Metrization theory and the Kadec property

Simone Ferrari (University of Milan and University of Murcia) Joint work with L. Oncina, J. Orihuela and M. Raja

25-30 June 2012, Caserta

A classical definition in Banach spaces theory is the following:

Definition (Kadec)

A normed space $(X, \|\cdot\|)$ is called Kadec if the weak and the norm topologies coincide on S_X , i.e. Id : $(S_X, w) \to (X, \|\cdot\|)$ is continuous.

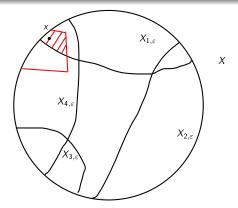
- The natural norms of $\ell_p(\Gamma)$ for every set Γ and 1 are Kadec norms.
- ℓ_{∞} does not admits an equivalent Kadec renorming (M. Talagrand, 1977).
- All separable Banach spaces admits an equivalent Kadec renorming (M. I. Kadec, 1958).

Introduction

The studies in this area have brought to two definitions: let $(X, \|\cdot\|)$ a Banach space

Definition (SLD (Jayne, Namioka and Rogers, 1992))

If for every $\varepsilon > 0$ we can write $X = \bigcup_{n \in \mathbb{N}} X_{n,\varepsilon}$ such that for all $n \in \mathbb{N}$ and every $x \in X_{n,\varepsilon}$ exists a w-open set V such that $\|\cdot\|$ -diam $(V \cap X_{n,\varepsilon}) < \varepsilon$.



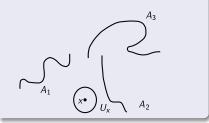
Definition (Descriptive (R. W. Hansell, 1989))

If the norm topology has a network $\mathcal{N} = \bigcup_{n=1}^{\infty} \mathcal{N}_n$, where every one of the subfamilies \mathcal{N}_n is a *w*-isolated family.

It is known that $Kadec \Rightarrow SLD \Leftrightarrow Descriptive$, but there are no known examples of a SLD spaces without an equivalent Kadec renorming.

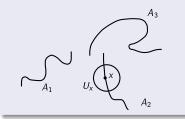
Definition (Discrete family)

For every $x \in X$ exists U_x such that at most one element of A has non-empty intersection with U_x .



Definition (Isolated family)

For every $x \in \bigcup_{A \in \mathcal{A}} A$ exists U_x such that at most one element of \mathcal{A} has non-empty intersection with U_x .



An interresting result of Raja says:

Theorem (M. Raja, 1999)

X is descriptive if and only if exists a function $\varphi: X \to \mathbb{R}$ positively homogeneous, w-lsc,

$$\|x\| \le \varphi(x) \le (1+\varepsilon)\|\cdot\|$$

such that the weak and the strong topologies coincide on the "sphere" $\{x \in X | \varphi(x) = 1\}.$

It is possible to construct a norm-continuous function φ ?

The main result

In this result we work with topologies generated by particular subset of the dual space (which generate the same norm). As an example we can take $\mathscr{C}(K)$ and $\mathscr{C}_p(K)$,

Theorem (Kadec quasi-renorming)

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* , the following conditions are equivalent:

- **1** X is $\sigma(X, Z)$ -descriptive.
- 2 There is an equivalent $\sigma(X, Z)$ -lsc and $\sigma(X, Z)$ -Kadec quasinorm $q(\cdot)$.
- The norm topology admits a basis $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ such that every one of the families \mathcal{B}_n is $\sigma(X, Z)$ -isolated and norm discrete.

Remeber that a quasi-norm $q: X \to \mathbb{R}^+$ has the followings properties:

- x = 0 if q(x) = 0;
- $q(\alpha x) = |\alpha|q(x);$
- $q(x+y) \leq C(q(x)+q(y)).$

The main result

In this result we work with topologies generated by particular subset of the dual space (which generate the same norm). As an example we can take $\mathscr{C}(K)$ and $\mathscr{C}_p(K)$,

Theorem (Kadec quasi-renorming)

Let $(X, \|\cdot\|)$ be a normed space with a norming subspace Z in X^* , the following conditions are equivalent:

- X is $\sigma(X, Z)$ -descriptive.
- 2 There is an equivalent $\sigma(X, Z)$ -lsc and $\sigma(X, Z)$ -Kadec quasinorm $q(\cdot)$.
- The norm topology admits a basis $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ such that every one of the families \mathcal{B}_n is $\sigma(X, Z)$ -isolated and norm discrete.

Remeber that a quasi-norm $q:X o \mathbb{R}^+$ has the followings properties:

•
$$x = 0$$
 if $q(x) = 0$;
• $q(\alpha x) = |\alpha|q(x)$;
• $q(x + y) \le C(q(x) + q(y))$.

p-convexity

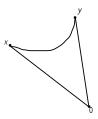
We need two lemmata in order to prove our theorem.

Definition

Let $p \in (0,1)$. A set A of a vector space is called p-convex if for every $x, y \in A$ and $\tau, \mu \in [0,1]$ such that $\tau^p + \mu^p = 1$

 $\tau x + \mu y \in A.$

A real function $\phi: X \to \mathbb{R}$ is said to be p-convex if its epigraph is p-convex.



p-convexity

We need two lemmata in order to prove our theorem.

Definition

Let $p \in (0,1)$. A set A of a vector space is called p-convex if for every $x, y \in A$ and $\tau, \mu \in [0,1]$ such that $\tau^p + \mu^p = 1$

 $\tau x + \mu y \in A.$

A real function $\phi : X \to \mathbb{R}$ is said to be p-convex if its epigraph is p-convex.

Proposition (*p*-distance)

Let X be a normed space and Z a norming subspace in the dual space X^* . If C is a w^* -compact and p-convex subset of X^{**} , 0 , and we define

$$\varphi(x) := \inf \{ \|x - c^{**}\|_Z \, | \, c^{**} \in C \}$$

Then φ is p-convex, $\sigma(X, Z)$ -lower semicontinuous and 1-Lipschitz map from X to \mathbb{R}^+ .

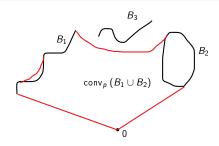
p-isolated family

Definition

Let $(X, \|\cdot\|)$ be a normed space, Z be a norming subspace in X^* and $0 . A family <math>\mathcal{B} := \{B_i \mid i \in I\}$ of subsets in the normed space X is said to be p-isolated for the $\sigma(X, Z)$ -topology when

$$B_i \cap \overline{\operatorname{conv}_p \{B_j \,|\, j \neq i, \ j \in I\}}^{\sigma(X,Z)} = \emptyset$$

for every $i \in I$.

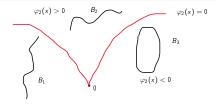


Lemma

Let $(X, \|\cdot\|)$ be a normed space and Z be a norming subspace in X^{*}. Let $\mathcal{B} := \{B_i | i \in I\}$ be an uniformly bounded family of subsets of X. The following are equivalent:

- The family \mathcal{B} is p-isolated for the $\sigma(X, Z)$ -topology;
- **2** There is a family $\mathcal{L} := \{\varphi_i : X \to \mathbb{R}^+ | i \in I\}$ of p-convex and $\sigma(X, Z)$ -lsc functions such that

$$\{x \in X \mid \varphi_i(x) > 0\} \cap \bigcup_{j \in I} B_j = B_i \quad \forall i \in I.$$

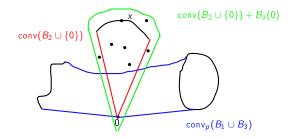


Lemma

Let $(X, \|\cdot\|)$ be a normed space and Z be a norming subspace in X^* . Let $\mathcal{B} := \{B_i \mid i \in I\}$ be an uniformly bounded and p-isolated family of subsets of X for the $\sigma(X, Z)$ topology and some $p \in (0, 1]$. Then there is an equivalent quasinorm $q_{\mathcal{B}}(\cdot)$ on X such that: for all net $\{x_{\alpha} \mid \alpha \in A\}$ and x in X with $x \in B_{i_0}$ for $i_0 \in I$, the conditions $\sigma(X, Z)$ -lim_{α} $x_{\alpha} = x$ and lim_{α} $q_{\mathcal{B}}(x_{\alpha}) = q_{\mathcal{B}}(x)$ imply that

• exists α_0 such that $x_\alpha \notin \overline{\operatorname{conv}_p \{B_i \mid i \neq i_0, i \in I\}}^{\sigma(X,Z)}$ for $\alpha \ge \alpha_0$; • for every $\delta > 0$ there is $\alpha_\delta \in A$ such that

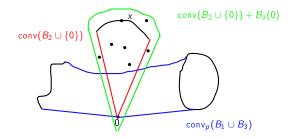
$$x_{\alpha} \in \overline{(\operatorname{conv}(B_{i_0} \cup \{0\}) + \mathcal{B}(0, \delta))}^{\sigma(X, Z)} \quad \forall \alpha \succ \alpha_{\delta}.$$



- Put φ_i the *p*-distance from $\overline{\operatorname{conv}_p \{B_j | j \neq i, j \in I\}}^{\sigma(X^{**}, X^*)}$;
- p_i^{δ} the Minkowski functional of $\overline{\operatorname{conv}(B_i \cup \{0\}) + \mathcal{B}_{\delta}(0)}^{\sigma(X,Z)}$;

•
$$\psi_i(x) = \|x\|_Z + \sum_{n=1}^{+\infty} \frac{1}{n2^n} p_i^{\frac{1}{n}}(x);$$

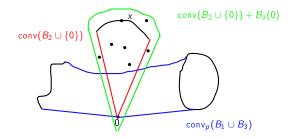
- Apply the Deville lemma with the families $\{\varphi_i\}$ and $\{\psi_i\}$;
- The Minkowski functional of $\{x \in X | \theta(x) + \theta(-x) \le 1\}$ is the quasi-norm that we were seeking.



• Put φ_i the *p*-distance from $\overline{\operatorname{conv}_p \{B_j | j \neq i, j \in I\}}^{\sigma(X^{**}, X^*)}$;

• p_i^{δ} the Minkowski functional of $\overline{\operatorname{conv}(B_i \cup \{0\}) + \mathcal{B}_{\delta}(0)}^{\sigma(X,Z)}$;

- $\psi_i(x) = \|x\|_Z + \sum_{n=1}^{+\infty} \frac{1}{n2^n} \rho_i^{\frac{1}{n}}(x);$
- Apply the Deville lemma with the families $\{\varphi_i\}$ and $\{\psi_i\}$;
- The Minkowski functional of $\{x \in X | \theta(x) + \theta(-x) \le 1\}$ is the quasi-norm that we were seeking.

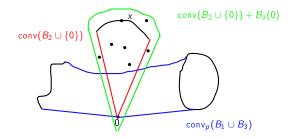


• Put φ_i the *p*-distance from $\overline{\operatorname{conv}_p \{B_j | j \neq i, j \in I\}}^{\sigma(X^{**}, X^*)}$;

• p_i^{δ} the Minkowski functional of $\overline{\operatorname{conv}(B_i \cup \{0\}) + \mathcal{B}_{\delta}(0)}^{\sigma(X,Z)}$;

•
$$\psi_i(x) = \|x\|_Z + \sum_{n=1}^{+\infty} \frac{1}{n2^n} p_i^{\frac{1}{n}}(x);$$

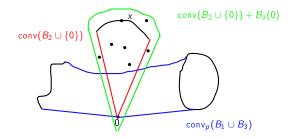
- Apply the Deville lemma with the families $\{\varphi_i\}$ and $\{\psi_i\}$;
- The Minkowski functional of $\{x \in X | \theta(x) + \theta(-x) \le 1\}$ is the quasi-norm that we were seeking.



- Put φ_i the *p*-distance from $\overline{\operatorname{conv}_p \{B_j | j \neq i, j \in I\}}^{\sigma(X^{**}, X^*)}$;
- p_i^{δ} the Minkowski functional of $\overline{\operatorname{conv}(B_i \cup \{0\}) + \mathcal{B}_{\delta}(0)}^{\sigma(X,Z)}$;

•
$$\psi_i(x) = \|x\|_Z + \sum_{n=1}^{+\infty} \frac{1}{n2^n} p_i^{\frac{1}{n}}(x);$$

- Apply the Deville lemma with the families $\{\varphi_i\}$ and $\{\psi_i\}$;
- The Minkowski functional of $\{x \in X | \theta(x) + \theta(-x) \le 1\}$ is the quasi-norm that we were seeking.



- Put φ_i the *p*-distance from $\overline{\operatorname{conv}_p \{B_j | j \neq i, j \in I\}}^{\sigma(X^{**}, X^*)}$;
- p_i^{δ} the Minkowski functional of $\overline{\operatorname{conv}(B_i \cup \{0\}) + \mathcal{B}_{\delta}(0)}^{\sigma(X,Z)}$;

•
$$\psi_i(x) = \|x\|_Z + \sum_{n=1}^{+\infty} \frac{1}{n2^n} p_i^{\frac{1}{n}}(x);$$

- Apply the Deville lemma with the families $\{\varphi_i\}$ and $\{\psi_i\}$;
- The Minkowski functional of $\{x \in X | \theta(x) + \theta(-x) \le 1\}$ is the quasi-norm that we were seeking.

It is important to know that modifying the proof, we can fix $\varepsilon \in (0,1)$ such that the quasi-norm $q(\cdot)$ verify

$$q(x+y) \leq rac{1+arepsilon}{1-arepsilon}(q(x)+q(y))$$

and

$$(1-\varepsilon)\|x\|_Z \le q(x) \le (1+\varepsilon)\|x\|_Z$$

Lemma

Let $(X, \|\cdot\|)$ be a normed space, Z be a norming subspace in X^* and $q_n \searrow 0$ with in $(q_n) \subseteq (0, 1]$. Let \mathcal{B} an isolated family of sets, for the $\sigma(X, Z)$ topology. Then there is a decomposition of every $B \in \mathcal{B}$ as

$$B = \bigcup_{n=1}^{+\infty} B_r$$

with $\{B_n | B \in B\}$ a $\sigma(X, Z)$ - q_m -isolated for m big enough and every $n \in \mathbb{N}$.

Theorem

In a normed space $(X, \|\cdot\|)$ with a norming subspace Z in X^* we have an equivalent $\sigma(X, Z)$ -lower semicontinuous and $\sigma(X, Z)$ -Kadec quasinorm if and only if there are isolated families for the $\sigma(X, Z)$ topology

$$\{\mathcal{B}_n \mid n=1,2,\ldots\}$$

in the unit sphere S_X such that for every x in S_X and every $\varepsilon > 0$ there is some positive integer n and a set $B \in \mathcal{B}_n$ with the property that $x \in B$ and that $\|\cdot\|$ -diam $(B) < \varepsilon$.

• Fix a sequence $q_n \searrow 0$ in (0, 1];

- Apply the decomposition lemma to the sets of the families \mathcal{B}_n ;
- We obtain families \mathcal{B}_n^m that are q_{s_m} -isolated;
- Let's renumber the sequence and assume that the families B_n are already p_n-isolated.

- Fix a sequence $q_n \searrow 0$ in (0, 1];
- Apply the decomposition lemma to the sets of the families \mathcal{B}_n ;
- We obtain families \mathcal{B}_n^m that are q_{s_m} -isolated;
- Let's renumber the sequence and assume that the families B_n are already p_n-isolated.

- Fix a sequence $q_n \searrow 0$ in (0, 1];
- Apply the decomposition lemma to the sets of the families \mathcal{B}_n ;
- We obtain families \mathcal{B}_n^m that are q_{s_m} -isolated;
- Let's renumber the sequence and assume that the families \mathcal{B}_n are already p_n -isolated.

- Fix a sequence $q_n \searrow 0$ in (0, 1];
- Apply the decomposition lemma to the sets of the families \mathcal{B}_n ;
- We obtain families \mathcal{B}_n^m that are q_{s_m} -isolated;
- Let's renumber the sequence and assume that the families \mathcal{B}_n are already p_n -isolated.

- For every family \mathcal{B}_n we apply the connection lemma and obtain an equivalent quasi-norm $Q_{\mathcal{B}_n}(\cdot)$;
- Consider $Q(x) := \sum_{n=1}^{+\infty} c_n Q_{\mathcal{B}_n}(x);$
- It is possible to chose (c_n) accordingly for the convergence of the series, since we can assume the inequality

$$(1-\delta)\|x\|_Z \le Q_{\mathcal{B}_n}(x) \le (1+\delta)\|x\|_Z$$

for the same fixes $\delta > 0$.

- For every family \mathcal{B}_n we apply the connection lemma and obtain an equivalent quasi-norm $Q_{\mathcal{B}_n}(\cdot)$;
- Consider $Q(x) := \sum_{n=1}^{+\infty} c_n Q_{\mathcal{B}_n}(x);$
- It is possible to chose (c_n) accordingly for the convergence of the series, since we can assume the inequality

$$(1-\delta)\|x\|_Z \le Q_{\mathcal{B}_n}(x) \le (1+\delta)\|x\|_Z$$

for the same fixes $\delta >$ 0.

• For every family \mathcal{B}_n we apply the connection lemma and obtain an equivalent quasi-norm $Q_{\mathcal{B}_n}(\cdot)$;

• Consider
$$Q(x) := \sum_{n=1}^{+\infty} c_n Q_{\mathcal{B}_n}(x);$$

• It is possible to chose (*c_n*) accordingly for the convergence of the series, since we can assume the inequality

$$(1-\delta) \|x\|_Z \leq Q_{\mathcal{B}_n}(x) \leq (1+\delta) \|x\|_Z$$

for the same fixes $\delta > 0$.

- Let's prove the Kadec property;
- Take a net $\{x_{\alpha} \mid \alpha \in (A, \succ)\}$ and x with $||x||_{Z} = 1$, $\lim_{\alpha} Qx_{\alpha} = Qx$ and (x_{α}) being $\sigma(X, Z)$ -convergent to x;
- By a standard lower semicontinuous argument we have $\lim_{\alpha} Q_{\mathcal{B}_q}(x_{\alpha}) = Q_{\mathcal{B}_q}(x) \text{ for every } q \in \mathbb{N};$
- Fix $\varepsilon > 0$ and consider $q \in \mathbb{N}$ such that for some $B \in \mathcal{B}_q$ we have $x \in B$ and $\|\cdot\|_Z$ -diam $(B) < \frac{\varepsilon}{2}$;
- ullet Use the connection lemma to obtain $lpha_{rac{c}{2}}$ such that

$$x_{\alpha} \in \overline{\operatorname{conv}(B \cup \{0\}) + \mathcal{B}(0, \varepsilon/2)}^{\sigma(X,Z)}$$

- Let's prove the Kadec property;
- Take a net $\{x_{\alpha} \mid \alpha \in (A, \succ)\}$ and x with $||x||_{Z} = 1$, $\lim_{\alpha} Qx_{\alpha} = Qx$ and (x_{α}) being $\sigma(X, Z)$ -convergent to x;
- By a standard lower semicontinuous argument we have $\lim_{\alpha} Q_{\mathcal{B}_q}(x_{\alpha}) = Q_{\mathcal{B}_q}(x)$ for every $q \in \mathbb{N}$;
- Fix $\varepsilon > 0$ and consider $q \in \mathbb{N}$ such that for some $B \in \mathcal{B}_q$ we have $x \in B$ and $\|\cdot\|_Z$ -diam $(B) < \frac{\varepsilon}{2}$;
- ullet Use the connection lemma to obtain $lpha_{rac{c}{2}}$ such that

$$x_{lpha} \in \overline{\operatorname{conv}(B \cup \{0\}) + \mathcal{B}(0, \varepsilon/2)}^{\sigma(X,Z)}$$

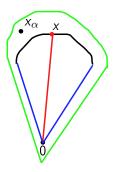
- Let's prove the Kadec property;
- Take a net $\{x_{\alpha} \mid \alpha \in (A, \succ)\}$ and x with $||x||_{Z} = 1$, $\lim_{\alpha} Qx_{\alpha} = Qx$ and (x_{α}) being $\sigma(X, Z)$ -convergent to x;
- By a standard lower semicontinuous argument we have $\lim_{\alpha} Q_{\mathcal{B}_q}(x_{\alpha}) = Q_{\mathcal{B}_q}(x)$ for every $q \in \mathbb{N}$;
- Fix $\varepsilon > 0$ and consider $q \in \mathbb{N}$ such that for some $B \in \mathcal{B}_q$ we have $x \in B$ and $\|\cdot\|_Z$ -diam $(B) < \frac{\varepsilon}{2}$;
- Use the connection lemma to obtain $lpha_{rac{c}{2}}$ such that

$$x_{\alpha} \in \overline{\operatorname{conv}(B \cup \{0\}) + \mathcal{B}(0, \varepsilon/2)}^{\sigma(X, Z)}$$

- Let's prove the Kadec property;
- Take a net $\{x_{\alpha} \mid \alpha \in (A, \succ)\}$ and x with $||x||_{Z} = 1$, $\lim_{\alpha} Qx_{\alpha} = Qx$ and (x_{α}) being $\sigma(X, Z)$ -convergent to x;
- By a standard lower semicontinuous argument we have $\lim_{\alpha} Q_{\mathcal{B}_q}(x_{\alpha}) = Q_{\mathcal{B}_q}(x)$ for every $q \in \mathbb{N}$;
- Fix $\varepsilon > 0$ and consider $q \in \mathbb{N}$ such that for some $B \in \mathcal{B}_q$ we have $x \in B$ and $\|\cdot\|_Z$ -diam $(B) < \frac{\varepsilon}{2}$;
- Use the connection lemma to obtain $lpha_{rac{arepsilon}{2}}$ such that

$$x_{\alpha} \in \overline{\operatorname{conv}(B \cup \{0\}) + \mathcal{B}(0, \varepsilon/2)}^{\sigma(X,Z)}$$

So we are in this condition, where everything has small diameter



- So we have that $\|\cdot\|_{Z^{-}} \operatorname{dist}(x_{\alpha}, I_{x}) \leq \varepsilon$ for $\alpha \succ \alpha_{\frac{\varepsilon}{2}}$ where I_{x} is the segment joining x with the origin;
- So there are numbers $r_{lpha,arepsilon}\in [0,1]$ such that

$$\left\|x_{\alpha}-r_{(\alpha,\varepsilon)}x\right\|\leq\varepsilon$$

- Consider the direct set $D = \{(\alpha, \varepsilon) \in A \times (0, 1] | \alpha \succ \gamma_{\varepsilon} \}.$
- By compactness, extract a converging subnet from $\{r_{\alpha,\varepsilon}\}_{(\alpha,\varepsilon)\in D}$ then we have $\sigma: B \to D$ and $r = \lim_{\beta \in B} r_{\sigma(\beta)}$.
- Let $\overline{\sigma}$ the composition of σ with the projection onto A and we have

$$\|\cdot\|_{Z^{-}}\lim_{\beta\in B}x_{\overline{\sigma}(\beta)}=rx.$$

- So we have that $\|\cdot\|_{Z^{-}} \operatorname{dist}(x_{\alpha}, I_{x}) \leq \varepsilon$ for $\alpha \succ \alpha_{\frac{\varepsilon}{2}}$ where I_{x} is the segment joining x with the origin;
- So there are numbers $\mathit{r}_{lpha,arepsilon}\in [0,1]$ such that

$$\left\|x_{\alpha}-r_{(\alpha,\varepsilon)}x\right\|\leq\varepsilon$$

- Consider the direct set $D = \{(\alpha, \varepsilon) \in A \times (0, 1] | \alpha \succ \gamma_{\varepsilon} \}.$
- By compactness, extract a converging subnet from $\{r_{\alpha,\varepsilon}\}_{(\alpha,\varepsilon)\in D}$ then we have $\sigma: B \to D$ and $r = \lim_{\beta \in B} r_{\sigma(\beta)}$.
- Let $\overline{\sigma}$ the composition of σ with the projection onto A and we have

$$\|\cdot\|_{Z^{-}}\lim_{\beta\in B}x_{\overline{\sigma}(\beta)}=rx.$$

- So we have that $\|\cdot\|_{Z^{-}} \operatorname{dist}(x_{\alpha}, I_{x}) \leq \varepsilon$ for $\alpha \succ \alpha_{\frac{\varepsilon}{2}}$ where I_{x} is the segment joining x with the origin;
- So there are numbers $\mathit{r}_{lpha,arepsilon}\in [0,1]$ such that

$$\left\|x_{\alpha}-r_{(\alpha,\varepsilon)}x\right\|\leq\varepsilon$$

- Consider the direct set $D = \{(\alpha, \varepsilon) \in A \times (0, 1] | \alpha \succ \gamma_{\varepsilon} \}.$
- By compactness, extract a converging subnet from {r_{α,ε}}_{(α,ε)∈D} then we have σ : B → D and r = lim_{β∈B} r_{σ(β)}.
- Let $\overline{\sigma}$ the composition of σ with the projection onto A and we have

$$\|\cdot\|_{Z^{-}}\lim_{\beta\in B}x_{\overline{\sigma}(\beta)}=rx.$$

- So we have that $\|\cdot\|_{Z^{-}} \operatorname{dist}(x_{\alpha}, I_{x}) \leq \varepsilon$ for $\alpha \succ \alpha_{\frac{\varepsilon}{2}}$ where I_{x} is the segment joining x with the origin;
- So there are numbers $\mathit{r}_{lpha,arepsilon}\in [0,1]$ such that

$$\left\|x_{\alpha}-r_{(\alpha,\varepsilon)}x\right\|\leq\varepsilon$$

- Consider the direct set $D = \{(\alpha, \varepsilon) \in A \times (0, 1] | \alpha \succ \gamma_{\varepsilon} \}.$
- By compactness, extract a converging subnet from {r_{α,ε}}_{(α,ε)∈D} then we have σ : B → D and r = lim_{β∈B} r_{σ(β)}.
- Let $\overline{\sigma}$ the composition of σ with the projection onto A and we have

$$\|\cdot\|_{Z^{-}}\lim_{\beta\in B} x_{\overline{\sigma}(\beta)} = rx.$$

- So we have that $\|\cdot\|_{Z^{-}} \operatorname{dist}(x_{\alpha}, I_{x}) \leq \varepsilon$ for $\alpha \succ \alpha_{\frac{\varepsilon}{2}}$ where I_{x} is the segment joining x with the origin;
- So there are numbers $\mathit{r}_{lpha,arepsilon}\in [0,1]$ such that

$$\left\|x_{\alpha}-r_{(\alpha,\varepsilon)}x\right\|\leq\varepsilon$$

- Consider the direct set $D = \{(\alpha, \varepsilon) \in A \times (0, 1] | \alpha \succ \gamma_{\varepsilon} \}.$
- By compactness, extract a converging subnet from $\{r_{\alpha,\varepsilon}\}_{(\alpha,\varepsilon)\in D}$ then we have $\sigma: B \to D$ and $r = \lim_{\beta \in B} r_{\sigma(\beta)}$.
- Let $\overline{\sigma}$ the composition of σ with the projection onto A and we have

$$\|\cdot\|_{Z^{-}}\lim_{\beta\in B}x_{\overline{\sigma}(\beta)}=rx.$$

- The hypothesis $\lim_{\alpha \in A} Q(x_{\alpha}) = Q(x)$ tell us that $Q(rx) = Q(x) \neq 0$ and so r = 1.
- The same proof is valid for every subnets of the given net, and this end the proof.

Furthermore we obtain

$$Q(x+y) \leq rac{1+\delta}{1-\delta}(Q(x)+Q(y)).$$

Theorem

In a normed space $(X, \|\cdot\|)$ with a norming subspace Z in X^* , if there are isolated families for the $\sigma(X, Z)$ topology

$$\{\mathcal{B}_n \mid n=1,2,\ldots\}$$

in the unit sphere S_X such that for every x in S_X and every $\varepsilon > 0$ there is some positive integer n and a set $B \in \mathcal{B}_n$ with the property that $x \in B$ and that $\|\cdot\|$ -diam $(B) < \varepsilon$, then there exists a LUR an Kadec F-norm.

Remember that an F-norm is a function that satisfies the followings:

$$F(x) = 0 \Leftrightarrow x = 0;$$

$$F(\lambda x) \leq F(x) \text{ if } |\lambda| \leq 1;$$

$$F(x + y) \leq F(x) + F(y);$$

$$F(\lambda x_n) \to 0 \text{ if } F(x_n) \to 0;$$

$$F(\lambda_n x) \to 0 \text{ if } \lambda_n \to 0.$$

This type of function determine the uniform structure of a topological metrizable vector space. The LUR condition is a sort of weak parallelogram law which state that $x_n \rightarrow x$ in the strong topology when

$$2F^{2}(x) + 2F^{2}(x_{n}) - F^{2}(x + x_{n}) \rightarrow 0.$$

Thanks you