IV Workshop on Coverings, Selections and Games in Topology

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FII-spaces

Pre-orders

FAN-filter and S_Q

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México sgarcia@matmor.unam.mx

Naples University, Caserta

Contenido

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

1 FU-spaces

2 Pre-orders

3 *FAN*-filter and S_Q

・ロ・・雪・・雪・・目・ シック

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Our spaces will be completely regular and Hausdorff.

Definition

A space X is called *Frechét-Uryshon* if $x \in cl(A)$, then there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $x_n \to x$.

・ロト ・ 雪 ト ・ ヨ ト

э

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Our spaces will be completely regular and Hausdorff.

efinition

A space X is called *Frechét-Uryshon* if $x \in cl(A)$, then there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $x_n \to x$.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Our spaces will be completely regular and Hausdorff.

Definition

A space X is called *Frechét-Uryshon* if $x \in cl(A)$, then there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $x_n \to x$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Our spaces will be completely regular and Hausdorff.

Definition

A space X is called *Frechét-Uryshon* if $x \in cl(A)$, then there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $x_n \to x$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q A countable space with just one accumulation point will be denoted by $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$ where ω is discrete and \mathcal{F} is a free filter on ω .

 $\xi(\mathcal{F})$ is a *FU*-space iff $\xi(\mathcal{F})$ is sequential.

Definition

A free filter \mathcal{F} is called *FU-filter* if the space $\xi(\mathcal{F})$ is a *FU*-space.

イロト 不得 トイヨト イヨト

э

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q A countable space with just one accumulation point will be denoted by $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$ where ω is discrete and \mathcal{F} is a free filter on ω .

$\xi(\mathcal{F})$ is a *FU*-space iff $\xi(\mathcal{F})$ is sequential.

Definition

A free filter \mathcal{F} is called *FU-filter* if the space $\xi(\mathcal{F})$ is a *FU*-space.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q A countable space with just one accumulation point will be denoted by $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$ where ω is discrete and \mathcal{F} is a free filter on ω .

$\xi(\mathcal{F})$ is a *FU*-space iff $\xi(\mathcal{F})$ is sequential.

Definition

A free filter \mathcal{F} is called *FU-filter* if the space $\xi(\mathcal{F})$ is a *FU*-space.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q A countable space with just one accumulation point will be denoted by $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$ where ω is discrete and \mathcal{F} is a free filter on ω .

 $\xi(\mathcal{F})$ is a *FU*-space iff $\xi(\mathcal{F})$ is sequential.

Definition

A free filter \mathcal{F} is called *FU-filter* if the space $\xi(\mathcal{F})$ is a *FU*-space.

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Examples

The Frechét filter \mathcal{F}_r and the FAN-filter are FU-filters.

Proposition

A filter \mathcal{F} is a *FU*-filter if $\forall F \in \mathcal{F}^+ \exists A \in [F]^{\omega}(A \to \mathcal{F})$.

Notation

$$\begin{split} &[F]^{\omega} = \text{infinite subsets of } F, \ \mathcal{F}^+ = \{A \in [\omega]^{\omega} : \forall F \in \mathcal{F}(A \cap F \neq \emptyset)\} \\ &\text{and, for } A \in [\omega]^{\omega}, \ A \to \mathcal{F} \text{ means that } \forall F \in \mathcal{F}(|A \setminus F| < \omega). \\ &\mathcal{C}(\mathcal{F}) = \{A \in [\omega]^{\omega} : A \to \mathcal{F}\}. \end{split}$$

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Examples

The Frechét filter \mathcal{F}_r and the FAN-filter are FU-filters.

Proposition

A filter \mathcal{F} is a *FU*-filter if $\forall F \in \mathcal{F}^+ \exists A \in [F]^{\omega}(A \to \mathcal{F})$.

Notation

$$\begin{split} &[F]^{\omega} = \text{infinite subsets of } F, \ \mathcal{F}^+ = \{A \in [\omega]^{\omega} : \forall F \in \mathcal{F}(A \cap F \neq \emptyset)\} \\ &\text{and, for } A \in [\omega]^{\omega}, \ A \to \mathcal{F} \text{ means that } \forall F \in \mathcal{F}(|A \setminus F| < \omega). \\ &\mathcal{C}(\mathcal{F}) = \{A \in [\omega]^{\omega} : A \to \mathcal{F}\}. \end{split}$$

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Examples

The Frechét filter \mathcal{F}_r and the FAN-filter are FU-filters.

Proposition

A filter \mathcal{F} is a *FU*-filter if $\forall F \in \mathcal{F}^+ \exists A \in [F]^{\omega}(A \to \mathcal{F})$.

Notation

$$\begin{split} &[F]^{\omega} = \text{infinite subsets of } F, \ \mathcal{F}^+ = \{A \in [\omega]^{\omega} : \forall F \in \mathcal{F}(A \cap F \neq \emptyset)\} \\ &\text{and, for } A \in [\omega]^{\omega}, \ A \to \mathcal{F} \text{ means that } \forall F \in \mathcal{F}(|A \setminus F| < \omega). \\ &\mathcal{C}(\mathcal{F}) = \{A \in [\omega]^{\omega} : A \to \mathcal{F}\}. \end{split}$$

Ordering Frechet-Uryshon Filters S.

Garcia-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Examples

The Frechét filter \mathcal{F}_r and the FAN-filter are FU-filters.

Proposition

A filter \mathcal{F} is a *FU*-filter if $\forall F \in \mathcal{F}^+ \exists A \in [F]^{\omega}(A \to \mathcal{F})$.

Notation

$$\begin{split} & [F]^{\omega} = \text{infinite subsets of } F, \ \mathcal{F}^+ = \{A \in [\omega]^{\omega} : \forall F \in \mathcal{F}(A \cap F \neq \emptyset)\} \\ & \text{and, for } A \in [\omega]^{\omega}, \ A \to \mathcal{F} \text{ means that } \forall F \in \mathcal{F}(|A \setminus F| < \omega). \\ & \mathcal{C}(\mathcal{F}) = \{A \in [\omega]^{\omega} : A \to \mathcal{F}\}. \end{split}$$

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (*AD*-family) if it is infinite and $\forall A, B \in \mathcal{A}(|A \cap B| < \omega)$.

Given an infinite $\mathcal{B} \subseteq [\omega]^{\omega}$, we say that an infinite family \mathcal{A} is maximal in \mathcal{B} if $\mathcal{A} \subseteq \mathcal{B}$ and $\forall B \in \mathcal{B} \exists A \in \mathcal{A}(|A \cap B| = \omega)$.

An *AD*-family \mathcal{A} is called *maximal* (*MAD*-family) if it is maximal in $[\omega]^{\omega}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (*AD*-family) if it is infinite and $\forall A, B \in \mathcal{A}(|A \cap B| < \omega)$.

Given an infinite $\mathcal{B} \subseteq [\omega]^{\omega}$, we say that an infinite family \mathcal{A} is maximal in \mathcal{B} if $\mathcal{A} \subseteq \mathcal{B}$ and $\forall B \in \mathcal{B} \exists A \in \mathcal{A}(|A \cap B| = \omega)$.

An *AD*-family \mathcal{A} is called *maximal* (*MAD*-family) if it is maximal in $[\omega]^{\omega}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (*AD*-family) if it is infinite and $\forall A, B \in \mathcal{A}(|A \cap B| < \omega)$.

Given an infinite $\mathcal{B} \subseteq [\omega]^{\omega}$, we say that an infinite family \mathcal{A} is maximal in \mathcal{B} if $\mathcal{A} \subseteq \mathcal{B}$ and $\forall B \in \mathcal{B} \exists A \in \mathcal{A}(|A \cap B| = \omega)$.

An AD-family \mathcal{A} is called *maximal* (*MAD*-family) if it is maximal in $[\omega]^{\omega}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *almost disjoint* (*AD*-family) if it is infinite and $\forall A, B \in \mathcal{A}(|A \cap B| < \omega)$.

Given an infinite $\mathcal{B} \subseteq [\omega]^{\omega}$, we say that an infinite family \mathcal{A} is maximal in \mathcal{B} if $\mathcal{A} \subseteq \mathcal{B}$ and $\forall B \in \mathcal{B} \exists A \in \mathcal{A}(|A \cap B| = \omega)$.

An AD-family \mathcal{A} is called *maximal* (MAD-family) if it is maximal in $[\omega]^{\omega}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}$$

Notatior

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal *I* is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

- 日本 - 4 日本 - 4 日本 - 日本

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}$$

Notatior

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal I is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}.$$

Notation

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal *I* is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}$$

Notation

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal I is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}$$

Notation

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal I is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Cómea

FU-spaces

Pre-orders

FAN-filter and S_Q

Given an ideal I on ω , we set

$$I^{\perp} = \{B \in [\omega]^{\omega} : \forall A \in I(|B \cap A| < \omega)\}$$

Notation

The *dual ideal* of a filter \mathcal{F} is the ideal $I_{\mathcal{F}} = \{E \subseteq \omega : \omega \setminus E \in \mathcal{F}\}$. And the *dual filter* of an ideal I is the filter $\mathcal{F}_I = \{E \subseteq \omega : \omega \setminus E \in I\}$.

Given $S \in [\omega]^{\omega}$ and a filter $\mathcal{F}, S \to \mathcal{F}$ iff $S \in I_{\mathcal{F}}^{\perp}$. A filter \mathcal{F} is a *FU*-filter iff $(I_{\mathcal{F}}^{\perp})^{\perp} = I_{\mathcal{F}}$.

Ordering Frechet-Urvshon Filters

FU-spaces

$$\mathcal{F}_{\mathcal{A}} = \{F \subseteq \omega : \forall A \in \mathcal{A}(A \subseteq^* F)\}$$

Ordering Frechet-Urvshon Filters

FU-spaces

Example

If \mathcal{A} is an AD-family, then

$$\mathcal{F}_{\mathcal{A}} = \{ F \subseteq \omega : orall A \in \mathcal{A}(A \subseteq^* F) \}$$

is a FU-filter.

Ordering Frechet-Urvshon Filters

FU-spaces

Example

If \mathcal{A} is an AD-family, then

$$\mathcal{F}_{\mathcal{A}} = \{F \subseteq \omega : orall A \in \mathcal{A}(A \subseteq^* F)\}$$

is a *FU*-filter.

Theorem[P. Simon, 1998]

A filter \mathcal{F} is a *FU*-filter iff there is an *AD*-family \mathcal{A} maximal in $I_{\mathcal{F}}^{\perp}$ such that $\mathcal{F} = \mathcal{F}_A$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Example

If \mathcal{A} is an AD-family, then

$$\mathcal{F}_{\mathcal{A}} = \{ F \subseteq \omega : orall A \in \mathcal{A}(A \subseteq^* F) \}$$

is a *FU*-filter.

Theorem[P. Simon, 1998]

A filter \mathcal{F} is a *FU*-filter iff there is an *AD*-family \mathcal{A} maximal in $I_{\mathcal{F}}^{\perp}$ such that $\mathcal{F} = \mathcal{F}_{\mathcal{A}}$.

The FAN-filter is precisely to $\mathcal{F}_{\mathcal{P}}$, where \mathcal{P} is an infinite partition of ω in infinite subsets.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q For each AD-family \mathcal{A} , we let

 $I(\mathcal{A}) = \{ E \subseteq \omega : \exists A_0, ..., A_k \in \mathcal{A}(E \subseteq^* A_0 \cup \cup A_k) \}.$

If I is an ideal, then $I^+ = \mathcal{P}(\omega) \setminus I = \mathcal{F}^+$.

Notation

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

For each AD-family A, we let

$$I(\mathcal{A}) = \{E \subseteq \omega : \exists A_0, ..., A_k \in \mathcal{A}(E \subseteq^* A_0 \cup \cup A_k)\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If I is an ideal, then $I^+ = \mathcal{P}(\omega) \setminus I = \mathcal{F}^+.$

Notation

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q For each AD-family A, we let

$$I(\mathcal{A}) = \{ E \subseteq \omega : \exists A_0, ..., A_k \in \mathcal{A}(E \subseteq^* A_0 \cup \cup A_k) \}.$$

If I is an ideal, then $I^+ = \mathcal{P}(\omega) \setminus I = \mathcal{F}^+$.

Notation

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q For each AD-family \mathcal{A} , we let

$$I(\mathcal{A}) = \{ E \subseteq \omega : \exists A_0, ..., A_k \in \mathcal{A}(E \subseteq^* A_0 \cup \cup A_k) \}.$$

If I is an ideal, then $I^+ = \mathcal{P}(\omega) \setminus I = \mathcal{F}^+$.

Notation

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

An AD-family \mathcal{A} is nowhere maximal almost disjoint family (NMAD-family) if for every $X \in I(\mathcal{A})^+$ there is $\mathcal{A} \in \mathcal{A}^{\perp} \cap [X]^{\omega}$.

Proposition P. Simon 2008

 $S_{\mathcal{A}}$ is a *FU*-filter iff \mathcal{A} is a *NMAD*-family.

Example

If $\mathcal P$ is an infinite partition of ω in infinite subsets, then $S_{\mathcal P}$ is a FU-space with countable base.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

An AD-family \mathcal{A} is nowhere maximal almost disjoint family (NMAD-family) if for every $X \in I(\mathcal{A})^+$ there is $\mathcal{A} \in \mathcal{A}^{\perp} \cap [X]^{\omega}$.

Proposition[P. Simon 2008]

 $S_{\mathcal{A}}$ is a *FU*-filter iff \mathcal{A} is a *NMAD*-family.

Example

If \mathcal{P} is an infinite partition of ω in infinite subsets, then $S_{\mathcal{P}}$ is a *FU*-space with countable base.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

An AD-family \mathcal{A} is nowhere maximal almost disjoint family (NMAD-family) if for every $X \in I(\mathcal{A})^+$ there is $A \in \mathcal{A}^{\perp} \cap [X]^{\omega}$.

Proposition[P. Simon 2008]

 $S_{\mathcal{A}}$ is a *FU*-filter iff \mathcal{A} is a *NMAD*-family.

Example

If \mathcal{P} is an infinite partition of ω in infinite subsets, then $S_{\mathcal{P}}$ is a *FU*-space with countable base.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

An AD-family \mathcal{A} is nowhere maximal almost disjoint family (NMAD-family) if for every $X \in I(\mathcal{A})^+$ there is $\mathcal{A} \in \mathcal{A}^{\perp} \cap [X]^{\omega}$.

Proposition[P. Simon 2008]

 $S_{\mathcal{A}}$ is a *FU*-filter iff \mathcal{A} is a *NMAD*-family.

Example

If $\mathcal P$ is an infinite partition of ω in infinite subsets, then $S_{\mathcal P}$ is a FU-space with countable base.
Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

An AD-family \mathcal{A} is nowhere maximal almost disjoint family (NMAD-family) if for every $X \in I(\mathcal{A})^+$ there is $\mathcal{A} \in \mathcal{A}^{\perp} \cap [X]^{\omega}$.

Proposition[P. Simon 2008]

 $S_{\mathcal{A}}$ is a *FU*-filter iff \mathcal{A} is a *NMAD*-family.

Example

If $\mathcal P$ is an infinite partition of ω in infinite subsets, then $S_{\mathcal P}$ is a FU-space with countable base.

If \mathcal{A} is an AD-family, then $\chi(S_{\mathcal{A}}) = |\mathcal{A}|$.

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

For a *NMAD*-family \mathcal{A} and an *AD*-family \mathcal{B} with $\mathcal{A} \cap \mathcal{B} = \emptyset$, the following are equivalent:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\bullet S_{\mathcal{A}} = \mathcal{F}_{\mathcal{B}}.$
- **B** is maximal in \mathcal{A}^{\perp} .
- $\mathcal{A} \cup \mathcal{B}$ is MAD.

Ordering Frechet-Urvshon Filters

FU-spaces

Theorem

For a *NMAD*-family \mathcal{A} and an *AD*-family \mathcal{B} with $\mathcal{A} \cap \mathcal{B} = \emptyset$, the following are equivalent:

<u>NMAD</u>-family

Ordering Frechet-Urvshon Filters

FU-spaces

Theorem

For a *NMAD*-family \mathcal{A} and an *AD*-family \mathcal{B} with $\mathcal{A} \cap \mathcal{B} = \emptyset$, the following are equivalent:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\bullet S_{\mathcal{A}} = \mathcal{F}_{\mathcal{B}}.$$

• \mathcal{B} is maximal in \mathcal{A}^{\perp} .

 $\blacksquare A \cup B$ is MAD.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

For a *NMAD*-family \mathcal{A} and an *AD*-family \mathcal{B} with $\mathcal{A} \cap \mathcal{B} = \emptyset$, the following are equivalent:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $S_{\mathcal{A}} = \mathcal{F}_{\mathcal{B}}$.
- \mathcal{B} is maximal in \mathcal{A}^{\perp} .
- $\mathcal{A} \cup \mathcal{B}$ is *MAD*.

Contenido

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

FU-spaces

Pre-orders

FAN-filter and S_Q

1 FU-spaces

2 Pre-orders

3 *FAN*-filter and S_Q

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ordering Frechet-Uryshon Filters S.

Garcia-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter

Definitior

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] \subseteq \mathcal{G})$.
- (*Rudin-Keisler order*) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.
- (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$)

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] \subseteq \mathcal{G})$.
- (*Rudin-Keisler order*) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.
- (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ ($f[\mathcal{F}] \subseteq \mathcal{G}$).
- (Rudin-Keisler order) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.

• (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ ($f[\mathcal{F}] \subseteq \mathcal{G}$).
- (Rudin-Keisler order) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.

• (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$)

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ ($f[\mathcal{F}] \subseteq \mathcal{G}$).
- (Rudin-Keisler order) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.
- (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$).

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ ($f[\mathcal{F}] \subseteq \mathcal{G}$).
- (Rudin-Keisler order) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.
- (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$).

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Given a filter \mathcal{F} and a function $f: \omega \to \omega$, then

$$f[\mathcal{F}] = \{F \subseteq \omega : f^{-1}(F) \in \mathcal{F}\}$$

is a filter.

Definition

Let \mathcal{F} and \mathcal{G} be filters on ω .

- (Katětov-order) $\mathcal{F} \leq_{\mathcal{K}} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that if $F \in \mathcal{F}$, then $f^{-1}(F) \in \mathcal{G}$ ($f[\mathcal{F}] \subseteq \mathcal{G}$).
- (Rudin-Keisler order) $\mathcal{F} \leq_{RK} \mathcal{G}$ if there is a function $f : \omega \to \omega$ such that $F \in \mathcal{F}$ iff $f^{-1}(F) \in \mathcal{G}$ $(f[\mathcal{F}] = \mathcal{G})$.
- (Rudin-Keisler^{*} order) $\mathcal{F} \leq_{RK^*} \mathcal{G}$ if there is a function $f: \omega \to \omega$ such that if $f^{-1}(F) \in \mathcal{G}$, then $F \in \mathcal{F}$ ($\mathcal{G} \subseteq f[\mathcal{F}]$).

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Coauthor: J. I Rivera-Góme:

FU-spaces

Pre-orders

FAN-filter and S_Q $\mathcal{F} \leq_{RK} \mathcal{G}$ implies $\mathcal{F} \leq_{K} \mathcal{G}$ and $\mathcal{F} \leq_{RK^*} \mathcal{G}$.

 $\mathcal{F} \approx_{RK} \mathcal{G}$ if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$. $\mathcal{F} \approx \mathcal{G}$ if there is a bijection $f : \omega \to \omega$ such that $f[\mathcal{F}] = \mathcal{G}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Pre-orders

FAN-filter and S_Q

$\mathcal{F} \leq_{RK} \mathcal{G} \text{ implies } \mathcal{F} \leq_{K} \mathcal{G} \text{ and } \mathcal{F} \leq_{RK^*} \mathcal{G}.$

 $\mathcal{F} \approx_{RK} \mathcal{G}$ if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$. $\mathcal{F} \approx \mathcal{G}$ if there is a bijection $f: \omega \to \omega$ such that $f[\mathcal{F}] = \mathcal{G}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Rivera-Góm

FU-spaces

Pre-orders

FAN-filter and S_Q

$\mathcal{F} \leq_{RK} \mathcal{G} \text{ implies } \mathcal{F} \leq_{K} \mathcal{G} \text{ and } \mathcal{F} \leq_{RK^*} \mathcal{G}.$

 $\mathcal{F} \approx_{RK} \mathcal{G}$ if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$. $\mathcal{F} \approx \mathcal{G}$ if there is a bijection $f: \omega \to \omega$ such that $f[\mathcal{F}] = \mathcal{G}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q $\mathcal{F} \leq_{RK} \mathcal{G} \text{ implies } \mathcal{F} \leq_{K} \mathcal{G} \text{ and } \mathcal{F} \leq_{RK^*} \mathcal{G}.$

 $\mathcal{F} \approx_{RK} \mathcal{G}$ if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$. $\mathcal{F} \approx \mathcal{G}$ if there is a bijection $f : \omega \to \omega$ such that $f[\mathcal{F}] = \mathcal{G}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q $\mathcal{F} \leq_{RK} \mathcal{G} \text{ implies } \mathcal{F} \leq_{K} \mathcal{G} \text{ and } \mathcal{F} \leq_{RK^*} \mathcal{G}.$

 $\mathcal{F} \approx_{RK} \mathcal{G}$ if $\mathcal{F} \leq_{RK} \mathcal{G}$ and $\mathcal{G} \leq_{RK} \mathcal{F}$. $\mathcal{F} \approx \mathcal{G}$ if there is a bijection $f: \omega \to \omega$ such that $f[\mathcal{F}] = \mathcal{G}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

heorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_K \mathcal{F} \leq_K \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \rightarrow \mathcal{F}$.

- $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .
- If $\mathcal{F} \leq_{RK} \mathcal{G}$ and \mathcal{G} is a *FU*-filter, then \mathcal{F} is a *FU*-filter.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_K \mathcal{F} \leq_K \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \rightarrow \mathcal{F}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_K \mathcal{F} \leq_K \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \rightarrow \mathcal{F}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_K \mathcal{F} \leq_K \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \rightarrow \mathcal{F}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .
- If $\mathcal{F} \leq_{RK} \mathcal{G}$ and \mathcal{G} is a *FU*-filter, then \mathcal{F} is a *FU*-filter.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .
- If $\mathcal{F} \leq_{RK} \mathcal{G}$ and \mathcal{G} is a *FU*-filter, then \mathcal{F} is a *FU*-filter.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E.

Ordering

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

• $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and ^SQ

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \rightarrow \mathcal{F}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FIL-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

The following properties hold for the orders.

- $\mathcal{F}_r \leq_K \mathcal{F}$ for every free filter \mathcal{F} .
- $\mathcal{F}_r \leq_{RK} \mathcal{F}$ for every *FU*-filter \mathcal{F} .
- Let \mathcal{F} be a filter on ω . Then, $\mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$ iff there is $S \in [\omega]^{\omega}$ such that $S \to \mathcal{F}$.
- If \mathcal{F} is a *FU*-filter, then $\mathcal{F}_r \leq_{\mathcal{K}} \mathcal{F} \leq_{\mathcal{K}} \mathcal{F}_r$.
- $\mathcal{F}_{\mathcal{A}} \approx_{\mathcal{K}} \mathcal{F}_{\mathcal{B}}$ for all pair of *AD*-families \mathcal{A}, \mathcal{B} .
- Let \mathcal{F} be a filter. Then, $\mathcal{F} \leq_{RK} \mathcal{F}_r$ iff there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\mathcal{F}_{\mathcal{A}} \approx_{RK^*} \mathcal{F}_{\mathcal{B}}$ for arbitrary *AD*-families \mathcal{A} and \mathcal{B} .
- If $\mathcal{F} \leq_{RK} \mathcal{G}$ and \mathcal{G} is a *FU*-filter, then \mathcal{F} is a *FU*-filter.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Write $\mathcal{F} = \mathcal{F}_{\mathcal{A}}$ where \mathcal{A} is an AD-family. Fix $A \in \mathcal{A}$ and define $f: \omega \to \omega$ so that $f: A \to \omega$ and $f: \omega \setminus A \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_r \leq_{RK} \mathcal{F}_{\mathcal{A}}$.

(7)

Fix $B \in \mathcal{B}$. Define $f : \omega \to \omega$ so that $f : B \to \omega$ and $f : \omega \setminus B \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_{\mathcal{A}} \leq_{RK^*} \mathcal{F}_{\mathcal{B}}$. In a similar way, we prove that $\mathcal{F}_B \leq_{RK^*} \mathcal{F}_{\mathcal{A}}$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Write $\mathcal{F} = \mathcal{F}_{\mathcal{A}}$ where \mathcal{A} is an AD-family. Fix $A \in \mathcal{A}$ and define $f : \omega \to \omega$ so that $f : A \to \omega$ and $f : \omega \setminus A \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_r \leq_{RK} \mathcal{F}_{\mathcal{A}}$.

(7)

(2)

Fix $B \in \mathcal{B}$. Define $f : \omega \to \omega$ so that $f : B \to \omega$ and $f : \omega \setminus B \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_{\mathcal{A}} \leq_{RK^*} \mathcal{F}_{\mathcal{B}}$. In a similar way, we prove that $\mathcal{F}_B \leq_{RK^*} \mathcal{F}_{\mathcal{A}}$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q Write $\mathcal{F} = \mathcal{F}_{\mathcal{A}}$ where \mathcal{A} is an AD-family. Fix $A \in \mathcal{A}$ and define $f : \omega \to \omega$ so that $f : A \to \omega$ and $f : \omega \setminus A \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_r \leq_{RK} \mathcal{F}_{\mathcal{A}}$.

(7)

(2)

Fix $B \in \mathcal{B}$. Define $f : \omega \to \omega$ so that $f : B \to \omega$ and $f : \omega \setminus B \to \omega$ are bijective. Clearly, f witnesses $\mathcal{F}_{\mathcal{A}} \leq_{RK^*} \mathcal{F}_{\mathcal{B}}$. In a similar way, we prove that $\mathcal{F}_B \leq_{RK^*} \mathcal{F}_{\mathcal{A}}$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and ^SQ

efinition

We say that a filter \mathcal{F} on ω is *relatively equivalent* to the Fréchet filter if there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

A FU-filter ${\cal F}$ is relatively equivalent to the Fréchet filter iff ${\cal F}\approx_{\it RK}{\cal F}_r.$

 $\mathcal{F}_{\mathcal{A}} \approx \mathcal{F}_r$ iff \mathcal{A} is a *MAD*-family.

Let \mathcal{F} and \mathcal{G} filters such that $\mathcal{G} \neq \mathcal{F}_r$ and \mathcal{F} is not relatively equivalent to the Fréchet filter. If $\mathcal{F} \leq_{RK} \mathcal{G}$, then there is a surjective function $g: \omega \to \omega$ such that $g[\mathcal{G}] = \mathcal{F}$.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

We say that a filter \mathcal{F} on ω is *relatively equivalent* to the Fréchet filter if there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

A FU-filter \mathcal{F} is relatively equivalent to the Fréchet filter iff $\mathcal{F} \approx_{RK} \mathcal{F}_r$.

 $\mathcal{F}_{\mathcal{A}} \approx \mathcal{F}_r$ iff \mathcal{A} is a *MAD*-family.

Let \mathcal{F} and \mathcal{G} filters such that $\mathcal{G} \neq \mathcal{F}_r$ and \mathcal{F} is not relatively equivalent to the Fréchet filter. If $\mathcal{F} \leq_{RK} \mathcal{G}$, then there is a surjective function $g: \omega \to \omega$ such that $g[\mathcal{G}] = \mathcal{F}$.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

We say that a filter \mathcal{F} on ω is *relatively equivalent* to the Fréchet filter if there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

A FU-filter ${\cal F}$ is relatively equivalent to the Fréchet filter iff ${\cal F}\approx_{\it RK}{\cal F}_r.$

 $\mathcal{F}_{\mathcal{A}} \approx \mathcal{F}_r$ iff \mathcal{A} is a *MAD*-family.

Let \mathcal{F} and \mathcal{G} filters such that $\mathcal{G} \neq \mathcal{F}_r$ and \mathcal{F} is not relatively equivalent to the Fréchet filter. If $\mathcal{F} \leq_{RK} \mathcal{G}$, then there is a surjective function $g: \omega \to \omega$ such that $g[\mathcal{G}] = \mathcal{F}$.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Definition

We say that a filter \mathcal{F} on ω is *relatively equivalent* to the Fréchet filter if there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

A FU-filter ${\cal F}$ is relatively equivalent to the Fréchet filter iff ${\cal F}\approx_{\it RK}{\cal F}_r.$

 $\mathcal{F}_{\mathcal{A}} \approx \mathcal{F}_r$ iff \mathcal{A} is a *MAD*-family.

Let \mathcal{F} and \mathcal{G} filters such that $\mathcal{G} \neq \mathcal{F}_r$ and \mathcal{F} is not relatively equivalent to the Fréchet filter. If $\mathcal{F} \leq_{RK} \mathcal{G}$, then there is a surjective function $g: \omega \to \omega$ such that $g[\mathcal{G}] = \mathcal{F}$.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and ^SQ

Definition

We say that a filter \mathcal{F} on ω is *relatively equivalent* to the Fréchet filter if there is $S \in \mathcal{F}$ such that $S \to \mathcal{F}$.

A FU-filter ${\cal F}$ is relatively equivalent to the Fréchet filter iff ${\cal F}\approx_{\it RK}{\cal F}_r.$

 $\mathcal{F}_{\mathcal{A}} \approx \mathcal{F}_r$ iff \mathcal{A} is a *MAD*-family.

Let \mathcal{F} and \mathcal{G} filters such that $\mathcal{G} \neq \mathcal{F}_r$ and \mathcal{F} is not relatively equivalent to the Fréchet filter. If $\mathcal{F} \leq_{RK} \mathcal{G}$, then there is a surjective function $g: \omega \to \omega$ such that $g[\mathcal{G}] = \mathcal{F}$.

(b) (c) FU-filters and RK-order

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} and \mathcal{B} be AD families on ω . The following conditions are equivalent.

 $\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$ via the surjective function $f: \omega \to \omega$.

(v) $\forall n < \omega < n \in A(V \cap (n) | |n| < \omega),$ $\forall A \in AVC \in B^{1}(|f|A| \cap C| < \omega), and$ $\forall S \in C(B) \forall N \in [S]^{*} \exists A \in A(|f|^{-1}(N) \cap A| = \omega).$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.
(b) (c) FU-filters and RK-order

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} and \mathcal{B} be AD families on ω . The following conditions are equivalent.

(1) $\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$ via the surjective function $f : \omega \to \omega$.

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

(b) (c) FU-filters and RK-order

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let $\mathcal A$ and $\mathcal B$ be AD families on $\omega.$ The following conditions are equivalent.

(1) $\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$ via the surjective function $f : \omega \to \omega$.

(2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$ $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega), \text{ and}$ $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega)$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

(b) (c) FU-filters and RK-order

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

(1) $\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$ via the surjective function $f : \omega \to \omega$. (2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$ $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega),$ and $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega).$

Let \mathcal{A} and \mathcal{B} be \mathcal{AD} families on ω . The following conditions are

Lemma

Theorem

equivalent.

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

) (c) *FU*-filters and *RK*-order

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let $\mathcal A$ and $\mathcal B$ be AD families on $\omega.$ The following conditions are equivalent.

1)
$$\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$$
 via the surjective function $f : \omega \to \omega$.
2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$
 $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega),$ and
 $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega).$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} and \mathcal{B} be AD families on ω . The following conditions are equivalent.

(1)
$$\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$$
 via the surjective function $f : \omega \to \omega$.
(2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$
 $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega),$ and
 $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega).$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} and \mathcal{B} be AD families on ω . The following conditions are equivalent.

(1)
$$\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$$
 via the surjective function $f : \omega \to \omega$.
(2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$
 $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega),$ and
 $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega).$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let $\mathcal A$ and $\mathcal B$ be AD families on $\omega.$ The following conditions are equivalent.

(1)
$$\mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}}$$
 via the surjective function $f : \omega \to \omega$.
(2) (a) $\forall n < \omega \forall A \in \mathcal{A}(|f^{-1}(n) \cap A| < \omega),$
 $\forall A \in \mathcal{A} \forall C \in \mathcal{B}^{\perp}(|f[A] \cap C| < \omega),$ and
 $\forall S \in C(\mathcal{B}) \forall H \in [S]^{\omega} \exists A \in \mathcal{A}(|f^{-1}(H) \cap A| = \omega).$

Lemma

If \mathcal{F} and \mathcal{G} are filters on ω such that $\mathcal{F} \leq_{RK} \mathcal{G}$, then $\chi(\mathcal{F}) \leq \chi(\mathcal{G})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Cómea

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

The *FAN*-filter is the filter $\prod_{n < \omega} \mathcal{F}_r(P_n)$ where $\{P_n : n < \omega\}$ is a partition of ω in infinite subsets. The product of finitely many filters $\mathcal{F}_0, \dots, \mathcal{F}_n$ will be denote by $\mathcal{F}_0 \oplus \mathcal{F}_1 \oplus \dots \oplus \mathcal{F}_n$.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Product

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and for each $i \in I$ let \mathcal{F}_i be a filter on ω with $A_i \in \mathcal{F}_i$. Then we define

$$\prod_{i\in I} \mathcal{F}_i = \{F \subseteq \omega : \forall i \in I (F \in \mathcal{F}_i)\}.$$

It is evident that $\prod_{i \in I} \mathcal{F}_i$ is a filter on ω and $\prod_{i \in I} \mathcal{F}_i$ is a *FU*-filter iff \mathcal{F}_i is a *FU*-filter for all $i \in I$.

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

_emma

Let $\mathcal{A} = \{A_i : i \in I\}$ be an AD-family and, for each $i \in I$, let \mathcal{A}_i be an AD-family on A_i . If $f_i : \omega \to A_i$ is a bijection, for every $i \in I$, then, $\mathcal{F}_{\mathcal{A}_i} \leq_{RK} \prod_{i \in I} \mathcal{F}_{f_i[\mathcal{A}_i]}$ for each $j \in I$.

Example

Let $\{M, N\}$ be a partition of ω in two infinite subsets. Fix two bijections $f : \omega \to M$ and $g : \omega \to N$. For each pair of *AD*-families \mathcal{A} and \mathcal{B} , we consider the filter $\mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} := \mathcal{F}_{f[\mathcal{A}]} \oplus \mathcal{F}_{g[\mathcal{B}]}$.

$\mathcal{F}_{\mathcal{A}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} \text{ and } \mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}}.$

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and, for each $i \in I$, let \mathcal{A}_i be an *AD*-family on A_i . If $f_i : \omega \to A_i$ is a bijection, for every $i \in I$, then, $\mathcal{F}_{\mathcal{A}_i} \leq_{RK} \prod_{i \in I} \mathcal{F}_{f_i[\mathcal{A}_i]}$ for each $j \in I$.

Example

Let $\{M, N\}$ be a partition of ω in two infinite subsets. Fix two bijections $f : \omega \to M$ and $g : \omega \to N$. For each pair of *AD*-families \mathcal{A} and \mathcal{B} , we consider the filter $\mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} := \mathcal{F}_{f[\mathcal{A}]} \oplus \mathcal{F}_{g[\mathcal{B}]}$.

$\mathcal{F}_{\mathcal{A}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} \text{ and } \mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}}.$

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and, for each $i \in I$, let \mathcal{A}_i be an *AD*-family on A_i . If $f_i : \omega \to A_i$ is a bijection, for every $i \in I$, then, $\mathcal{F}_{\mathcal{A}_i} \leq_{RK} \prod_{i \in I} \mathcal{F}_{f_i[\mathcal{A}_i]}$ for each $j \in I$.

Example

Let $\{M, N\}$ be a partition of ω in two infinite subsets. Fix two bijections $f : \omega \to M$ and $g : \omega \to N$. For each pair of *AD*-families \mathcal{A} and \mathcal{B} , we consider the filter $\mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} := \mathcal{F}_{f[\mathcal{A}]} \oplus \mathcal{F}_{g[\mathcal{B}]}$.

$\mathcal{F}_{\mathcal{A}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} \text{ and } \mathcal{F}_{\mathcal{B}} \leq_{RK} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}}.$

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let $\mathcal{A} = \{A_i : i \in I\}$ be an *AD*-family and, for each $i \in I$, let \mathcal{A}_i be an *AD*-family on A_i . If $f_i : \omega \to A_i$ is a bijection, for every $i \in I$, then, $\mathcal{F}_{\mathcal{A}_i} \leq_{RK} \prod_{i \in I} \mathcal{F}_{f_i[\mathcal{A}_i]}$ for each $j \in I$.

Example

Let $\{M, N\}$ be a partition of ω in two infinite subsets. Fix two bijections $f : \omega \to M$ and $g : \omega \to N$. For each pair of *AD*-families \mathcal{A} and \mathcal{B} , we consider the filter $\mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} := \mathcal{F}_{f[\mathcal{A}]} \oplus \mathcal{F}_{g[\mathcal{B}]}$.

 $\mathcal{F}_{\mathcal{A}} \leq_{\mathit{RK}} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}} \text{ and } \mathcal{F}_{\mathcal{B}} \leq_{\mathit{RK}} \mathcal{F}_{\mathcal{A}} \oplus \mathcal{F}_{\mathcal{B}}.$

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. F.

E(1)

Pre-orders

FAN-filter and S_Q

Theorem

If \mathcal{A} is an AD-family that is not MAD, then there is an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{B}} \not\leq_{RK} \mathcal{F}_{\mathcal{A}}$.

Question

Given an *AD*-family non-*MAD*-family \mathcal{A} , is there an *AD*-family \mathcal{B} such that $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}_{\mathcal{B}}$ are *RK*-incomparable ?

For any infinite partition \mathcal{P} of ω in infinite subsets, the *FU*-filters $\mathcal{F}_{\mathcal{P}}$ and $S_{\mathcal{P}}$ are *RK*-incomparable.

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

If \mathcal{A} is an AD-family that is not MAD, then there is an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{B}} \not\leq_{RK} \mathcal{F}_{\mathcal{A}}$.

Question

Given an *AD*-family non-*MAD*-family \mathcal{A} , is there an *AD*-family \mathcal{B} such that $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}_{\mathcal{B}}$ are *RK*-incomparable ?

For any infinite partition \mathcal{P} of ω in infinite subsets, the *FU*-filters $\mathcal{F}_{\mathcal{P}}$ and $S_{\mathcal{P}}$ are *RK*-incomparable.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

If \mathcal{A} is an AD-family that is not MAD, then there is an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{B}} \not\leq_{RK} \mathcal{F}_{\mathcal{A}}$.

Question

Given an AD-family non-MAD-family \mathcal{A} , is there an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}_{\mathcal{B}}$ are RK-incomparable ?

For any infinite partition \mathcal{P} of ω in infinite subsets, the *FU*-filters $\mathcal{F}_{\mathcal{P}}$ and $S_{\mathcal{P}}$ are *RK*-incomparable.

Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. E. Bivera-Gómez

Ordering

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

If \mathcal{A} is an AD-family that is not MAD, then there is an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{B}} \not\leq_{RK} \mathcal{F}_{\mathcal{A}}$.

Question

Given an AD-family non-MAD-family A, is there an AD-family B such that \mathcal{F}_{A} and \mathcal{F}_{B} are RK-incomparable ?

For any infinite partition \mathcal{P} of ω in infinite subsets, the *FU*-filters $\mathcal{F}_{\mathcal{P}}$ and $S_{\mathcal{P}}$ are *RK*-incomparable.

Ordering Frechet-Urvshon Filters

Pre-orders

FI

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} be a *NMAD*-family of size \mathfrak{c} . If $\kappa < \mathfrak{c}$ satisfies that $2^{\kappa} > \mathfrak{c}$, then exist 2^{κ} -many *FU*-filters non-*RK*-successors of $S_{\mathcal{A}}$. In particular, there is a *FU*-filter that is not *RK*-incomparable with $S_{\mathcal{A}}$.

FILSDOCAS

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{A} be a *NMAD*-family of size \mathfrak{c} . If $\kappa < \mathfrak{c}$ satisfies that $2^{\kappa} > \mathfrak{c}$, then exist 2^{κ} -many *FU*-filters non-*RK*-successors of $S_{\mathcal{A}}$. In particular, there is a *FU*-filter that is not *RK*-incomparable with $S_{\mathcal{A}}$.

Contenido

3 *FAN*-filter and S_Q

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 めんの

FAN-filter

Ordering Frechet-Uryshon Filters S.

Garcia-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

⁻heorem

Let \mathcal{P} be a partition of ω . If \mathcal{C} is an AD-family such that $|\mathcal{C}| < \mathfrak{a}$, then there is an AD-family \mathcal{B} such that $\mathcal{B} \subseteq \mathcal{C}^{\perp}$ and $\mathcal{F}_{\mathcal{P}} \leq_{RK} \mathcal{F}_{\mathcal{B}}$.

FAN-filter

Ordering Frechet-Uryshon Filters S. García-Ferreira Coauthor: J. F.

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let \mathcal{P} be a partition of ω . If \mathcal{C} is an AD-family such that $|\mathcal{C}| < \mathfrak{a}$, then there is an AD-family \mathcal{B} such that $\mathcal{B} \subseteq \mathcal{C}^{\perp}$ and $\mathcal{F}_{\mathcal{P}} \not\leq_{RK} \mathcal{F}_{\mathcal{B}}$.

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

emma

Let \mathcal{Q} be a partition of ω . For an *AD*-family \mathcal{B} the following conditions are equivalent.

• $S_{\mathcal{Q}}$ is equivalent to $\mathcal{F}_{\mathcal{B}}$.

 $\blacksquare S_{\mathcal{Q}} \approx_{RK} \mathcal{F}_{\mathcal{B}}.$

lacksquare There is an partition ${\mathcal P}$ of ω such that ${\mathcal B}$ is maximal in ${\mathcal P}^{\perp}$.

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

S. García-Ferreira Coauthor: J. E. Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Lemma

Let ${\cal Q}$ be a partition of $\omega.$ For an AD-family ${\cal B}$ the following conditions are equivalent.

- S_Q is equivalent to \mathcal{F}_B .
- $\bullet S_{\mathcal{Q}} \approx_{RK} \mathcal{F}_{\mathcal{B}}.$

There is an partition \mathcal{P} of ω such that \mathcal{B} is maximal in \mathcal{P}^{\perp} .

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Lemma

Let Q be a partition of ω . For an *AD*-family \mathcal{B} the following conditions are equivalent.

- S_Q is equivalent to \mathcal{F}_B .
- $\bullet S_{\mathcal{Q}} \approx_{RK} \mathcal{F}_{\mathcal{B}}.$

There is an partition \mathcal{P} of ω such that \mathcal{B} is maximal in \mathcal{P}^{\perp} .

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let Q be a partition of ω . For an *AD*-family \mathcal{B} the following conditions are equivalent.

- S_Q is equivalent to \mathcal{F}_B .
- $\bullet S_{\mathcal{Q}} \approx_{RK} \mathcal{F}_{\mathcal{B}}.$

• There is an partition \mathcal{P} of ω such that \mathcal{B} is maximal in \mathcal{P}^{\perp} .

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let Q be a partition of ω . For an *AD*-family \mathcal{B} the following conditions are equivalent.

- S_Q is equivalent to \mathcal{F}_B .
- $\bullet S_{\mathcal{Q}} \approx_{RK} \mathcal{F}_{\mathcal{B}}.$

• There is an partition \mathcal{P} of ω such that \mathcal{B} is maximal in \mathcal{P}^{\perp} .

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Lemma

Let Q be a partition of ω . For an *AD*-family \mathcal{B} the following conditions are equivalent.

- S_Q is equivalent to \mathcal{F}_B .
- $S_Q \approx_{RK} \mathcal{F}_B$.

• There is an partition \mathcal{P} of ω such that \mathcal{B} is maximal in \mathcal{P}^{\perp} .

Notation

Given an infinite partition $\mathcal{P} = \{P_n : n < \omega\}$ of ω ,

$$Sel(\mathcal{P}) = \{A \in [\omega]^{\omega} : \forall n < \omega (|A \cap P_n| \le 1)\}.$$

$S_{\mathcal{Q}}$

Ordering Frechet-Uryshon Filters

S. García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN}\mbox{-filter}$ and ${\it S}_{\it Q}$

heorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f: \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - a for every $S \in Se(P)$ there is $A \in A$ such that $|A \cap T^{-1}(\underline{f}[5])| = u$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

S_Q

Ordering Frechet-Uryshon Filters S. García-Ferreira

Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN}\mbox{-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection $f : \omega \to \omega$ such that $\{f[A] : A \in \mathcal{A}\}$ is maximal in \mathcal{Q}^{\perp} and $f|_{\mathcal{A}}$ is finite-to-one, for each $A \in \mathcal{A}$.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.
$S_{\mathcal{Q}}$

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and ■ for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

$S_{\mathcal{Q}}$

Ordering Frechet-Uryshon Filters S.

Garcia-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

$S_{\mathcal{Q}}$

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

FAN-filter and S_Q

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

S_Q

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

S_Q

Ordering Frechet-Uryshon Filters S.

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

S_Q

Ordering Frechet-Uryshon Filters S.

Garcia-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Theorem

Let $Q = \{Q_n : n < \omega\}$ be a partition of ω . For an *AD*-family A the following conditions are equivalent.

- $\bullet S_{\mathcal{Q}} \leq_{RK} \mathcal{F}_{\mathcal{A}}.$
- There is a surjection $f : \omega \to \omega$ such that if $P_n = f^{-1}(Q_n)$ for each $n < \omega$, and $\mathcal{P} = \{P_n : n < \omega\}$, then
 - $\mathcal{A} \subseteq \mathcal{P}^{\perp}$, and
 - for every $S \in Sel(\mathcal{P})$ there is $A \in \mathcal{A}$ such that $|A \cap f^{-1}(f[S])| = \omega$.
- There is a surjection f : ω → ω such that {f[A] : A ∈ A} is maximal in Q[⊥] and f|_A is finite-to-one, for each A ∈ A.

Proposition

Let Q be a partition of ω . If A is an AD-family of size $< \mathfrak{b}$, then $S_Q \not\leq_{RK} \mathcal{F}_A$.

Question

Ordering Frechet-Uryshon Filters

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Question

For every AD-family A, is there an AD-family B such that $F_A <_{RK} F_B$?

For any partition \mathcal{P} , we have that $S_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$ and $\mathcal{F}_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question

Ordering Frechet-Uryshon Filters

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Question

For every AD-family \mathcal{A} , is there an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{A}} <_{RK} \mathcal{F}_{\mathcal{B}}$?

For any partition \mathcal{P} , we have that $S_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$ and $\mathcal{F}_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Ordering Frechet-Uryshon Filters

García-Ferreira Coauthor: J. E Rivera-Gómez

FU-spaces

Pre-orders

 ${\it FAN-filter}$ and ${\it S}_{\it Q}$

Question

For every AD-family \mathcal{A} , is there an AD-family \mathcal{B} such that $\mathcal{F}_{\mathcal{A}} <_{RK} \mathcal{F}_{\mathcal{B}}$?

For any partition \mathcal{P} , we have that $S_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$ and $\mathcal{F}_{\mathcal{P}} <_{RK} S_{\mathcal{P}} \oplus \mathcal{F}_{\mathcal{P}}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ