a homeomorphism fx : X → X such that fx(a) = x.
Since dimX = 0, the open cover {fx(V ) : x ∈ X} of X has a discrete open
refinement {Wα : α ∈ k1}. By construction, every Wα is clopen in X and
homeomorphic to a clopen subset of V . Clearly, k1 ≤ w(X) = k. Then X is
homeomorphic to a clopen subset U∗ of ∪{Vα : α ∈ k1}.

Since every U∗ ⊆ U , the family {U∗ : U ∈ B} forms a π-base for X.
One can check that if X is a finite space, then X is a one-point set. In

this case the theorem is trivial.
Let the cardinal k be infinite. ThenD contains a closed subset {di : i ∈ ω}

such that di 6= dj whenever i 6= j. By the Tietze-Urysohn theorem there
exists a continuous function f : X → R such that f(di) = i for i ∈ ω.
Since f is not bounded, the space X is not pseudocompact. By virtue of
Theorem 1, the space X is h-homogeneous. �

Theorem 3. Let X be a homogeneous, non-locally compact metric space of
weight k with dimX = 0. Then the following statements are equivalent:

(b1) X is an h-homogeneous space,

(b2) for every non-empty open U ⊆ X there are a non-empty open V ⊆ X
and a discrete family {Vα : α ∈ k} such that ∪{Vα : α ∈ k} ⊆ U and
each Vα ≈ V .
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Proof. By Theorem 2, it suffices to show that X contains a discrete closed
subset D of cardinality k. This is valid for k = ω because X is not compact.
When k > ω this follows from the weight-homogeneity of X. �

The following statement was proved in [8] under the additional assump-
tion cf(w(X)) > ω.

Theorem 4. Let X be a homogeneous, weight-homogeneous metric space
such that IndX = 0 and X is not locally compact. Then X is h-homogeneous.

Proof. Let w(X) = k. Using [7, Theorem 7.3.15], we can consider X as a
dense subset of the Baire space B(k). By definition, B(k) =

∏
{Di : i ∈ ω},

where each Di is the discrete space of cardinality k. Take a non-empty open
subset U of X. Then U contains a clopen (in X) subset W that can be
represented as

W = X
⋂

({d0} × . . .× {dn−1} ×Dn ×Dn+1 × . . .)

for some n ∈ ω and points di ∈ Di provided i < n. Put Dn = {α : α ∈ k}.
Define

Vα = X
⋂

({d0} × . . .× {dn−1} × {α} ×Dn+1 × . . .) .

Let V = V0. Clearly, Vα ≈ V and Vα ⊂ U for every α ∈ k. The family
{Vα : α ∈ k} is discrete in X. Note that dimX = IndX = 0 by virtue of the
Katětov-Morita theorem. By Theorem 3, the space X is h-homogeneous. �

The last theorem, together with the van Mill [1] result, yields

Corollary 1. Let X be a weight-homogeneous metric space such that IndX =
0 and X is not locally compact. Then X is h-homogeneous if and only if X
is homogeneous.

Corollary 2. Let X be a homogeneous zero-dimensional separable metric
space which is not locally compact. Then X is h-homogeneous.

Corollary 3. Let G be a separable zero-dimensional metrizable topological
group which is not locally compact. Then G is an h-homogeneous space.

Theorem 5. Let X be a metric space with IndX = 0. Then Xω is an h-
homogeneous space.
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Proof. If X is a compact space, then the theorem is true because X is
homeomorphic either to the Cantor set or to a one-point space.

Now, suppose X is not a compact space. By virtue of [7, Theorem 3.3.13],
the product Xω is nowhere locally compact. According to the Dow and
Pearl theorem [9], Xω is a homogeneous space. Clearly, Xω is a weight-
homogeneous space. It remains to apply Theorem 4. �

3. h-Homogeneity of the product X × Y

Theorem 6. Let X be an h-homogeneous k-divisible zero-dimensional space,
where k ≥ ω. Let Y be a homogeneous paracompact space such that l(Y ) ≤ k
and dimY = 0. Then X × Y is an h-homogeneous space.

Proof. Take a non-empty open subset W of X × Y . Then W contains a
product U × V , where U is a clopen subset of X and V is a clopen subset
of Y . Fix a point a ∈ V . From homogeneity of Y it follows that for every
point y ∈ Y there exists a homeomorphism fy : Y → Y such that fy(a) = y.
Since l(Y ) ≤ k, the cover {fy(V ) : y ∈ Y } of Y has a locally finite open
refinement of cardinality ≤ k . By the Dowker theorem [7, Theorem 7.2.4],
from dimY = 0 it follows that the last cover of Y has a discrete open
refinement {V ∗

α : α ∈ k1}, where k1 ≤ k and each V ∗
α is homeomorphic

to a non-empty clopen subset Vα of V . Then Y = ⊕{V ∗
α : α ∈ k1}. By

Lemma 1, we have X ≈ k1 × X. From h-homogeneity of X it follows that
U ≈ X ≈ ⊕{Uα : α ∈ k1}, where each Uα ≈ X and Uα ⊂ U . Hence,

X × Y ≈ X × (⊕{Vα : α ∈ k1}) ≈ ⊕{X × Vα : α ∈ k1}
≈ ⊕{Uα × Vα : α ∈ k1} = W ∗.

The set W ∗ ⊆ U × V and W ∗ is a clopen subset of W .
If we take a base B for X × Y , then the family {W ∗ : W ∈ B} forms a

π-base. Since k ≥ ω, the space X × Y is non-pseudocompact. Theorem 1
implies that X × Y is an h-homogeneous space. �

Theorem 7. Let X be an h-homogeneous non-pseudocompact zero-dimensional
space. Let Y be a homogeneous zero-dimensional Lindelöf space. Then X×Y
is an h-homogeneous space.

Proof. The theorem is a particular case of Theorem 6 when k = ω. One can
verify that X is ω-divisible. Next, the conditions indY = 0 and dimY = 0
are equivalent for every Lindelöf space (see [7, Theorem 7.1.11]). �
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Corollary 4. Let Y be a homogeneous zero-dimensional Lindelöf space. Then
Q× Y is an h-homogeneous space, where Q is the space of rationals.

Theorem 8. Let X be an infinite h-homogeneous pseudocompact space and
Y be a homogeneous zero-dimensional compact space. Then X × Y is an
h-homogeneous space.

Proof. Take a non-empty clopen subset V of the space Y . Fix a point a ∈
V . From homogeneity of Y it follows that for every point y ∈ Y there exists
a homeomorphism fy : Y → Y such that fy(a) = y. Since Y is compact, the
cover {fy(V ) : y ∈ Y } of Y has a finite subcover {V ∗

i : 0 ≤ i ≤ n} for some

n, where each V ∗
i is clopen in Y . Put V̂0 = V ∗

0 and V̂i = V ∗
i \

⋃
{V ∗

j : j < i}
for i > 0. Then each V̂i is homeomorphic to a clopen subset Vi of V . Clearly,
Y = ∪{V̂i : i ≤ n}, where V̂i ∩ V̂j = ∅ whenever i 6= j. Without loss of

generality, V̂0 = V0 = V and each V̂i is non-empty.
Consider a non-empty clopen subset U of the space X. By Lemma 1, we

haveX ≈ n×X. From h-homogeneity ofX it follows that U = ∪{Ui : i ≤ n},
where each Ui is clopen in X, Ui ≈ X, and Ui∩Uj = ∅ whenever i 6= j. Hence,

X × Y ≈ X × (⊕{Vi : i ≤ n}) ≈ ⊕{X × Vi : i ≤ n}
≈ ∪{Ui × Vi : i ≤ n} = Z.

One can check that Z is a clopen subset of U × V .
Let A be the Boolean algebra over V generated by clopen sets V0, . . . , Vn.

Since A is finite, it must be atomic. Let W0, . . . ,Wm be the atoms of A.
Denote by nj the number of sets V0, . . . , Vn containing Wj for j ≤ m. Note
that each nj ≥ 1 because V0 = V . Then

Z = ∪{Ui × ∪{Wj : Wj ⊆ Vi} : i ≤ n} ≈ ⊕{X × ∪{Wj : Wj ⊆ Vi} : i ≤ n}
≈ ⊕{X × nj ×Wj : j ≤ m} ≈ ⊕{X ×Wj : j ≤ m}
≈ X × (∪{Wj : j ≤ m}) ≈ X × V0 ≈ U × V.

Thus, X × Y ≈ U × V for every non-empty clopen subsets U and V of the
spaces X and Y , respectively.

Next, take a non-empty clopen subset C of X × Y . By virtue of [7,
Theorem 3.10.27], the product X × Y is pseudocompact. Proposition 6 and
Lemma 7 from [3] imply that C can be written as the union of finitely many
pairwise disjoint clopen rectangles. Say, C is the union of l such rectangles.
Then C ≈ l ×X × Y ≈ X × Y . Hence, X × Y is h-homogeneous. �
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Corollary 5. Let X be an infinite h-homogeneous compact space and Y
be a homogeneous zero-dimensional compact space. Then X × Y is an h-
homogeneous space.

Corollary 6. Let Y be a homogeneous zero-dimensional compact space. Then
C × Y is a homogeneous, h-homogeneous space, where C is the Cantor set.

Corollary 7. Let Y be a homogeneous zero-dimensional compact space. Then
Y is a retract of an h-homogeneous compact space Z with w(Z) = w(Y ).
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