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Introdution

A lassial de�nition in Banah spaes theory is the following:

De�nition (Kade)

A normed spae (X , ‖·‖) is alled Kade if the weak and the norm

topologies oinide on S
X

, i.e. Id : (S
X

, w) → (X , ‖·‖) is ontinuous.

The natural norms of ℓ
p

(Γ) for every set Γ and 1 < p < +∞ are

Kade norms.

ℓ∞ does not admits an equivalent Kade renorming (M. Talagrand,

1977).

All separable Banah spaes admits an equivalent Kade renorming

(M. I. Kade, 1958).



Introdution

The studies in this area have brought to two de�nitions: let (X , ‖·‖) a
Banah spae

De�nition (SLD (Jayne, Namioka and Rogers, 1992))

If for every ε > 0 we an write X =
⋃

n∈N
X

n,ε suh that for all n ∈ N and

every x ∈ X

n,ε exists a w-open set V suh that ‖·‖-diam(V ∩ X

n,ε) < ε.
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De�nition (Desriptive (R. W. Hansell, 1989))

If the norm topology has a network N =
⋃∞

n=1

N
n

, where every one of the

subfamilies N
n

is a w-isolated family.

It is known that Kade⇒SLD⇔Desriptive, but there are no known

examples of a SLD spaes without an equivalent Kade renorming.

De�nition (Disrete family)

For every x ∈ X exists U

x

suh

that at most one element of A
has non-empty intersetion with

U

x

.
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De�nition (Isolated family)

For every x ∈
⋃

A∈A
A exists U

x

suh that at most one element of

A has non-empty intersetion

with U

x

.
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Introdution

An interresting result of Raja says:

Theorem (M. Raja, 1999)

X is desriptive if and only if exists a funtion ϕ : X → R positively

homogeneous, w-ls,

‖x‖ ≤ ϕ(x) ≤ (1+ ε)‖·‖

suh that the weak and the strong topologies oinide on the �sphere�

{x ∈ X |ϕ(x) = 1}.

It is possible to onstrut a norm-ontinuous funtion ϕ?



The main result

In this result we work with topologies generated by partiular subset of the

dual spae (whih generate the same norm). As an example we an take

C (K ) and C
p

(K ),

Theorem (Kade quasi-renorming)

Let (X , ‖·‖) be a normed spae with a norming subspae Z in X

∗
, the

following onditions are equivalent:

1

X is σ(X ,Z )-desriptive.

2

There is an equivalent σ(X ,Z )-ls and σ(X ,Z )-Kade quasinorm q(·).

3

The norm topology admits a basis B =
⋃

∞

n=1

B
n

suh that every one

of the families B
n

is σ(X ,Z )-isolated and norm disrete.

Remeber that a quasi-norm q : X → R
+
has the followings properties:

x = 0 if q(x) = 0;

q(αx) = |α|q(x);

q(x + y) ≤ C (q(x) + q(y)).
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p-onvexity

We need two lemmata in order to prove our theorem.

De�nition

Let p ∈ (0, 1). A set A of a vetor spae is alled p-onvex if for every

x , y ∈ A and τ, µ ∈ [0, 1] suh that τp + µp = 1

τx + µy ∈ A.

A real funtion φ : X → R is said to be p-onvex if its epigraph is p-onvex.
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A usefull example

Proposition (p-distane)

Let X be a normed spae and Z a norming subspae in the dual spae X

∗
.

If C is a w∗
-ompat and p-onvex subset of X

∗∗
, 0 < p ≤ 1, and we de�ne

ϕ(x) := inf {‖x − 

∗∗‖
Z

| ∗∗ ∈ C}

Then ϕ is p-onvex, σ(X ,Z )-lower semiontinuous and 1-Lipshitz map

from X to R
+.



p-isolated family

De�nition

Let (X , ‖·‖) be a normed spae, Z be a norming subspae in X

∗
and

0 < p ≤ 1. A family B := {B
i

| i ∈ I} of subsets in the normed spae X is

said to be p-isolated for the σ(X ,Z )-topology when

B

i

∩ onv

p

{B
j

| j 6= i , j ∈ I}
σ(X ,Z)

= ∅

for every i ∈ I .
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Interplay lemma

Lemma

Let (X , ‖·‖) be a normed spae and Z be a norming subspae in X

∗
. Let

B := {B
i

| i ∈ I} be an uniformly bounded family of subsets of X . The

following are equivalent:

1

The family B is p-isolated for the σ(X ,Z )-topology;

2

There is a family L := {ϕ
i

: X → R
+ | i ∈ I} of p-onvex and

σ(X ,Z )-ls funtions suh that

{x ∈ X |ϕ
i

(x) > 0} ∩
⋃

j∈I

B

j

= B

i

∀i ∈ I .
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Connetion lemma

Lemma

Let (X , ‖·‖) be a normed spae and Z be a norming subspae in X

∗
. Let

B := {B
i

| i ∈ I} be an uniformly bounded and p-isolated family of subsets

of X for the σ(X ,Z ) topology and some p ∈ (0, 1]. Then there is an

equivalent quasinorm qB(·) on X suh that: for all net {xα |α ∈ A} and x

in X with x ∈ B

i

0

for i

0

∈ I , the onditions σ(X ,Z )- limα xα = x and

limα qB(xα) = qB(x) imply that

1

exists α
0

suh that xα /∈ onv

p

{B
i

| i 6= i

0

, i ∈ I}
σ(X ,Z)

for α ≥ α
0

;

2

for every δ > 0 there is αδ ∈ A suh that

xα ∈ (onv (B
i

0

∪ {0}) + B(0, δ))
σ(X ,Z)

∀α ≻ αδ.



b

onv(B
2

∪ {0}) + Bδ(0)

onv

p

(B
1

∪ B

3

)

onv(B
2

∪ {0})

b x

b

b
b

b

b

b

0

Put ϕ
i

the p-distane from onv

p

{B
j

|j 6= i , j ∈ I}
σ(X∗∗,X∗)

;

p

δ
i

the Minkowski funtional of onv (B
i

∪ {0}) + Bδ(0)
σ(X ,Z)

;

ψ
i

(x) = ‖x‖
Z

+
∑+∞

n=1

1

n2

n

p

1

n

i

(x);

Apply the Deville lemma with the families {ϕ
i

} and {ψ
i

};

The Minkowski funtional of {x ∈ X |θ(x) + θ(−x) ≤ 1} is the

quasi-norm that we were seeking.
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Observations

It is important to know that modifying the proof, we an �x ε ∈ (0, 1) suh
that the quasi-norm q(·) verify

q(x + y) ≤
1+ ε

1− ε
(q(x) + q(y))

and

(1− ε)‖x‖
Z

≤ q(x) ≤ (1+ ε)‖x‖
Z

.



Deomposition lemma

Lemma

Let (X , ‖·‖) be a normed spae, Z be a norming subspae in X

∗
and

q

n

ց 0 with in (q
n

) ⊆ (0, 1]. Let B an isolated family of sets, for the

σ(X ,Z ) topology. Then there is a deomposition of every B ∈ B as

B =

+∞
⋃

n=1

B

n

with {B
n

|B ∈ B} a σ(X ,Z )-q
m

-isolated for m big enough and every

n ∈ N.



The proof

Theorem

In a normed spae (X , ‖·‖) with a norming subspae Z in X

∗
we have an

equivalent σ(X ,Z )-lower semiontinuous and σ(X ,Z )-Kade quasinorm if

and only if there are isolated families for the σ(X ,Z ) topology

{B
n

| n = 1, 2, . . .}

in the unit sphere S
X

suh that for every x in S
X

and every ε > 0 there is

some positive integer n and a set B ∈ B
n

with the property that x ∈ B and

that ‖·‖-diam(B) < ε.



The use of the deomposition lemma

Fix a sequene q

n

ց 0 in (0, 1];

Apply the deomposition lemma to the sets of the families B
n

;

We obtain families Bm

n

that are q

s

m

-isolated;

Let's renumber the sequene and assume that the families B
n

are

already p

n

-isolated.
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The use of the onnetion lemma

For every family B
n

we apply the onnetion lemma and obtain an

equivalent quasi-norm QB
n

(·);

Consider Q(x) :=
∑+∞

n=1



n

QB
n

(x);

It is possible to hose (
n

) aordingly for the onvergene of the

series, sine we an assume the inequality

(1− δ)‖x‖
Z

≤ QB
n

(x) ≤ (1+ δ)‖x‖
Z

for the same �xes δ > 0.
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Another appliation of the onnetion lemma

Let's prove the Kade property;

Take a net {xα |α ∈ (A,≻)} and x with ‖x‖
Z

= 1, limα Qxα = Qx

and (xα) being σ(X ,Z )-onvergent to x ;

By a standard lower semiontinuous argument we have

limα QB
q

(xα) = QB
q

(x) for every q ∈ N;

Fix ε > 0 and onsider q ∈ N suh that for some B ∈ B
q

we have

x ∈ B and ‖·‖
Z

-diam(B) < ε
2

;

Use the onnetion lemma to obtain α ε

2

suh that

xα ∈ onv(B ∪ {0}) + B(0, ε/2)
σ(X ,Z)

whenever α ≻ α ε

2

.
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So we are in this ondition, where everything has small diameter
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bb x

xα

0



The onstrution of a onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] suh that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the diret set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By ompatness, extrat a onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the omposition of σ with the projetion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



The onstrution of a onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] suh that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the diret set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By ompatness, extrat a onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the omposition of σ with the projetion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



The onstrution of a onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] suh that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the diret set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By ompatness, extrat a onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the omposition of σ with the projetion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



The onstrution of a onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] suh that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the diret set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By ompatness, extrat a onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the omposition of σ with the projetion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



The onstrution of a onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] suh that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the diret set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By ompatness, extrat a onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the omposition of σ with the projetion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



End of the proof

The hypothesis limα∈AQ(xα) = Q(x) tell us that Q(rx) = Q(x) 6= 0

and so r = 1.

The same proof is valid for every subnets of the given net, and this

end the proof.

Furthermore we obtain

Q(x + y) ≤
1+ δ

1− δ
(Q(x) + Q(y)).



Last, but not least

Theorem

In a normed spae (X , ‖·‖) with a norming subspae Z in X

∗
, if there are

isolated families for the σ(X ,Z ) topology

{B
n

| n = 1, 2, . . .}

in the unit sphere S
X

suh that for every x in S
X

and every ε > 0 there is

some positive integer n and a set B ∈ B
n

with the property that x ∈ B and

that ‖·‖-diam(B) < ε, then there exists a LUR an Kade F-norm.



Remember that an F-norm is a funtion that satis�es the followings:

F (x) = 0 ⇔ x = 0;

F (λx) ≤ F (x) if |λ| ≤ 1;

F (x + y) ≤ F (x) + F (y);

F (λx
n

) → 0 if F (x
n

) → 0;

F (λ
n

x) → 0 if λ
n

→ 0.

This type of funtion determine the uniform struture of a topologial

metrizable vetor spae. The LUR ondition is a sort of weak parallelogram

law whih state that x

n

→ x in the strong topology when

2F

2(x) + 2F

2(x
n

)− F

2(x + x

n

) → 0.



Thanks you
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