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 Elwood Bohn [El] was the first who studied the
notion of semi-topological Groups in 1965.

 Definition and results were published in The
American Mathematical Monthly, vol. 72,
No. 9 (1965), 996-998.

 El wood defined semi-topological Groups by
using semi-open sets defined by Levine in
1963.

[El] Elwood Bohn, Semi-Topological Groups, The American Math. Month.,
vol.72(9) (1965), 996-998.



 In this talk we will follow the definition of
Elwood and by using semi-open sets,
deduce some results.



Preliminaries
 (X, ) denotes a topological space with no

separation properties assumed.
 cl(A) and Int(A) denote the closure and

interior of a set A in X.
 A subset A of a topological space X is

called semi-open [NL] if there exists an
open set U in X such that U  A  cl(U).

[NL] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.
Math. Monthly, 70(1) (1963), 36-41.



 Complement of a semi-open set is called
semi-closed set.

 Collection of all semi-open (respectively,
semi-closed sets) in X is denoted by
SO(X) (respectively, SC(X)).

 sCl(A) represents the semi-closure of A
and is the intersection of all semi-closed
sets containing A.















 Theorem 5.
 Let (X, ) and (Y, σ) be topological spaces

and let (XY, σ) be their product space.
If A  SO(X) and B  SO(Y), then
A  B  SO(X  Y).

 Note that converse of this theorem is not
true in general.
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 Theorem 6. If (G, ₒ, ) is a semi-topological
group then the function ,
where is semi-continuous
relative to the product topology for .

 Theorem 7. If (G, ₒ, ) is a semi-topological
group then the function defined
by and defined
by are semi-continuous
functions.



 Theorem 8. Let (G, ₒ, ) be a semi-
topological group. If A  SO(G) and
B  G, then A ₒ B, B ₒ A  SO(G).

 Remark 1. The converse of Theorem 6
and 7 are not true.



 Example 1. Let (G, +) be the group of
integers modulo 2, with the usual operation
of addition, and let  = {, {0}, G}.

is continuous on G.
Similarly is continuous
at (0, 0), (1, 0), and (0, 1) and semi-
continuous at (1,1). However, since {1} is
not semi-open, (G, ₒ, ) is not a semi-
topological group.



 Theorem 9. Let (G, ₒ, ) be a semi-
topological group. Then the map

defined by is
semi-continuous.

 The result for right multiplication is similar.



 Theorem 10. Let (G, ₒ, ) be a semi-
topological group and (H, ₒ) is a semi-open
subgroup of G. Then any coset is
semi-open.

 Theorem 11. Let (G, ₒ, ) be a semi-
topological group then every semi-open
subgroup of G is also semi-closed.



 Theorem 12. Let be a
semi-continuous function and let A be an
open subspace of X, then the restriction
map defined by
is semi-continuous.

 Theorem 12. Every open subgroup (H, ₒ)
of a semi-topological group (G, ₒ, ) is a
semi topological group and is called semi
topological subgroup of G.



 Theorem 13. Let (G, ₒ, ) be a semi-
topological group and (H, ₒ) be a subgroup
of G. If H contains a non-empty semi-open
set, then H is semi-open in G.







 Definition. Let (G, ₒ, ) be a semi-
topological group. Then a subset U of G is
called symmetric if .



 Definition [DC]. Topological space (X, ) is
called s-regular if for each closed set F
and any point               , there exist disjoint
semi-open sets U and V such that
and              .

 Theorem [DC]. Let U be an open subset of
an s-regular space X and             , then
there exists a semi-open set V in X such
that                                .

[DC]  D. A. Carnahan, Some properties related to compactness in topological
spaces, Ph. D Thesis, Univ. Arkansas, 1973



 Theorem 15. If (G, ₒ, ) is a semi-
topological group with base at identity  e
consisting of symmetric semi-nbd then G
satisfies the axiom of s-regularity at  e  .



 Lemma [DC]. Let (G, ₒ, ) be a semi-
topological group and V be a semi-nbd of
e in G. Then                      .

 Lemma 2. If (G, ₒ, ) is a semi-topological
group, then (G, ) is semi- and
s-regular.
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