t-symmetrizable quasi-uniformities

by Hans-Peter A. Künzi and Salvador Romaguera

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa, email: hans-peter.kunzi@uct.ac.za

Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain, email: sromague@mat.upv.es **Definition 1** Let X be a set and let $d: X \times X \to [0, \infty)$ be a function mapping into the set $[0, \infty)$ of the nonnegative reals. Then d is called a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever $x \in X$, (b) $d(x, z) \le d(x, y) + d(y, z)$ whenever $x, y, z \in X$.

We shall say that d is a T_0 -quasi-(pseudo)metric provided that d also satisfies the following condition: For each $x, y \in X$,

d(x,y) = 0 = d(y,x) implies that x = y.

For each positive ϵ we shall set $U_{d,\epsilon} := \{(x, y) \in X \times X : d(x, y) < \epsilon\}.$

The quasi-pseudometric quasi-uniformity induced by d on X will be denoted by \mathcal{U}_d .

As usual, we say that a topological space (X, τ) has a compatible quasi-uniformity if there is a quasiuniformity \mathcal{U} on X such that $\tau =$ $\tau_{\mathcal{U}}$, where by $\tau_{\mathcal{U}}$ we denote the topology induced by \mathcal{U} , and we say that (X, τ) has a compatible quasi-pseudometric if there is a quasi-pseudometric d on X such that $\tau = \tau_{\mathcal{U}_d}$. **Remark 1** Let d be a quasi-pseudometric on a set X, then $d^{-1}: X \times X \rightarrow$ $[0, \infty)$ defined by $d^{-1}(x, y) = d(y, x)$ whenever $x, y \in X$ is also a quasipseudometric, called the conjugate quasi-pseudometric of d.

As usual, a quasi-pseudometric d on X such that $d = d^{-1}$ is called a pseudometric.

Note that for any (T_0-) quasi-pseudometric $d, d^s = \sup\{d, d^{-1}\} = d \lor d^{-1}$ is a pseudometric (metric). According to Matthews a quasi-pseudometric q on a set X is called *weightable* provided that there is a function $|\cdot|$: $X \to [0, \infty)$ such that

q(x,y)+|x|=q(y,x)+|y|

whenever $x, y \in X$.

The function $|\cdot|$ will be called a *weight* for q.

More generally we shall call a quasiuniformity \mathcal{U} on a set X weightable if $\mathcal{U} = \bigvee_{d \in \mathcal{E}} \mathcal{U}_d$ where \mathcal{E} is a family of weightable quasi-pseudometrics on X.

We shall call a quasi-uniform space (X, \mathcal{U}) weightable if \mathcal{U} is a weightable quasi-uniformity on X.

For later use, we recall that a quasiuniformity \mathcal{U} is called *precompact* provided that for each $U \in \mathcal{U}$ there is a finite $F \subseteq X$ such that U(F) = X.

Furthermore a quasi-uniformity \mathcal{U} is called *totally bounded* provided that the uniformity $\mathcal{U}^s = \mathcal{U} \vee \mathcal{U}^{-1}$ is precompact.

A quasi-uniform space (X, \mathcal{U}) is said to be *hereditarily precompact* provided that each subspace of (X, \mathcal{U}) is precompact.

For any quasi-uniformity \mathcal{U} , by \mathcal{U}_{ω} we shall denote the finest totally bounded quasi-uniformity coarser than \mathcal{U} . A quasi-uniformity is called *transitive* provided that it has a base consisting of transitive entourages.

Throughout \mathcal{D} will denote the discrete uniformity on a set X.

Moreover for two real numbers a, bwe shall set $a - b = \max\{a - b, 0\}$. **Example 1** Equip the set $[0, \infty)$ with the quasi-pseudometric u(x, y) =y - x whenever $x, y \in [0, \infty)$, and set |x| = x whenever $x \in [0, \infty)$. Then u is a T_0 -quasi-pseudometric on $[0, \infty)$ that is weighted by the usual norm $|\cdot|$ on \mathbb{R} restricted to $[0, \infty)$.

Furthermore the quasi-uniformity $\mathcal{U}_{u^{-1}}$ is not weightable.

Example 2 The fine quasi-uniformity \mathcal{F} of the topological space of the rationals \mathbb{Q} (equipped with its usual topology) is not weightable.

Proposition 1 A topological space has a compatible weightable quasipseudometric if and only if it has a compatible weightable quasi-uniformity with a countable base.

Proposition 2 Let (X, \mathcal{U}) be a T_0 quasi-uniform space. Then its bicompletion $(\widetilde{X}, \widetilde{\mathcal{U}})$ is a weightable T_0 -quasi-uniform space, too. In the following we discuss some analogues of uniform hyperspaces which yield some important examples of weightable quasi-uniformities.

Let (X, d) be a quasi-pseudometric space and let $\mathcal{P}_0(X)$ be the set of nonempty subsets of X. Moreover let $A, B \in \mathcal{P}_0(X)$. We set

$$H_d^+(A,B) = \sup_{b \in B} d(A,b)$$

and

$$H_d^-(A, B) = \sup_{a \in A} d(a, B).$$

 $(\text{As usual, here for instance } d(A, b) = \inf\{d(a, b) : a \in A\}.)$

Furthermore

$$H_d(A,B) = H_d^+(A,B) \lor H_d^-(A,B).$$

Then H_d^+ is the extended upper Hausdorff quasi-pseudometric, $H_d^$ is the extended lower Hausdorff quasipseudometric and H_d is the extended Hausdorff quasi-pseudometric on $\mathcal{P}_0(X)$.

Similarly for each $x \in X$, set

 $(W_d^+)_x(A,B) = d(A,x) \dot{-} d(B,x)$

and

 $(W_d^-)_x(A,B) = d(x,B) \dot{-} d(x,A).$

Moreover for each $x \in X$, let

 $(W_d)_x(A, B) = (W_d^+)_x(A, B) \lor (W_d^-)_x(A, B).$

Then for each $x \in X$, $(W_d^+)_x$ is the upper Wijsman quasi-pseudometric at x, $(W_d^-)_x$ is the lower Wijsman quasi-pseudometric at x, and $(W_d)_x$ is the Wijsman quasi-pseudometric at x. For each $x \in X$, $(W_d^-)_x$ is a weightable quasi-pseudometric with weight $(w_d^-)_x(A) = d(x, A)$ whenever $A \in \mathcal{P}_0(X)$.

Let $A, B \in \mathcal{P}_0(X)$. It is known that

 $H_d^+(A,B) =$

 $\sup_{x\in X} (W_d^+)_x(A,B) = \sup_{x\in X} (d(A,x) - d(B,x)).$

Similarly we have

 $H_{d}^{-}(A, B) = \sup_{x \in X} (W_{d}^{-})_{x}(A, B) = \sup_{x \in X} (d(x, B) - d(x, A)).$

Hence also $H_d(A, B) = \sup_{x \in X} (W_d)_x (A, B).$

Proposition 3 Each totally bounded quasi-uniformity \mathcal{U} on a set X is weightable.

Given any quasi-pseudometric space (X, d), we can define quasi-uniformities

$$\mathcal{U}_{W_d^+} = \bigvee_{x \in X} \mathcal{U}_{(W_d^+)_x}$$

and similarly

$$\mathcal{U}_{W_d^-} = \bigvee_{x \in X} \mathcal{U}_{(W_d^-)_x}$$

and

$$\mathcal{U}_{W_d} = \bigvee_{x \in X} \mathcal{U}_{(W_d)_x}$$

on $\mathcal{P}_0(X)$.

Corollary 1 Let (X, d) be a quasipseudometric space. When restricting the Wijsman quasi-uniformities to X (where we identify the points with singletons), we have

$$\mathcal{U}_{W_d^+} \subseteq \mathcal{U}_d$$

and

$$\mathcal{U}_{W_d^-} \subseteq \mathcal{U}_d;$$

consequently

 $\mathcal{U}_{W_d} \subseteq \mathcal{U}_d.$

Equality holds in the three inclusions provided that \mathcal{U}_d is totally bounded.

Remark 2 There are obvious connections between the upper resp. lower constructions considered above and the operation of conjugation.

For instance, for any quasi-pseudometric d on a set X we have that for any $x \in X$,

$$((W_{d^{-1}}^+)_x)^{-1} = (W_d^-)_x,$$

and thus

$$(\mathcal{U}_{W_{d^{-1}}^+})^{-1} = \mathcal{U}_{W_d^-}$$

on $\mathcal{P}_0(X)$.

Proposition 4 Let d be a totally bounded quasi-pseudometric on a set X. Then

$$\begin{aligned} \mathcal{U}_{W_d^+} &= \mathcal{U}_{H_d^+}, \\ \mathcal{U}_{W_d^-} &= \mathcal{U}_{H_d^-} \end{aligned}$$

and

$$\mathcal{U}_{W_d} = \mathcal{U}_{H_d}$$

on $\mathcal{P}_0(X)$.

Given a quasi-pseudometric space (X, d), for each $x \in X$ set

$$r_x(a) = d(a, x)$$

and

$$l_x(a) = d(x, a)$$

whenever $a \in X$.

Similarly let us define for each $x \in X$,

$$R_x(A) = d(A, x)$$

and

$$L_x(A) = d(x, A)$$

whenever $A \in \mathcal{P}_0(X)$.

The following definition is well known.

A quasi-pseudometric d on a set X is called *bounded* provided that there is a constant M > 0 such that $d(x, y) \leq M$ whenever $x, y \in X$.

Let us observe that for any $x \in X$, r_x is bounded on X if and only if R_x is bounded on $\mathcal{P}_0(X)$.

Analogously for any $x \in X$, l_x is bounded on X if and only if L_x is bounded on $\mathcal{P}_0(X)$. **Lemma 1** A quasi-pseudometric d on a set X is bounded if and only if there is an $x \in X$ such that both r_x and l_x are bounded.

Boundedness conditions imply hereditary precompactness properties of Wijsman type quasi-uniformities:

Remark 3 The quasi-uniformity $\mathcal{U}_{u^{-1}}$ is hereditarily precompact on $[0, \infty)$. Hence given any set X, for any function $f : X \to [0, \infty)$, the initial quasi-uniformity $(f \times f)^{-1} \mathcal{U}_{u^{-1}}$ is hereditarily precompact. Suppose now that d is a quasi-pseudometric on X. Observe that on $\mathcal{P}_0(X)$ we have

 $\mathcal{U}_{(W_d^+)_x} = (R_x \times R_x)^{-1} \mathcal{U}_{u^{-1}}$ and

 $\mathcal{U}_{(W_d^-)_x} = (L_x \times L_x)^{-1} \mathcal{U}_u$

whenever $x \in X$. Therefore for any quasi-pseudometric space (X, d) and $x \in X$, $\mathcal{U}_{(W_d^+)_x}$ is hereditarily precompact on $\mathcal{P}_0(X)$ and $(\mathcal{U}_{(W_d^-)_x})^{-1}$ is hereditarily precompact on $\mathcal{P}_0(X)$. Consequently $\mathcal{U}_{W_d^+}$ and $(\mathcal{U}_{W_d^-})^{-1}$ are hereditarily precompact on $\mathcal{P}_0(X)$, since hereditary precompactness is preserved under arbitrary suprema of quasi-uniformities. Given $x \in X$, r_x is bounded on X if and only if $\mathcal{U}_{(W_d^+)_x}$ is totally bounded on $\mathcal{P}_0(X)$.

Similarly, given $x \in X$, l_x is bounded on X if and only if $\mathcal{U}_{(W_d^-)_x}$ is totally bounded on $\mathcal{P}_0(X)$.

Given $x \in X$, $\mathcal{U}_{(W_d)_x}$ is totally bounded on $\mathcal{P}_0(X)$ if and only if d is bounded on X. **Corollary 2** Let (X, d) be a quasipseudometric space.

Then $\mathcal{U}_{W_d^+}$ is totally bounded on $\mathcal{P}_0(X)$ if and only if for each $x \in X$, r_x is bounded on X.

Similarly $\mathcal{U}_{W_d^-}$ is totally bounded on $\mathcal{P}_0(X)$ if and only if for each $x \in X, l_x$ is bounded on X.

Finally \mathcal{U}_{W_d} is totally bounded on $\mathcal{P}_0(X)$ if and only if d is bounded on X.

Proposition 5 Let q be a weightable quasi-pseudometric with weight function f on a set X. Then

$$[(f \times f)^{-1} \mathcal{U}_u] \subseteq \mathcal{U}_q$$

and

$$\mathcal{U}_q \subseteq [(f \times f)^{-1} \mathcal{U}_u] \vee \mathcal{U}_{q^{-1}}.$$

In the following we replace the quasimetric theory of weightability by a quasi-uniform approach to weightability. Let \mathcal{U} be a quasi-uniformity on a set X. Then \mathcal{U} contains a finest symmetric quasi-uniformity coarser than \mathcal{U} , namely $\mathcal{U} \wedge \mathcal{U}^{-1}$, and \mathcal{U} is contained in a coarsest symmetric quasiuniformity finer than \mathcal{U} , namely \mathcal{U}^s .

A quasi-uniformity \mathcal{A} on X will be called a *symmetrizer* of \mathcal{U} provided that

$\mathcal{U} \lor \mathcal{A}$

is symmetric, that is, $\mathcal{U} \lor \mathcal{A}$ is a uniformity.

A symmetrizer \mathcal{A} of \mathcal{U} will be called adequate provided that $\mathcal{A} \subseteq \mathcal{U}^{-1}$.

Example 3 Let \mathcal{U} and \mathcal{Z} be quasiuniformities on a set X. Then \mathcal{Z} satisfies both $\mathcal{Z} \subseteq \mathcal{U}^{-1}$ and $\mathcal{U}^{-1} \subseteq$ $\mathcal{U} \lor \mathcal{Z}$ if and only if \mathcal{Z} on X is an adequate symmetrizer of \mathcal{U} . **Remark 4** Let d be a weightable quasi-pseudometric with weight function f on a set X. We set $\mathcal{A} = (f \times f)^{-1}(\mathcal{U}_{u^{-1}}).$

We have $\mathcal{A} \subseteq \mathcal{U}_{d^{-1}}$ and $\mathcal{U}_{d^{-1}} \subseteq \mathcal{U}_{d} \lor \mathcal{A}$.

Hence \mathcal{A} is an adequate symmetrizer for \mathcal{U}_d . It follows that

$$\mathcal{U}_{d^s} = \mathcal{U}_d \vee \mathcal{A}.$$

For any weight f, \mathcal{A} is hereditarily precompact, since f is bounded below by 0.

For any weight f, \mathcal{A}^s is preLindelöf.

For a bounded weight f, \mathcal{A} is totally bounded. If \mathcal{A} is a(n adequate) symmetrizer for a quasi-uniformity \mathcal{U} , then \mathcal{A}^{-1} is a(n adequate) symmetrizer for \mathcal{U}^{-1} .

For each quasi-uniformity \mathcal{U} , the conjugate quasi-uniformity \mathcal{U}^{-1} is an adequate symmetrizer of \mathcal{U} .

Consider a quasi-uniformity \mathcal{U}_T generated by a partial order T on a set X (that is, \mathcal{U}_T has the base $\{T\}$) and let L by a linear extension of T on X.

Then in general the quasi-uniformity $\mathcal{U}_{L^{-1}}$ generated by L^{-1} is strictly coarser than the quasi-uniformity $\mathcal{U}_{T^{-1}}$ generated by T^{-1} on X, but obviously both are adequate symmetrizers of \mathcal{U}_T .

For each uniformity \mathcal{U} , any quasiuniformity coarser than \mathcal{U} is an adequate symmetrizer of \mathcal{U} .

Trivially, each totally bounded quasiuniformity \mathcal{U} on a set X can be made transitive by taking the supremum with the finest possible (transitive) totally bounded quasi-uniformity \mathcal{D}_{ω} on X.

On the other hand there are quasiuniformities that cannot be made transitive by taking the supremum with any totally bounded quasi-uniformity. Similarly there are quasi-uniformities that cannot by made symmetric by taking the supremum with any totally bounded quasi-uniformity.

Obviously each quasi-uniformity on a set X can be made symmetric by taking the supremum with the discrete uniformity \mathcal{D} on X. **Lemma 2** Suppose that \mathcal{U} is a quasiuniformity on a set X. Let $\{A_i : i = 1, ..., n\}$ be a finite cover of X and let $V \in \mathcal{U}$.

Then $\bigcup_{i=1}^{n} (V^{-1}(A_i) \times V(A_i))$

belongs to \mathcal{U}_{ω} .

Theorem 1 Let \mathcal{U} and \mathcal{V} be quasiuniformities on a set X such that there is a totally bounded quasiuniformity \mathcal{Z} on X with

 $\mathcal{U} \subseteq \mathcal{V} \lor \mathcal{Z}.$

Then

$$\mathcal{U} \subseteq \mathcal{V} \lor (\mathcal{U} \lor \mathcal{V}^{-1})_{\omega}.$$

Let us call a quasi-uniformity \mathcal{U} on a set X *t-symmetrizable* provided that there is a totally bounded quasiuniformity \mathcal{Z} on X such that $\mathcal{U} \lor \mathcal{Z}$ is a uniformity, that is, \mathcal{U} possesses a totally bounded symmetrizer \mathcal{Z} . **Remark 5** (a) The supremum of any family of t-symmetrizable quasiuniformities on a set X is t-symmetrizable.

(b) The conjugate of a t-symmetrizable quasi-uniformity is t-symmetrizable.

(c) Each totally bounded quasiuniformity is t-symmetrizable.

(d) The restriction to a subspace of a t-symmetrizable quasi-uniformity is t-symmetrizable.

(e) The product quasi-uniformity of any family of t-symmetrizable quasi-uniformities is t-symmetrizable. **Corollary 3** (a) Let $(q_i)_{i \in I}$ be a family of quasi-pseudometrics on a set X where q_i is weightable by a bounded weight f_i ($i \in I$). Then $\bigvee_{i \in I} \mathcal{U}_{q_i}$ is t-symmetrizable.

(b) Each weightable quasi-uniformity inducing a countably compact topology is t-symmetrizable.

Proposition 6 Let \mathcal{U} be a t-symmetrizable quasi-uniformity on a set X. Then \mathcal{U} can be adequately symmetrized by $(\mathcal{U}^{-1})_{\omega}$ to \mathcal{U}^s .

Corollary 4 The following statements for a quasi-uniformity U on a set X are equivalent: (a) U is t-symmetrizable. (b) U has a totally bounded adequate symmetrizer.

Remark 6 Let \mathcal{U} be a quasi-uniformity on a set X. Note that the existence of a quasi-uniformity \mathcal{Z} on X such that $\mathcal{U} = \mathcal{U}^{-1} \lor \mathcal{Z}$ implies that $\mathcal{U}^s = \mathcal{U}^{-1} \lor \mathcal{Z} = \mathcal{U}$, hence that \mathcal{U} is a uniformity. Let \mathcal{U} be a *t*-symmetrizable quasiuniformity.

Then according to the preceding results \mathcal{U}^s is clearly the smallest uniformity that we can obtain by *t*-symmetrization of \mathcal{U} .

$\mathcal{U}^{s} \vee \mathcal{D}_{\omega} = \mathcal{U} \vee (\mathcal{U}^{-1})_{\omega} \vee \mathcal{D}_{\omega} = \mathcal{U} \vee \mathcal{D}_{\omega}$

is obviously the finest uniformity that we can reach by t-symmetrization of \mathcal{U} .

Indeed each uniformity in between these two extreme cases can be obtained by t-symmetrization of \mathcal{U} :

Proposition 7 Let \mathcal{U} be a t-symmetrizable quasi-uniformity on a set X. Then any uniformity \mathcal{V} on X such that $\mathcal{U}^s \subseteq \mathcal{V} \subseteq \mathcal{U}^s \lor \mathcal{D}_{\omega}$ satisfies $\mathcal{V} = \mathcal{U} \lor \mathcal{V}_{\omega}$.

Remark 7 Suppose that \mathcal{U} is a quasiuniformity on a set X that has a countable base and is t-symmetrizable. Then \mathcal{U} can be symmetrized by some totally bounded quasi-uniformity on X having a countable base. **Theorem 2** Let \mathcal{U} be a t-symmetrizable quasi-uniformity on a set X. Then \mathcal{U} can be written as the supremum of a family of quasi-pseudometric quasi-uniformities \mathcal{U}_q where q is a quasi-pseudometric on X such that the quasi-uniformity \mathcal{U}_q is t-symmetrizable.

A quasi-uniformity \mathcal{U} on a set X is called *proximally symmetric* provided that the finest totally bounded quasiuniformity \mathcal{U}_{ω} coarser than \mathcal{U} is a uniformity on X. **Proposition 8** Each t-symmetrizable proximally symmetric quasi-uniformity \mathcal{U} on a set X is a uniformity.

Proposition 9 Each t-symmetrizable quasi-uniformity \mathcal{U} on a set X satisfies $(\mathcal{U}^s)_{\omega} = (\mathcal{U}^{-1})_{\omega} \vee \mathcal{U}_{\omega}.$ Several results that were originally proved for weightable quasi-pseudometrics (with bounded weights) indeed hold for t-symmetrizable quasi-uniformities: In our next result |X| will denote the (infinite) cardinality of a set X.

Proposition 10 For each t-symmetrizable quasi-uniformity \mathcal{U} on a set X, if D is an infinite \mathcal{U}^s -discrete subset of X, then there is $B \subseteq D$ such that |B| = |D| and B is \mathcal{U} discrete. A base \mathcal{B} is a θ -base for a topological space X if \mathcal{B} can be written as $\bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ in such a way that given any open set U of X and any point $x \in U$ there is $n_x \in \mathbb{N}$ such that $\operatorname{ord}(x, \mathcal{B}_{n_x})$ (that is, the order of \mathcal{B}_{n_x} at x) is finite and some member Bof \mathcal{B}_{n_x} has $x \in B \subseteq U$.

It is known that a topological space has a θ -base if and only if it is quasidevelopable. The following result generalizes the fact that for each weightable quasipseudometric d on a set X the topology $\tau_{\mathcal{U}_d}$ has a θ -base.

Proposition 11 Let \mathcal{U} be a quasiuniformity with a countable base on a set X possessing the property that $\mathcal{U}^s = \mathcal{U} \lor \mathcal{A}$ where \mathcal{A} is a quasi-uniformity on X such that \mathcal{A}^s is preLindelöf.

Then $\tau_{\mathcal{U}}$ has a θ -base.

A quasi-uniformity \mathcal{U} on a set X is called *Smyth completable* provided that each left K-Cauchy filter on (X, \mathcal{U}) is a \mathcal{U}^s -Cauchy filter.

A filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is called a *left K-Cauchy fil*ter (resp. right K-Cauchy filter) provided that for each $U \in \mathcal{U}$ there is $\mathcal{F}_U \in \mathcal{F}$ such that $U(x) \in \mathcal{F}$ (resp. $U^{-1}(x) \in \mathcal{F}$) whenever $x \in \mathcal{F}_U$.

A filter \mathcal{F} on a quasi-uniform space (X, \mathcal{U}) is called \mathcal{U} -stable provided that for each $U \in \mathcal{U}$ we have that

 $\bigcap_{F \in \mathcal{F}} U(F) \in \mathcal{F}.$

Remark 8 Let (X, \mathcal{U}) be a quasiuniform space such that each left K-Cauchy filter on (X, \mathcal{U}) is contained in a \mathcal{U}^s -Cauchy filter. Then each left K-Cauchy filter \mathcal{F} on Xis in fact a \mathcal{U}^s -Cauchy filter.

The following result generalizes the fact that for each weightable quasipseudometric d on a set X with a weight $|\cdot|$ the quasi-uniformity \mathcal{U}_d is Smyth completable. **Proposition 12** Each quasi-uniformity \mathcal{U} on a set X possessing an adequate symmetrizer \mathcal{A} where \mathcal{A} is hereditarily precompact is Smyth completable.

Problem 1 Let q be a quasi-pseudometric on a set X such that the quasiuniformity \mathcal{U}_q is t-symmetrizable.

Is $\mathcal{U}_q = \mathcal{U}_d$ where d is a quasipseudometric on X that is weightable by a bounded weight?

References

[1] H.R. Bennett and D.J. Lutzer, A note on weak θ -refinability, Gen. Top. Appl. 2 (1972), 49–54.

[2] J. Cao and J. Rodríguez-López,
On hyperspace topologies via distance
functionals in quasi-metrics spaces,
Acta Math. Hungar. 112 (3) (2006),
249–268.

[3] E. Colebunders, S. De Wachter and B. Lowen, Intrinsic approach spaces on domains, Topology Appl. 158 (2011), 2343–2355.

[4] P. Fletcher and W.F. Lindgren, Quasi-uniform Spaces, Dekker, New York, 1982. [5] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999), 71–83.

[6] J.L. Hursch, Jr., Proximity and height, Math. Scand. 17 (1965), 150–160.

[7] H.-P.A. Künzi, Nontransitive quasiuniformities in the Pervin quasi-proximity class, Proc. Amer. Math. Soc. 130 (2002), 3725–3730.

[8] H.-P.A. Künzi, An introduction to quasi-uniform spaces, Contemp. Math. 486 (2009), 239–304. [9] H.-P. A. Künzi and V. Vajner,
Weighted quasi-metrics, in: Proceedings of the 8th Summer Conference on Topology and its Applications, Ann.
New York Acad. Sci. 728 (1994),
64–77.

[10] S.G. Matthews, Partial metric topology, in: Proceedings of the 8th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 728 (1994), 183–197.

[11] S. Oltra, S. Romaguera and E.A.
Sánchez-Pérez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rend. Circ. Mat. Palermo (2) 51 (2002), 151–162.

[12] S.J. O'Neill, Partial metrics, valuations, and domain theory, in: Proceedings of 11th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 806 (1996), 304–315.

[13] J. Rodríguez-López and S. Romaguera, Wijsman and hit-and-miss topologies of quasi-metric spaces, Setvalued Analysis 11 (2003), 323–344.

[14] J. Rodríguez-López and S. Romaguera, Hypertopologies and asymmetric topology, in: Theory and Applications of Proximity, Nearness and Uniformity, edts. G. di Maio and S. Naimpally, Quaderni di Matematica, vol. 22 (2009), 315–364. [15] M.P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135–149.