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Introduction

A classical definition in Banach spaces theory is the following:

Definition (Kadec)

A normed space (X, ||-||) is called Kadec if the weak and the norm
topologies coincide on Sx, i.e. Id : (Sx,w) — (X, ||||) is continuous.

@ The natural norms of ¢,(I") for every set I' and 1 < p < +o0 are
Kadec norms.

@ /s does not admits an equivalent Kadec renorming (M. Talagrand,
1977).

@ All separable Banach spaces admits an equivalent Kadec renorming
(M. I. Kadec, 1958).



Introduction

The studies in this area have brought to two definitions: let (X, ||-]|) a
Banach space

Definition (SLD (Jayne, Namioka and Rogers, 1992))

If for every € > 0 we can write X = |, cry Xn,e such that for all n € N and
every x € X, . exists a w-open set V such that ||-||-diam(V N X,.) < e.
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Definition (Descriptive (R. W. Hansell, 1989))

If the norm topology has a network N' = |J;2; N, where every one of the
subfamilies N,, is a w-isolated family.

It is known that Kadec=-SLD<«Descriptive, but there are no known
examples of a SLD spaces without an equivalent Kadec renorming.

Definition (Discrete family)

For every x € X exists Uy such

that at most one element of A

has non-empty intersection with
U
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Definition (Isolated family)

For every x € | Jac 4 A exists Uy
such that at most one element of
A has non-empty intersection
with Uy.
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Introduction

An interresting result of Raja says:

Theorem (M. Raja, 1999)

X is descriptive if and only if exists a function ¢ : X — R positively
homogeneous, w-Isc,

IXI < () < (L + )l

such that the weak and the strong topologies coincide on the “sphere”
{x € X|p(x) = 1}.

It is possible to construct a norm-continuous function ¢?




The main result

In this result we work with topologies generated by particular subset of the
dual space (which generate the same norm). As an example we can take

€ (K) and €p(K),

Theorem (Kadec quasi-renorming)

Let (X, ||-||) be a normed space with a norming subspace Z in X*, the
following conditions are equivalent:

Q X is o(X, Z)-descriptive.

Q There is an equivalent o (X, Z)-Isc and o(X, Z)-Kadec quasinorm q(-).

© The norm topology admits a basis B = \J,-, By such that every one
of the families B, is o(X, Z)-isolated and norm discrete.




The main result

In this result we work with topologies generated by particular subset of the
dual space (which generate the same norm). As an example we can take

€ (K) and €p(K),

Theorem (Kadec quasi-renorming)

Let (X, ||-||) be a normed space with a norming subspace Z in X*, the
following conditions are equivalent:

Q X is o(X, Z)-descriptive.

Q There is an equivalent o (X, Z)-Isc and o(X, Z)-Kadec quasinorm q(-).

© The norm topology admits a basis B = \J,-, By such that every one
of the families B, is o(X, Z)-isolated and norm discrete.

Remeber that a quasi-norm g : X — R™ has the followings properties:
e x=0if g(x) =0;

o glax) = lalg(x);
® g(x+y) < Clq(x) +q(y))



p-convexity

We need two lemmata in order to prove our theorem.

Definition

Let p € (0,1). A set A of a vector space is called p-convex if for every
x,y € A and 7, € [0,1] such that 7P + P =1

TX + py € A.




p-convexity

We need two lemmata in order to prove our theorem.

Definition

Let p € (0,1). A set A of a vector space is called p-convex if for every
x,y € A and 7, € [0,1] such that 7P + P =1

TX + py € A.

A real function ¢ : X — R is said to be p-convex if its epigraph is p-convex.
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A usefull example

Proposition (p-distance)

Let X be a normed space and Z a norming subspace in the dual space X*.
If C is a w*-compact and p-convex subset of X**, 0 < p < 1, and we define

o(x) = inf {flx — ¢l | ™ € €}

Then ¢ is p-convex, o(X, Z)-lower semicontinuous and I1-Lipschitz map
from X to RT.




p-isolated family

Definition

Let (X,||:||]) be a normed space, Z be a norming subspace in X* and
0<p<1. Afamily B:={Bj|i € I} of subsets in the normed space X is
said to be p-isolated for the o (X, Z)-topology when

BiNcon, (BjJ 77 j I} ) =0

for every i € I.

B,
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Interplay lemma

Lemma

Let (X,||:||]) be a normed space and Z be a norming subspace in X*. Let

B :={Bj|i € 1} be an uniformly bounded family of subsets of X. The
following are equivalent:

© The family B is p-isolated for the o(X, Z)-topology;

Q Thereis a family L := {p; : X — R* |i € I} of p-convex and
o(X, Z)-Isc functions such that

{xeX|pi(x) >0}n|JB=B Viel
Jel

By @2(x) <0



Connection lemma

Lemma

Let (X,||:||]) be a normed space and Z be a norming subspace in X*. Let
B :={Bj|i € I} be an uniformly bounded and p-isolated family of subsets
of X for the (X, Z) topology and some p € (0, 1]. Then there is an
equivalent quasinorm qg(-) on X such that: for all net {x, |« € A} and x
in X with x € Bj, for iy € I, the conditions o (X, Z)-limy xq = x and

lima, g8(xa) = qB(x) imply that

. — X,z
Q exists a such that x, & conv, {Bj|i # iy, i € I}J( ) for a > ag;
Q for every § > 0 there is a5 € A such that

o(x.2) Ya = ag.

Xo € (conv (Bj, U{0}) + B(0,9))




conv(B, U {0})

conv,(B1 U Bs)

. - — X, X
@ Put ¢; the p-distance from conv, {Bj|j # i, j € I}J( ),

)



conv(B, U {0})

conv,(B1 U Bs)

. . . X**,X*
@ Put ¢; the p-distance from conv, {Bj|j # i, j € I}J( );

o(X,2)

o p? the Minkowski functional of conv (B; U {0}) + Bs(0)



conv(B, U {0})

conv,(B1 U Bs)

. - - - X**,X*
Put ¢; the p-distance from conv, {B;j|j # i, j € I}J( );

p? the Minkowski functional of conv (B; U {0}) + B5(0)

i(x) = lIxllz + 3205 nénP, (x):

o(X,Z).
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X

conv(B, U {0}) /\

conv,(B1 U Bs)

H " — o(X** X*
Put ¢; the p-distance from conv, {Bj|j # i, j € I} ( );

p? the Minkowski functional of conv (B; U {0}) + B5(0)

0i(x) = Ixll + 555 Faep ()
Apply the Deville lemma with the families {¢;} and {¢;};

o(X,Z).
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X

conv(B, U {0}) /‘\

conv,(B1 U Bs)

1 - — o(X** X*
Put ¢; the p-distance from conv, {Bj|j # i, j € I} ( );

p? the Minkowski functional of conv (B; U {0}) + Bg(O)J(X’Z);

0i(x) = Ixll + 555 Faep ()
Apply the Deville lemma with the families {¢;} and {¢;};

The Minkowski functional of {x € X|0(x) + 0(—x) < 1} is the
quasi-norm that we were seeking.




It is important to know that modifying the proof, we can fix £ € (0, 1) such
that the quasi-norm g(-) verify

G+ y) < T (alx) + ()

and
(L=e)llxllz < q(x) < (1 +e)lxl



Decomposition lemma

Lemma

Let (X, ||-||) be a normed space, Z be a norming subspace in X* and
gn \« 0 with in (gn) C (0,1]. Let B an isolated family of sets, for the
o(X,Z) topology. Then there is a decomposition of every B € B as

+oo
B=|]B,
n=1

with {B,| B € B} a o(X, Z)-gm-isolated for m big enough and every
neN.




The proof

Theorem

In a normed space (X, ||-||) with a norming subspace Z in X* we have an
equivalent o(X, Z)-lower semicontinuous and o(X, Z)-Kadec quasinorm if
and only if there are isolated families for the o(X, Z) topology

{Bn|n=1,2,...}

in the unit sphere Sx such that for every x in Sx and every € > Q there is
some positive integer n and a set B € B, with the property that x € B and
that ||-||-diam(B) < e.
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The use of the decomposition lemma

@ Fix a sequence g, \, 0 in (0, 1];
°
°
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The use of the decomposition lemma

@ Fix a sequence g, \, 0 in (0, 1];
@ Apply the decomposition lemma to the sets of the families 3,;
°
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@ We obtain families B that are gs, -isolated,;
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The use of the decomposition lemma

@ Fix a sequence g, \, 0 in (0, 1];
@ Apply the decomposition lemma to the sets of the families 3,;
@ We obtain families B that are gs, -isolated,;

@ Let's renumber the sequence and assume that the families 3, are
already pp-isolated.



The use of the connection lemma

@ For every family B, we apply the connection lemma and obtain an
equivalent quasi-norm Qg, (-);



The use of the connection lemma

@ For every family B, we apply the connection lemma and obtain an
equivalent quasi-norm Qg, (-);

o Consider Q(x) := "% ¢, Qg,(x);
°



The use of the connection lemma

@ For every family B, we apply the connection lemma and obtain an
equivalent quasi—norm Qs,(+);

o Consider Q(x) := "% ¢, Qg,(x);

@ It is possible to chose (c,) accordingly for the convergence of the
series, since we can assume the inequality

(1=0)lxllz < @s,(x) < (1 +9)llxl 2

for the same fixes § > 0.



Another application of the connection lemma

@ Let's prove the Kadec property;

@ Take a net {x, | € (A,>)} and x with [[x]|, =1, limy Q@x, = Qx
and (x,) being o(X, Z)-convergent to x;



Another application of the connection lemma

Let's prove the Kadec property;

Take a net {x, | € (A,>)} and x with ||x|; =1, lim, Qx, = Qx
and (x,) being o(X, Z)-convergent to x;
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@ By a standard lower semicontinuous argument we have
limg Qs,(xa) = Qp,(x) for every g € N;



Another application of the connection lemma

Let's prove the Kadec property;

Take a net {x, | € (A,>)} and x with ||x|; =1, lim, Qx, = Qx
and (x,) being o(X, Z)-convergent to x;
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@ By a standard lower semicontinuous argument we have
limg Qs,(xa) = Qp,(x) for every g € N;

@ Fix € > 0 and consider g € N such that for some B € Bg we have
x € B and ||-|| ;-diam(B) < 5;



Another application of the connection lemma

@ Let's prove the Kadec property;

@ Take a net {x, | € (A,>)} and x with [[x]|, =1, limy Q@x, = Qx
and (x,) being o(X, Z)-convergent to x;

@ By a standard lower semicontinuous argument we have
limg Qs,(xa) = Qp,(x) for every g € N;

@ Fix € > 0 and consider g € N such that for some B € Bg we have
x € B and ||-|| ;-diam(B) < 5;

@ Use the connection lemma to obtain s such that

Xa € conv(BU{0]) + B(0,2/2)" %%

whenever o > .



So we are in this condition, where everything has small diameter

X
o X



The construction of a converging subnet

@ So we have that ||-[| ;- dist(xq, Ix) < € for a > az where Iy is the
segment joining x with the origin;
°
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for every o > @.. Choose . > o and v, > @..



The construction of a converging subnet

@ So we have that ||-[| ;- dist(xq, Ix) < € for a > az where Iy is the
segment joining x with the origin;

@ So there are numbers r, . € [0, 1] such that
o = raeyx|| < €

for every o > @.. Choose . > o and . = @..
@ Consider the direct set D = {(«,¢) € A x (0,1]|a = 2}
°



The construction of a converging subnet

@ So we have that ||-[| ;- dist(xq, Ix) < € for a > az where Iy is the
segment joining x with the origin;

@ So there are numbers r, . € [0, 1] such that
o = raeyx|| < €

for every o > @.. Choose . > o and . = @..
o Consider the direct set D = {(a,e) € A x (0,1]]a =}

@ By compactness, extract a converging subnet from {r,, 5}
we have 0 : B — D and r = limgep ry(3)-

(a,c)eD then
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The construction of a converging subnet

@ So we have that ||-[| ;- dist(xq, Ix) < € for a > az where Iy is the
segment joining x with the origin;

@ So there are numbers r, . € [0, 1] such that
o = raeyx|| < €

for every o > @.. Choose . > o and . = @..
o Consider the direct set D = {(a,e) € A x (0,1]]a =}

@ By compactness, extract a converging subnet from {r,, 5} then

(a,e)eD
we have 0 : B — D and r = limgep ry(3)-

@ Let 7 the composition of o with the projection onto A and we have

II HZ' ||m Xz(3) = IX-



End of the proof

@ The hypothesis limyeca Q(xo) = Q(x) tell us that Q(rx) = Q(x) # 0
and so r = 1.

@ The same proof is valid for every subnets of the given net, and this
end the proof.

Furthermore we obtain

Qx +) < 19(Q0) + QU))



Last, but not least

Theorem

In a normed space (X, ||-||) with a norming subspace Z in X*, if there are
isolated families for the o(X, Z) topology

{Bn|n=1,2,...}

in the unit sphere Sx such that for every x in Sx and every € > Q there is
some positive integer n and a set B € BB, with the property that x € B and
that ||-||-diam(B) < ¢, then there exists a LUR an Kadec F-norm.
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Remember that an F-norm is a function that satisfies the followings:

F(x) =0 x=0;
F(Ax) < F(x) if [A| <1,
F(x+y) < F(x)+ F(y);
F(Axp) — 0 if F(xp) = 0;

F(Anx) = 0if Ay — 0.

This type of function determine the uniform structure of a topological
metrizable vector space. The LUR condition is a sort of weak parallelogram
law which state that x, — x in the strong topology when

2F%(x) 4+ 2F%(xy) — F?(x + x,) = 0.



Thanks you
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