On theory of C-spaces and C-groups

Saak Gabriyelyan

saak@math.bgu.ac.il

Ben-Gurion University of the Negev, Israel

Weak Topology

A topological space (X, τ) is determined by a cover \mathcal{P} , or \mathcal{P} determines (X, τ) , if $U \subseteq X$ is open in X if and only if $U \cap P$ is relatively open in P for every $P \in \mathcal{P}$.

Examples

(i) S - the class of all compact countable spaces with at most one limit point (convergent sequences).

X is sequential iff $\mathcal{S} \cap X$ is a determining cover of X.

(ii) \mathcal{K} - the class of all compact spaces.

X is k-space iff $\mathcal{K} \cap X$ is a determining cover of X.

(iii) CK - the class of all countably compact spaces.

X is quasi-k-space iff $\mathcal{CK} \cap X$ is a determining cover of X.

(iv) \mathcal{CT}_{\aleph_0} - the class of all countable topological spaces.

X has countable tightness iff $\mathcal{CT}_{\aleph_0} \cap X$ is a determining cover of X.

The Main Goal

The main goal is to give a general construction of some natural classes of topological spaces and groups including the above mentioned the most important ones and to obtain their complete characterizations.

Part I. Theory of C-spaces

Definition of \mathcal{T} **-determining classes**

Definition: A subclass C of the category Top containing a non-empty space is called topology determining (\mathcal{T} -determining) in Top if it satisfies the following two conditions:

- (i) C is closed under taking of closed subspaces;
- (ii) C is closed under taking of homeomorphic images.

The elements of C are called C-basic or simply basic spaces.

Example: All the classes S, \mathcal{K} , \mathcal{CK} and \mathcal{CT}_{\aleph_0} are \mathcal{T} -determining.

In what follows C denotes a T-determining class of topological spaces.

$\mathcal{C}\text{-}\textbf{modification}$ of topological spaces

Definition: Let X be a topological space. A subset E of X is called C-open (resp. C-closed) if $E \cap A$ is relatively open (resp. closed) in A for every $A \in C \cap X$.

The set $\tau_{\mathcal{C}}$ of all \mathcal{C} -open sets of a topological space (X, τ) is a topology on X which is finer than the original one, i.e., $\tau \leq \tau_{\mathcal{C}}$. The space $(X, \tau_{\mathcal{C}})$ is called the \mathcal{C} -modification of (X, τ) and $\tau_{\mathcal{C}}$ is called the \mathcal{C} -extension of τ .

Definition of C**-spaces**

Definition: A topological space X is called a C-space if every C-open subset is open.

Proposition: The C-modification (X, τ_C) of a topological space (X, τ) is a C-space.

Mappings

Definition: Let C be a T-determining class and f be a mapping from a topological space (X, τ) to a topological space (Y, ν) .

- (i) f is called *C*-continuous if for every $A \in C(X)$ the restriction $f|_A$ of f onto A is continuous.
- (ii) f is called *C*-covering if for every $B \in C(Y)$ there is $A \in C(X)$ such that f(A) = B.

Example: If $C = \mathcal{K}$ (resp. C = S) we obtain the definitions of k-continuous and compact-covering maps (resp. sequentially continuous and sequence-covering mappings).

$\mathcal{C}\text{-}\textbf{continuous}$ maps and $\mathcal{C}\text{-}\textbf{spaces}$

Theorem: For a topological space (X, τ) the following assertions are equivalent:

- (i) (X, τ) is a C-space.
- (ii) Every C-continuous mapping from (X, τ) to a topological space is continuous.

$\textbf{Coreflectivity of } \mathbf{C}$

Definition: Let C be a T-determining class in Top.

- (i) C is called stable if for every $(X, \tau) \in C$ and every continuous mapping f from (X, τ) to a topological space (Y, ν) the image f(X) (with the induced topology $\nu|_{f(X)}$) is a C-space.
- (ii) C is called closed under taking of continuous images if for every (X, τ) ∈ C and every continuous mapping f from (X, τ) to a topological space (Y, ν) the image f(X) belongs to C.

Example: The \mathcal{T} -determining classes \mathcal{S} , \mathcal{K} , \mathcal{CK} and \mathcal{CT}_{\aleph_0} are closed under taking of continuous images.

Theorem: Let a \mathcal{T} -determining class \mathcal{C} be stable. Then the category C of all \mathcal{C} -spaces is a coreflective subcategory of Top and the assignment $(X, \tau) \mapsto \mathbf{C}(X, \tau)$ is a coreflector for C from Top to C.

In analogy to the local compactness:

Definition: Let C be a \mathcal{T} -determining class in Top. A topological space (X, τ) is called an \mathcal{LC} -space if for every point x of X and an open neighborhood U of x there is an open neighborhood V of x such that the closure \overline{V} is a C-basic space and $\overline{V} \subseteq U$.

In particular, if C = K then \mathcal{LC} -spaces are locally compact ones.

Characterization of $\mathcal{C}\text{-spaces}$

Theorem: Let a \mathcal{T} -determining class of topological spaces \mathcal{C} be stable. Then a topological space (Y, ν) is a \mathcal{C} -space if and only if it is a quotient space of an \mathcal{LC} -space of the form

$$X = \bigoplus_{A \in \mathcal{C}_0} A, \text{ where } \mathcal{C}_0 \subseteq \mathcal{C}.$$

Examples

Corollary: Let (X, τ) be a topological space. Then:

- (i) (Franklin) X is sequential iff it is a quotient image of a metric space.
- (ii) (Cohen) X is a k-space iff it is a quotient image of a locally compact space.
- (iii) (Nagata) X is a quasi-k-space iff it is a quotient image of a locally countably compact space.

Part II. Theory of C-groups

Definition of C**-groups**

Definition: A topological group (G, τ) is called a *C*-group if every *C*-continuous homomorphism from (G, τ) to a topological group (H, ν) is continuous.

If C = K or C = S we obtain the definitions of k-groups and s-groups respectively given by Noble.

Characterization of C-groups

Theorem: For a topological group (G, τ) the following are equivalent:

- (i) (G, τ) is a C-group;
- (ii) τ is the finest group topology on G which is weaker than the C-extension $\tau_{\mathcal{C}}$ of τ .

C-modification of topological groups

Denote by $\tau_{\mathcal{C}}^h$ the finest group topology on G which is weaker than the \mathcal{C} -extension $\tau_{\mathcal{C}}$ of τ . We call the group $(G, \tau_{\mathcal{C}}^h)$ the group \mathcal{C} -modification of (G, τ) and the topology $\tau_{\mathcal{C}}^h$ the group \mathcal{C} -extension of τ , we write $\mathbf{C}^h(G, \tau) := (G, \tau_{\mathcal{C}}^h)$.

Proposition: The C-modification $(G, \tau_{\mathcal{C}}^{h})$ of a topological group (G, τ) is a C-group.

Coreflectivity of CGr

Theorem: Let a \mathcal{T} -determining class \mathcal{C} be stable. Then the category CGr of all \mathcal{C} -groups is a coreflective subcategory of TopGr and the assignment $(G, \tau) \mapsto \mathbf{C}^h(G, \tau)$ is a coreflector for CGr from TopGr to CGr.

Characterization of C**-groups**

Theorem: Let a \mathcal{T} -determining class of topological spaces \mathcal{C} be stable. Then for a topological group (G, τ) the following assertions are equivalent:

- (i) (G, τ) is a (resp. abelian) C-group;
- (ii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a Tychonoff C-space;
- (iii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a Tychonoff \mathcal{LC} -space of the form

$$\bigoplus_{A \in \mathcal{C}_0} A, \text{ where } \mathcal{C}_0 \subseteq \mathcal{C}.$$

Examples

Corollary: For a topological group (G, τ) TFAE:

- (i) (G, τ) is a (resp. abelian) k-group;
- (ii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a k-space;
- (iii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a locally compact space.

Corollary: For a topological group (G, τ) TFAE:

- (i) (G, τ) is an (resp. abelian) s-group;
- (ii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a sequential space;
- (iii) (G, τ) is a quotient group of the Graev free (resp. abelian) topological group over a metrizable space.

$\mathcal{C}\text{-}\text{order}$ of $\mathcal{C}\text{-}\text{spaces}$

Definition: Let E be a subset of a topological space (X, τ) . We shall write $x \in [E]^c$ if and only if $x \in A \cap \overline{A \cap E} = \operatorname{cl}_A(A \cap E)$ for some $A \in \mathcal{C}(X)$. Set $[E]_0 = E$, $[E]_{\alpha+1} = [[E]_{\alpha}]^c$ and $[E]_{\alpha} = \bigcup_{\beta < \alpha} [E]_{\beta}$ for a limit ordinal α .

Theorem: A topological space (X, τ) is a C-space if and only if for every subset E of X there exists an ordinal α such that $[E]_{\alpha} = \overline{E}$.

Definition: The *C*-order Co(X) of *X* is the least ordinal α such that $[E]_{\alpha} = \overline{E}$ for every subset $E \subseteq X$. A *C*-space (X, τ) is called *C*-Fréchet-Urysohn if $Co(X) \leq 1$.

Theorem: Every hereditary *C*-space is a *C*-Fréchet-Urysohn space.