Homogeneity and h-homogeneity

S.V. Medvedev

Faculty of Mechanics and Mathematics, South Ural State University, pr. Lenina, 76, Chelyabinsk, 454080 Russia

Abstract

We give a criterion when a zero-dimensional homogeneous space is *h*-homogeneous. Using it, we show that X^{ω} is *h*-homogeneous for every metric space X with dim X = 0. Moreover, every homogeneous zero-dimensional separable metric space, which is non-locally compact, is *h*-homogeneous. We generalize the Motorov theorem about *h*-homogeneity of the product of two compacta. In particular, we prove that the product $\mathcal{C} \times Y$ is an *h*-homogeneous space if \mathcal{C} is the Cantor set and Y is a homogeneous zero-dimensional compact space.

Keywords: homogeneous space, *h*-homogeneous space, zero-dimensional, clopen set, pseudocompact, compact space 2000 MSC: 54F50, 54D30

We investigate the relations between homogeneous and h-homogeneous spaces. The properties of h-homogeneous spaces has been studied by several authors. Van Mill [1] obtained that every zero-dimensional h-homogeneous first countable space is homogeneous. Terada [2] proved the following statement.

Theorem 1. Let X be a non-pseudocompact zero-dimensional space. If X has a π -base consisting of clopen subsets that are homeomorphic to X, then X is h-homogeneous.

Medini [3] showed that the condition $\operatorname{ind} X = 0$ can be dropped in Theorem 1. We suggest a criterion of *h*-homogeneity for homogeneous paracompact spaces (see Theorem 2). Using it, we show that the notions of homogeneity and *h*-homogeneity are equivalent for a weight-homogeneous metric

Preprint submitted to Topology and its Applications

Email address: medv@is74.ru (S. V. Medvedev)

non-locally compact space X with $\operatorname{Ind} X = 0$ (see Corollary 1). This implies that X^{ω} is an *h*-homogeneous space for any metric space with $\operatorname{Ind} X = 0$. The last statement was proved by Medini [3] under the additional assumption that X is non-separable.

We describe two cases when the product $X \times Y$ is an *h*-homogeneous space. Theorem 7 states that this is valid if X is an *h*-homogeneous nonpseudocompact zero-dimensional space and Y is a homogeneous zero-dimensional Lindelöf space. Medini [3] proved that the product $X \times Y$ is an *h*-homogeneous space if X, Y are *h*-homogeneous Tyconoff spaces such that $X \times Y$ is pseudocompact. Motorov [4] announced that the product $X \times Y$ of two zerodimensional first countable compacta X and Y will be *h*-homogeneous provided X is *h*-homogeneous and Y is homogeneous. We improve the last statement in the following way (see Theorem 8). $X \times Y$ is an *h*-homogeneous space if X is an infinite *h*-homogeneous pseudocompact space and Y is a homogeneous zero-dimensional compact space. This implies (see Corollary 6) that the product $\mathcal{C} \times Y$ is a homogeneous and *h*-homogeneous space if \mathcal{C} is the Cantor set and Y is a homogeneous zero-dimensional compact space. Hence, $\mathcal{C} \times Y$ is *n*-divisible for each positive integer *n*.

Thus, the multiplication of a compact space Y by the Cantor set improves the homogeneous properties of Y. A homogeneous compact space which is not *h*-homogeneous was constructed by van Douwen [5]. Motorov [6] gives an example of a homogeneous zero-dimensional compact which is divisible by 3 but not divisible by 2.

1. Notation

For all undefined terms and notation see [7]. $X \approx Y$ means that X and Y are homeomorphic spaces. Let \mathcal{P} be a topological property. Then a space X is nowhere \mathcal{P} if no non-empty open subset of X has property \mathcal{P} .

We identify cardinals with initial ordinals; in particular, $\omega = \{0, 1, 2, ...\}$. A space X is called *weight-homogeneous* if all non-empty open subspaces of X have the same weight. A family \mathcal{B} consisting of non-empty open subsets of a space X is a π -base if for every non-empty open subset $U \subseteq X$ there exists $V \in \mathcal{B}$ such that $V \subseteq U$.

A clopen set is a set which is both closed and open. A space X is homogeneous if for any two points $x, y \in X$ there exists a homeomorphism $f: X \to X$ with f(x) = y. A space X is called h-homogeneous if every non-empty clopen subset of X is homeomorphic to X. The smallest cardinal number k such that every open cover of a space X has an open refinement of cardinality $\leq k$ is called the *Lindelöf number* of the space X and is denoted by l(X).

We say that a space X is k-divisible (or divisible by k) if $X \approx D_k \times X$, where D_k is the discrete space of cardinality k.

Lemma 1. 1) Let a space X be k-divisible for an infinite cardinal k. Then X is k_1 -divisible for any cardinal $k_1 \leq k$.

2) Let X be an h-homogeneous zero-dimensional space containing at least two points. Then X is n-divisible for each positive integer n.

3) Let X be an h-homogeneous ω -divisible space. Then X is non-pseudocompact.

PROOF. 1) Consider the cardinal k as a discrete space. Then

 $X \approx k \times X \approx (k_1 \times k) \times X \approx k_1 \times (k \times X) \approx k_1 \times X.$

2) Fix n > 1. Take two different points a and b. Let U be a clopen neighborhood of a such that $b \notin U$. Since X is h-homogeneous, $X \approx U$. Then U contains at least two different points. Repeating the division, we conclude that X contains at least n different points x_1, \ldots, x_n . Choose pairwise disjoint clopen neighborhoods U_1, \ldots, U_{n-1} of the points x_1, \ldots, x_{n-1} such that $x_n \notin U_i$ for i < n. Let $U_n = X \setminus (U_1 \cup \ldots \cup U_{n-1})$. Then $X \approx U_1 \oplus \ldots \oplus U_n \approx n \times X$.

3) Since X is ω -divisible, $X \approx \omega \times U$ for some clopen $U \subset X$. Define the function $f: X \to R$ by the rule f(x) = i if $x \in \{i\} \times U$. Then f is continuous and unbounded. Hence, X is a non-pseudocompact space. \Box

Example. Let $Z \subset \mathbb{R}^2$ be the union of the square $[0, 1] \times [0, 1]$ and the interval $[1, 2] \times \{0\}$. Clearly, the product $Z \times C$ is not homogeneous, where C is the Cantor set. Nevertheless, $Z \times C$ is *n*-divisible for each positive integer n.

2. Indications of *h*-homogeneity

Theorem 2. Let X be a homogeneous paracompact space of weight k such that $\dim X = 0$ and X contains a discrete closed subset D of cardinality k. Then the following statements are equivalent:

(a1) X is an h-homogeneous space,

(a2) for every non-empty clopen subset U of X there are a non-empty open $V \subseteq X$ and a discrete family $\{V_{\alpha} : \alpha \in k\}$ such that $\cup \{V_{\alpha} : \alpha \in k\} \subseteq U$ and each $V_{\alpha} \approx V$.

PROOF. $(a1) \Rightarrow (a2)$. Since every paracompact space is collectionwise normal [7, Theorem 5.1.18], there exists a discrete family $\{E_{\alpha} : \alpha \in k\}$ of open subsets of X every member of which contains a one point from D. From the Vedenissoff theorem [7, Theorem 6.2.5] it follows that $\operatorname{ind} X = \operatorname{Ind} X = 0$ because every paracompact space is normal. Then we may assume that every E_{α} is clopen in X. Put V = X. h-Homogeneity of X implies that each $E_{\alpha} \approx V$.

Take a non-empty clopen subset $U \subseteq X$ and a homeomorphism $f: X \to U$. Set $V_{\alpha} = f(E_{\alpha})$. Then the family $\{V_{\alpha} : \alpha \in k\}$ satisfies (a2).

 $(a2) \Rightarrow (a1)$. Choose a clopen base \mathcal{B} for X. Take a $U \in \mathcal{B}$. Fix the set V and the family $\{V_{\alpha} : \alpha \in k\}$ according to the condition (a2).

Choose a point $a \in V$. From homogeneity of X it follows that for every point $x \in X$ there exists a homeomorphism $f_x : X \to X$ such that $f_x(a) = x$. Since dimX = 0, the open cover $\{f_x(V) : x \in X\}$ of X has a discrete open refinement $\{W_\alpha : \alpha \in k_1\}$. By construction, every W_α is clopen in X and homeomorphic to a clopen subset of V. Clearly, $k_1 \leq w(X) = k$. Then X is homeomorphic to a clopen subset U^* of $\cup \{V_\alpha : \alpha \in k_1\}$.

Since every $U^* \subseteq U$, the family $\{U^* : U \in \mathcal{B}\}$ forms a π -base for X.

One can check that if X is a finite space, then X is a one-point set. In this case the theorem is trivial.

Let the cardinal k be infinite. Then D contains a closed subset $\{d_i : i \in \omega\}$ such that $d_i \neq d_j$ whenever $i \neq j$. By the Tietze-Urysohn theorem there exists a continuous function $f : X \to R$ such that $f(d_i) = i$ for $i \in \omega$. Since f is not bounded, the space X is not pseudocompact. By virtue of Theorem 1, the space X is h-homogeneous. \Box

Theorem 3. Let X be a homogeneous, non-locally compact metric space of weight k with $\dim X = 0$. Then the following statements are equivalent:

- (b1) X is an h-homogeneous space,
- (b2) for every non-empty open $U \subseteq X$ there are a non-empty open $V \subseteq X$ and a discrete family $\{V_{\alpha} : \alpha \in k\}$ such that $\cup \{V_{\alpha} : \alpha \in k\} \subseteq U$ and each $V_{\alpha} \approx V$.

PROOF. By Theorem 2, it suffices to show that X contains a discrete closed subset D of cardinality k. This is valid for $k = \omega$ because X is not compact. When $k > \omega$ this follows from the weight-homogeneity of X. \Box

The following statement was proved in [8] under the additional assumption $cf(w(X)) > \omega$.

Theorem 4. Let X be a homogeneous, weight-homogeneous metric space such that IndX = 0 and X is not locally compact. Then X is h-homogeneous.

PROOF. Let w(X) = k. Using [7, Theorem 7.3.15], we can consider X as a dense subset of the Baire space B(k). By definition, $B(k) = \prod \{D_i : i \in \omega\}$, where each D_i is the discrete space of cardinality k. Take a non-empty open subset U of X. Then U contains a clopen (in X) subset W that can be represented as

$$W = X \bigcap (\{d_0\} \times \ldots \times \{d_{n-1}\} \times D_n \times D_{n+1} \times \ldots)$$

for some $n \in \omega$ and points $d_i \in D_i$ provided i < n. Put $D_n = \{\alpha : \alpha \in k\}$. Define

$$V_{\alpha} = X \bigcap \left(\{d_0\} \times \ldots \times \{d_{n-1}\} \times \{\alpha\} \times D_{n+1} \times \ldots \right).$$

Let $V = V_0$. Clearly, $V_{\alpha} \approx V$ and $V_{\alpha} \subset U$ for every $\alpha \in k$. The family $\{V_{\alpha} : \alpha \in k\}$ is discrete in X. Note that dimX = IndX = 0 by virtue of the Katětov-Morita theorem. By Theorem 3, the space X is h-homogeneous. \Box

The last theorem, together with the van Mill [1] result, yields

Corollary 1. Let X be a weight-homogeneous metric space such that IndX = 0 and X is not locally compact. Then X is h-homogeneous if and only if X is homogeneous.

Corollary 2. Let X be a homogeneous zero-dimensional separable metric space which is not locally compact. Then X is h-homogeneous.

Corollary 3. Let G be a separable zero-dimensional metrizable topological group which is not locally compact. Then G is an h-homogeneous space.

Theorem 5. Let X be a metric space with IndX = 0. Then X^{ω} is an h-homogeneous space.

PROOF. If X is a compact space, then the theorem is true because X is homeomorphic either to the Cantor set or to a one-point space.

Now, suppose X is not a compact space. By virtue of [7, Theorem 3.3.13], the product X^{ω} is nowhere locally compact. According to the Dow and Pearl theorem [9], X^{ω} is a homogeneous space. Clearly, X^{ω} is a weight-homogeneous space. It remains to apply Theorem 4. \Box

3. *h*-Homogeneity of the product $X \times Y$

Theorem 6. Let X be an h-homogeneous k-divisible zero-dimensional space, where $k \ge \omega$. Let Y be a homogeneous paracompact space such that $l(Y) \le k$ and dim Y = 0. Then $X \times Y$ is an h-homogeneous space.

PROOF. Take a non-empty open subset W of $X \times Y$. Then W contains a product $U \times V$, where U is a clopen subset of X and V is a clopen subset of Y. Fix a point $a \in V$. From homogeneity of Y it follows that for every point $y \in Y$ there exists a homeomorphism $f_y : Y \to Y$ such that $f_y(a) = y$. Since $l(Y) \leq k$, the cover $\{f_y(V) : y \in Y\}$ of Y has a locally finite open refinement of cardinality $\leq k$. By the Dowker theorem [7, Theorem 7.2.4], from dim Y = 0 it follows that the last cover of Y has a discrete open refinement $\{V_{\alpha}^* : \alpha \in k_1\}$, where $k_1 \leq k$ and each V_{α}^* is homeomorphic to a non-empty clopen subset V_{α} of V. Then $Y = \bigoplus\{V_{\alpha}^* : \alpha \in k_1\}$. By Lemma 1, we have $X \approx k_1 \times X$. From h-homogeneity of X it follows that $U \approx X \approx \bigoplus\{U_{\alpha} : \alpha \in k_1\}$, where each $U_{\alpha} \approx X$ and $U_{\alpha} \subset U$. Hence,

$$X \times Y \approx X \times (\bigoplus \{V_{\alpha} : \alpha \in k_1\}) \approx \bigoplus \{X \times V_{\alpha} : \alpha \in k_1\}$$
$$\approx \bigoplus \{U_{\alpha} \times V_{\alpha} : \alpha \in k_1\} = W^*.$$

The set $W^* \subseteq U \times V$ and W^* is a clopen subset of W.

If we take a base \mathcal{B} for $X \times Y$, then the family $\{W^* : W \in \mathcal{B}\}$ forms a π -base. Since $k \geq \omega$, the space $X \times Y$ is non-pseudocompact. Theorem 1 implies that $X \times Y$ is an *h*-homogeneous space. \Box

Theorem 7. Let X be an h-homogeneous non-pseudocompact zero-dimensional space. Let Y be a homogeneous zero-dimensional Lindelöf space. Then $X \times Y$ is an h-homogeneous space.

PROOF. The theorem is a particular case of Theorem 6 when $k = \omega$. One can verify that X is ω -divisible. Next, the conditions $\operatorname{ind} Y = 0$ and $\operatorname{dim} Y = 0$ are equivalent for every Lindelöf space (see [7, Theorem 7.1.11]). \Box

Corollary 4. Let Y be a homogeneous zero-dimensional Lindelöf space. Then $Q \times Y$ is an h-homogeneous space, where Q is the space of rationals.

Theorem 8. Let X be an infinite h-homogeneous pseudocompact space and Y be a homogeneous zero-dimensional compact space. Then $X \times Y$ is an h-homogeneous space.

PROOF. Take a non-empty clopen subset V of the space Y. Fix a point $a \in V$. From homogeneity of Y it follows that for every point $y \in Y$ there exists a homeomorphism $f_y: Y \to Y$ such that $f_y(a) = y$. Since Y is compact, the cover $\{f_y(V) : y \in Y\}$ of Y has a finite subcover $\{V_i^* : 0 \le i \le n\}$ for some n, where each V_i^* is clopen in Y. Put $\hat{V}_0 = V_0^*$ and $\hat{V}_i = V_i^* \setminus \bigcup \{V_j^* : j < i\}$ for i > 0. Then each \hat{V}_i is homeomorphic to a clopen subset V_i of V. Clearly, $Y = \bigcup \{\hat{V}_i : i \le n\}$, where $\hat{V}_i \cap \hat{V}_j = \emptyset$ whenever $i \ne j$. Without loss of generality, $\hat{V}_0 = V_0 = V$ and each \hat{V}_i is non-empty.

Consider a non-empty clopen subset U of the space X. By Lemma 1, we have $X \approx n \times X$. From *h*-homogeneity of X it follows that $U = \bigcup \{U_i : i \leq n\}$, where each U_i is clopen in $X, U_i \approx X$, and $U_i \cap U_j = \emptyset$ whenever $i \neq j$. Hence,

$$X \times Y \approx X \times (\bigoplus \{V_i : i \le n\}) \approx \bigoplus \{X \times V_i : i \le n\}$$
$$\approx \cup \{U_i \times V_i : i \le n\} = Z.$$

One can check that Z is a clopen subset of $U \times V$.

Let \mathcal{A} be the Boolean algebra over V generated by clopen sets V_0, \ldots, V_n . Since \mathcal{A} is finite, it must be atomic. Let W_0, \ldots, W_m be the atoms of \mathcal{A} . Denote by n_j the number of sets V_0, \ldots, V_n containing W_j for $j \leq m$. Note that each $n_j \geq 1$ because $V_0 = V$. Then

$$Z = \bigcup \{ U_i \times \bigcup \{ W_j : W_j \subseteq V_i \} : i \le n \} \approx \bigoplus \{ X \times \bigcup \{ W_j : W_j \subseteq V_i \} : i \le n \}$$
$$\approx \bigoplus \{ X \times n_j \times W_j : j \le m \} \approx \bigoplus \{ X \times W_j : j \le m \}$$
$$\approx X \times (\bigcup \{ W_j : j \le m \}) \approx X \times V_0 \approx U \times V.$$

Thus, $X \times Y \approx U \times V$ for every non-empty clopen subsets U and V of the spaces X and Y, respectively.

Next, take a non-empty clopen subset C of $X \times Y$. By virtue of [7, Theorem 3.10.27], the product $X \times Y$ is pseudocompact. Proposition 6 and Lemma 7 from [3] imply that C can be written as the union of finitely many pairwise disjoint clopen rectangles. Say, C is the union of l such rectangles. Then $C \approx l \times X \times Y \approx X \times Y$. Hence, $X \times Y$ is h-homogeneous. \Box

Corollary 5. Let X be an infinite h-homogeneous compact space and Y be a homogeneous zero-dimensional compact space. Then $X \times Y$ is an h-homogeneous space.

Corollary 6. Let Y be a homogeneous zero-dimensional compact space. Then $\mathcal{C} \times Y$ is a homogeneous, h-homogeneous space, where \mathcal{C} is the Cantor set.

Corollary 7. Let Y be a homogeneous zero-dimensional compact space. Then Y is a retract of an h-homogeneous compact space Z with w(Z) = w(Y).

- J. van Mill, A homogeneous Eberlain compact space which is not metrizable, Pacific J. Math. 101 (1) (1982) 141–146.
- [2] T. Terada, Spaces whose all nonempty clopen subspaces are homeomorphic, Yokohama Math. Journ. 40 (1993) 87–93.
- [3] A. Medini, Products and *h*-homogeneity, Topology Appl. 158 (18) (2011) 2520–2527.
- [4] D. B. Motorov, Zero-dimensional and linearly ordered bicompacta: properties of homogeneity type, Uspekhi Mat. Nauk 44 (6) (1989) 159–160, (in Russian). English transl.: Russian Math. Surveys 44:6 (1989) 190–191.
- [5] E. K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Adv. in Math. 52 (1) (1984) 1–33.
- [6] D. B. Motorov, A homogeneous zero-dimensional bicompactum which is not divisible by 2, in: e. a. V. V. Fedorčuk (Ed.), General topology. Spaces, mapping and functors, MSU, Moscow, 65–73, (in Russian), 1992.
- [7] R. Engelking, General topology, PWN, Warszawa, 1977.
- [8] S. V. Medvedev, About closed subsets of spaces of first category, Topology Appl. 159 (8) (2012) 2187–2192.
- [9] A. Dow, E. Pearl, Homogeneity in powers of zero-dimensional firstcountable spaces, Proc. Amer. Math. Soc. 125 (8) (1997) 2503–2510.