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Introdu
tion

A 
lassi
al de�nition in Bana
h spa
es theory is the following:

De�nition (Kade
)

A normed spa
e (X , ‖·‖) is 
alled Kade
 if the weak and the norm

topologies 
oin
ide on S
X

, i.e. Id : (S
X

, w) → (X , ‖·‖) is 
ontinuous.

The natural norms of ℓ
p

(Γ) for every set Γ and 1 < p < +∞ are

Kade
 norms.

ℓ∞ does not admits an equivalent Kade
 renorming (M. Talagrand,

1977).

All separable Bana
h spa
es admits an equivalent Kade
 renorming

(M. I. Kade
, 1958).



Introdu
tion

The studies in this area have brought to two de�nitions: let (X , ‖·‖) a
Bana
h spa
e

De�nition (SLD (Jayne, Namioka and Rogers, 1992))

If for every ε > 0 we 
an write X =
⋃

n∈N
X

n,ε su
h that for all n ∈ N and

every x ∈ X

n,ε exists a w-open set V su
h that ‖·‖-diam(V ∩ X

n,ε) < ε.
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De�nition (Des
riptive (R. W. Hansell, 1989))

If the norm topology has a network N =
⋃∞

n=1

N
n

, where every one of the

subfamilies N
n

is a w-isolated family.

It is known that Kade
⇒SLD⇔Des
riptive, but there are no known

examples of a SLD spa
es without an equivalent Kade
 renorming.

De�nition (Dis
rete family)

For every x ∈ X exists U

x

su
h

that at most one element of A
has non-empty interse
tion with

U

x

.
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De�nition (Isolated family)

For every x ∈
⋃

A∈A
A exists U

x

su
h that at most one element of

A has non-empty interse
tion

with U

x

.
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Introdu
tion

An interresting result of Raja says:

Theorem (M. Raja, 1999)

X is des
riptive if and only if exists a fun
tion ϕ : X → R positively

homogeneous, w-ls
,

‖x‖ ≤ ϕ(x) ≤ (1+ ε)‖·‖

su
h that the weak and the strong topologies 
oin
ide on the �sphere�

{x ∈ X |ϕ(x) = 1}.

It is possible to 
onstru
t a norm-
ontinuous fun
tion ϕ?



The main result

In this result we work with topologies generated by parti
ular subset of the

dual spa
e (whi
h generate the same norm). As an example we 
an take

C (K ) and C
p

(K ),

Theorem (Kade
 quasi-renorming)

Let (X , ‖·‖) be a normed spa
e with a norming subspa
e Z in X

∗
, the

following 
onditions are equivalent:

1

X is σ(X ,Z )-des
riptive.

2

There is an equivalent σ(X ,Z )-ls
 and σ(X ,Z )-Kade
 quasinorm q(·).

3

The norm topology admits a basis B =
⋃

∞

n=1

B
n

su
h that every one

of the families B
n

is σ(X ,Z )-isolated and norm dis
rete.

Remeber that a quasi-norm q : X → R
+
has the followings properties:

x = 0 if q(x) = 0;

q(αx) = |α|q(x);

q(x + y) ≤ C (q(x) + q(y)).
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p-
onvexity

We need two lemmata in order to prove our theorem.

De�nition

Let p ∈ (0, 1). A set A of a ve
tor spa
e is 
alled p-
onvex if for every

x , y ∈ A and τ, µ ∈ [0, 1] su
h that τp + µp = 1

τx + µy ∈ A.

A real fun
tion φ : X → R is said to be p-
onvex if its epigraph is p-
onvex.
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A usefull example

Proposition (p-distan
e)

Let X be a normed spa
e and Z a norming subspa
e in the dual spa
e X

∗
.

If C is a w∗
-
ompa
t and p-
onvex subset of X

∗∗
, 0 < p ≤ 1, and we de�ne

ϕ(x) := inf {‖x − 


∗∗‖
Z

| 
∗∗ ∈ C}

Then ϕ is p-
onvex, σ(X ,Z )-lower semi
ontinuous and 1-Lips
hitz map

from X to R
+.



p-isolated family

De�nition

Let (X , ‖·‖) be a normed spa
e, Z be a norming subspa
e in X

∗
and

0 < p ≤ 1. A family B := {B
i

| i ∈ I} of subsets in the normed spa
e X is

said to be p-isolated for the σ(X ,Z )-topology when

B

i

∩ 
onv

p

{B
j

| j 6= i , j ∈ I}
σ(X ,Z)

= ∅

for every i ∈ I .
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Interplay lemma

Lemma

Let (X , ‖·‖) be a normed spa
e and Z be a norming subspa
e in X

∗
. Let

B := {B
i

| i ∈ I} be an uniformly bounded family of subsets of X . The

following are equivalent:

1

The family B is p-isolated for the σ(X ,Z )-topology;

2

There is a family L := {ϕ
i

: X → R
+ | i ∈ I} of p-
onvex and

σ(X ,Z )-ls
 fun
tions su
h that

{x ∈ X |ϕ
i

(x) > 0} ∩
⋃

j∈I

B

j

= B

i

∀i ∈ I .

b
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2
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Conne
tion lemma

Lemma

Let (X , ‖·‖) be a normed spa
e and Z be a norming subspa
e in X

∗
. Let

B := {B
i

| i ∈ I} be an uniformly bounded and p-isolated family of subsets

of X for the σ(X ,Z ) topology and some p ∈ (0, 1]. Then there is an

equivalent quasinorm qB(·) on X su
h that: for all net {xα |α ∈ A} and x

in X with x ∈ B

i

0

for i

0

∈ I , the 
onditions σ(X ,Z )- limα xα = x and

limα qB(xα) = qB(x) imply that

1

exists α
0

su
h that xα /∈ 
onv

p

{B
i

| i 6= i

0

, i ∈ I}
σ(X ,Z)

for α ≥ α
0

;

2

for every δ > 0 there is αδ ∈ A su
h that

xα ∈ (
onv (B
i

0

∪ {0}) + B(0, δ))
σ(X ,Z)

∀α ≻ αδ.



b


onv(B
2

∪ {0}) + Bδ(0)


onv

p

(B
1

∪ B

3

)


onv(B
2

∪ {0})

b x

b

b
b

b

b

b

0

Put ϕ
i

the p-distan
e from 
onv

p

{B
j

|j 6= i , j ∈ I}
σ(X∗∗,X∗)

;

p

δ
i

the Minkowski fun
tional of 
onv (B
i

∪ {0}) + Bδ(0)
σ(X ,Z)

;

ψ
i

(x) = ‖x‖
Z

+
∑+∞

n=1

1

n2

n

p

1

n

i

(x);

Apply the Deville lemma with the families {ϕ
i

} and {ψ
i

};

The Minkowski fun
tional of {x ∈ X |θ(x) + θ(−x) ≤ 1} is the

quasi-norm that we were seeking.
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Observations

It is important to know that modifying the proof, we 
an �x ε ∈ (0, 1) su
h
that the quasi-norm q(·) verify

q(x + y) ≤
1+ ε

1− ε
(q(x) + q(y))

and

(1− ε)‖x‖
Z

≤ q(x) ≤ (1+ ε)‖x‖
Z

.



De
omposition lemma

Lemma

Let (X , ‖·‖) be a normed spa
e, Z be a norming subspa
e in X

∗
and

q

n

ց 0 with in (q
n

) ⊆ (0, 1]. Let B an isolated family of sets, for the

σ(X ,Z ) topology. Then there is a de
omposition of every B ∈ B as

B =

+∞
⋃

n=1

B

n

with {B
n

|B ∈ B} a σ(X ,Z )-q
m

-isolated for m big enough and every

n ∈ N.



The proof

Theorem

In a normed spa
e (X , ‖·‖) with a norming subspa
e Z in X

∗
we have an

equivalent σ(X ,Z )-lower semi
ontinuous and σ(X ,Z )-Kade
 quasinorm if

and only if there are isolated families for the σ(X ,Z ) topology

{B
n

| n = 1, 2, . . .}

in the unit sphere S
X

su
h that for every x in S
X

and every ε > 0 there is

some positive integer n and a set B ∈ B
n

with the property that x ∈ B and

that ‖·‖-diam(B) < ε.



The use of the de
omposition lemma

Fix a sequen
e q

n

ց 0 in (0, 1];

Apply the de
omposition lemma to the sets of the families B
n

;

We obtain families Bm

n

that are q

s

m

-isolated;

Let's renumber the sequen
e and assume that the families B
n

are

already p

n

-isolated.
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The use of the 
onne
tion lemma

For every family B
n

we apply the 
onne
tion lemma and obtain an

equivalent quasi-norm QB
n

(·);

Consider Q(x) :=
∑+∞

n=1




n

QB
n

(x);

It is possible to 
hose (

n

) a

ordingly for the 
onvergen
e of the

series, sin
e we 
an assume the inequality

(1− δ)‖x‖
Z

≤ QB
n

(x) ≤ (1+ δ)‖x‖
Z

for the same �xes δ > 0.
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Another appli
ation of the 
onne
tion lemma

Let's prove the Kade
 property;

Take a net {xα |α ∈ (A,≻)} and x with ‖x‖
Z

= 1, limα Qxα = Qx

and (xα) being σ(X ,Z )-
onvergent to x ;

By a standard lower semi
ontinuous argument we have

limα QB
q

(xα) = QB
q

(x) for every q ∈ N;

Fix ε > 0 and 
onsider q ∈ N su
h that for some B ∈ B
q

we have

x ∈ B and ‖·‖
Z

-diam(B) < ε
2

;

Use the 
onne
tion lemma to obtain α ε

2

su
h that

xα ∈ 
onv(B ∪ {0}) + B(0, ε/2)
σ(X ,Z)

whenever α ≻ α ε

2

.
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So we are in this 
ondition, where everything has small diameter

b

bb x
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The 
onstru
tion of a 
onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] su
h that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the dire
t set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By 
ompa
tness, extra
t a 
onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the 
omposition of σ with the proje
tion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .
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t a 
onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the 
omposition of σ with the proje
tion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



The 
onstru
tion of a 
onverging subnet

So we have that ‖·‖
Z

- dist(xα, Ix) ≤ ε for α ≻ α ε

2

where I

x

is the

segment joining x with the origin;

So there are numbers rα,ε ∈ [0, 1] su
h that

∥

∥

xα − r(α,ε)x
∥

∥ ≤ ε

for every α ≻ αε. Choose γε ≻ α ε

2

and γε ≻ αε.

Consider the dire
t set D = {(α, ε) ∈ A× (0, 1]|α ≻ γε}.

By 
ompa
tness, extra
t a 
onverging subnet from {rα,ε}(α,ε)∈D then

we have σ : B → D and r = limβ∈B rσ(β).

Let σ the 
omposition of σ with the proje
tion onto A and we have

‖·‖
Z

- lim

β∈B
xσ(β) = rx .



End of the proof

The hypothesis limα∈AQ(xα) = Q(x) tell us that Q(rx) = Q(x) 6= 0

and so r = 1.

The same proof is valid for every subnets of the given net, and this

end the proof.

Furthermore we obtain

Q(x + y) ≤
1+ δ

1− δ
(Q(x) + Q(y)).



Last, but not least

Theorem

In a normed spa
e (X , ‖·‖) with a norming subspa
e Z in X

∗
, if there are

isolated families for the σ(X ,Z ) topology

{B
n

| n = 1, 2, . . .}

in the unit sphere S
X

su
h that for every x in S
X

and every ε > 0 there is

some positive integer n and a set B ∈ B
n

with the property that x ∈ B and

that ‖·‖-diam(B) < ε, then there exists a LUR an Kade
 F-norm.



Remember that an F-norm is a fun
tion that satis�es the followings:

F (x) = 0 ⇔ x = 0;

F (λx) ≤ F (x) if |λ| ≤ 1;

F (x + y) ≤ F (x) + F (y);

F (λx
n

) → 0 if F (x
n

) → 0;

F (λ
n

x) → 0 if λ
n

→ 0.

This type of fun
tion determine the uniform stru
ture of a topologi
al

metrizable ve
tor spa
e. The LUR 
ondition is a sort of weak parallelogram

law whi
h state that x

n

→ x in the strong topology when

2F

2(x) + 2F

2(x
n

)− F

2(x + x

n

) → 0.



Thanks you
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