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Let X be a topological space and A C X.

The concepts of the O-derivative (A) (or clp(A)) and the O-closed hull A
(or [A]p) are known in literature ([BeCa, CaKo, Vel]).

In the past years, a major goal concerning the mentioned concepts was to
provide upper bounds on the cardinalities of 6-closed hulls of sets, in
terms of cardinal functions of the space X. Recently, following this line of
research, we define a new topological cardinal function, the 6-bitightness
small number of a space X, btsy(X), and prove that in every topological

space X, \Ze\ is at most |A|Ptse(X),

Using this cardinal bound, we synthesize all earlier results on bounds on
the cardinality of 6-closed hulls.
Moreover, we provide applications to P-spaces and to the almost-Lindeldf

number.
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Notations and terminologies

Let X be a topological space and A C X.

o A Hausdorff (resp. Urysohn) space X is a space in which distinct
points can be separated by open (resp. closed) neighborhoods.

0 0(A) :={x € X:UNA# 0 whenever, x € U € 7(X)} is the
6-derivative of A ([Vel]). A= ({CCX:AC Cand C=60(C)}
is the O-closed hull of A ([BeCa]).

o x(X,x) is the minimal cardinality of a local base at x € X, and the
character x(X) of X is the maximum of Rg and sup,cx x(X, x)
([Juh]).

o xo(X, x) is the minimal cardinality of a family of closed
neighborhoods of x € X such that each closed neighborhood of x
contains one from this family, and the 6-character xy(X) of X is the
maximum of Rg and sup,cx xa(X, x) ([AlKo]).

o [AlKo] For Hausdorff spaces X, xg(X) < x(X).
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o [AlKo] It is easy to check that xg(X) = x(Xs) where Xs denote the
semiregularization of the space X (i.e. the space in which the base
consits of regular open sets).

o For a Urysohn space X, the 0-bitighness bty(X) is the minimal
cardinal s such that, for each non-0-closed A C X, there are
x € 0(A)\ A and sets A, € [A]=", a < K, such that
MNa<x 0(Aa) = {x} ([CaKo]).

o [CaKo] For Urysohn spaces X, bty(X) < xo(X).

@ In their recent work, Bonanzinga, Cammaroto and Matveev defined
the Urysohn number U(X) to be the minimal cardinal x such that,
for each set {x, : @ < k} C X, there are open neighborhoods U, of
Xa, @ < K, such that (", _,. Uy = 0 ([BoCaMa]). Thus, X is
Urysohn if and only if U(X) = 2. A space X is said finitely-Urysohn
if U(X) is finite.

This line of research is continued by Bonanzinga and Pansera in
[BoPal.
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Well-known results

In 1988, Bella and Cammaroto proved the following result:

Theorem 1 ([BeCal)

If X is Urysohn and A C X, then |Z9| < |A|X(X).

In 2000, Alas and Koc€inac improved the previous result showing:

Theorem 2 ([AlKo])

If X is Urysohn and A C X, then |A°| < |APe®).

Actually, in 1993, Cammaroto and Kocinac have already improved the
first result in this way:

Theorem 3 ([CaKo])

If X is Urysohn and A C X, then [A’| < |A|bt(X),
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In 2010, Bonanzinga, Cammaroto and Matveev extended the Theorem 1
from Urysohn spaces to finitely-Urysohn spaces:

Theorem 4 ([BoCaMal])

If X is finitely-Urysohn and A C X, then |Z9| < JAXX),

Analogously, in 2011, Bonanzinga and Pansera extended the Theorem 2
from Urysohn spaces to finitely-Urysohn spaces:

Theorem 5 ([BoPa])

If X is finitely-Urysohn and A C X, then [A°| < |A[xe(X).

Now, our goal was to find a similar result using the cardinal function
bty(X) or something like that.

Acually, using a variation of bty(X), we found a very interesting result
that hold in every topological space.
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The situation is summarized in the following diagram:

Viin-Ury X, [A'] < JAXX) —— v Ury X, [A'] < |AXX)

T

A% < |Ape) ——vUry X, [A'] < |Ape)

T

Vfin-Ury X,
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Finite 6-bitightness & 6-bitightness small number

Definition 1 (Cam-Cat-Pan-Tsa, 2012)

The finite O-bitightness of a space X, fbty(X), is the minimal cardinal
such that, for each non-f-closed A C X, there are sets A, € [A]=F,

a < K, such that (., 0(A) \ Ais finite and nonempty.

The invariant fbty(X) is defined for all finitely-Urysohn spaces.

Also, when bty(X) is defined so is fbty(X), and fbty(X) < bty(X).

We have the following result:

Proposition 1 (Cam-Cat-Pan-Tsa, 2012)

For each finitely-Urysohn space X, fbty(X) < xo(X).
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Definition 2 (Cam-Cat-Pan-Tsa, 2012)

The 0-bitightness small number of a space X, btsy(X), is the minimal
cardinal k such that, for each non-f-closed A C X that is not a singleton,
there are A, € [A]=", a < K, such that

() 0(As) \ A # 0 and

a<k

< |A".

(1 6(4)

a<k

The invariant btsy(X) is defined for all spaces.
Obviously, btsg(X) < fbty(X) whenever the latter is defined.

We have the following result:

Proposition 2 (Cam-Cat-Pan-Tsa, 2012)

For Urysohn space X, btsy(X) < fbtp(X) < btg(X) < xa(X) < x(X).
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Now, we obtained the following results:

Proposition 3 (Cam-Cat-Pan-Por, 2012)

If X is Urysohn, then fbty(X) < bty(X) < 2fbte(X)

Theorem 1 (Cam-Cat-Pan-Por, 2012)

If X is Urysohn and A C X, then |Z9| < |A|fta(X).

Theorem 2 (Cam-Cat-Pan-Tsa, 2012)

Let X be a space with A C X, then |Z9| < |A|btse(X).
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Now, the new situation is summarized in the following diagram:

Viin-Ury X, [A’] < |JANX) —— v Ury X, [A°] < |ApX)

0

Vhin-Ury X, [A°| < [AeX) —— v Ury X, [A'] < |Apo)

0

VUry X, A7 < |A[P0X)

Vspace X, |Z0| < APt (X) —— v Ury X, ’Z9| < |A|foto(X)
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Some examples

The following spaces are presented to show the existence of spaces where
bty(X) is not defined, fbty(X) = w, and btsy(X) > xp(X) (Example 1)
and where bty(X) and fbty(X) are defined with fbty(X) = bty(X) = w
(Example 2). Example 3 gives a negative answer to a question present in
[BoCaMa] and in [BoPa]. What remains open is the existence of a space
X where bty(X) and fbty(X) are defined and fbty(X) < bty(X).

All these examples are contained in [Cam-Cat-Pan-Por].
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Example 1 [A first countable, Hausdorff (not Urysohn) space X for which
bty(X) is not defined, fbty(X) = w, and btsy(X) > x9(X)]
Let Q = {r, : n € w} denote the space of rational numbers with the usual
topology and D = Q + /2 denote the dense subspace of irrational
numbers. Let A be nonempty set and X(A) = QU (D x A).
A set U C X(A) is defined to be open if
* p e UNQ implies there is € > 0 such that
(p—e,p+ M) U((p—ep+€)ND) x A) C U and
* (p,a) € UN (D x {a}) for some a € A implies there is € > 0 such
that ((p—e,p+¢)ND) x {a} C U.
Now, we have that:
o For |A| > 2, the space X(A) is Hausdorff, semiregular, and first
countable but not Urysohn.

o If |A| <w, U(X(N)) = |A| + 1. Otherwise, if |A| > w, U(X(N)) = w.

v
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o If |A| < w, btsy(X(N)) = w. On the other hand, if [A| > w,
btsp(X(N)) = logy(|A]). In particular, if |A] = 2€, then
btsp(X(N)) = ¢ > w = xp(X(N)).

o For [A| =2 (i.e. AN=1{0,1}), U(X) = 3 and the set Q is not
6-closed and #(Q) = X. In fact, the points {(v/2,0),(v/2,1)} can
not be separated by disjoint closed neighborhoods. Again, let
B = {r,: n € w} a sequence in Q that converges to v/2 and C C B
be an infinite subset. As §(C) = C U {(v/2,0),(v/2,1)}, bty(X) is
not defined. Moreover, it is easy to show that fbty(X) = w.

It is straightforward to show that if Y is the irrational slope
topological space (see Example 75 in [StSe]), then U(Y) = 3,
bty(Y) = w, and bty(Y) is not defined.

o For each n € N, let A, be a set with n elements and X, = X(A,).
The topological sum space Y = | |, X» is Hausdorff but not

n-Urysohn for any n € N even though U(Y) = w. However,
fbty(Y) = w and bty(Y) is not defined.
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Example 2 [CH - An Urysohn space X for which fbtg(X) = bty(X) = w]

This example is like Example 2.3 in [CaKo]. Let 7(R) be the usual
topology on R and let the underlying set of X be R with this finer

topology:
7(X) is generated by {U\ C: U € 7(R), C € [R]=“*}.

Now, we have C € [R]=“1 in the above definition whereas, in the example
in [CaKo], it is C € [R]=“. So, we need that ¢ > w; (i.e., ~CH). Anyway,
let's look at the example where k < ¢. That is, X is R with this finer
topology:

7(X) is generated by {U\ C: U € 7(R), C € [R]="}.

Now, we have that:
o X is Urysohn.
() fbtg(X) = btg(X) = w.
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Example 3 [A Hausdorff space X with U(X) = x(X) = w for which

[A°] > |AM) - U(X)]

In this example, we provide a Hausdorff space X such that U(X) = w and

|Z6| > |AXX) . U(X); however, we know that |Ze| < |APeX) when X is
Hausdorff and finitely-Urysohn. The future research goal is to identify those
spaces X for which U(X) is infinite and |Z9| < |A[X¢™) This research project is
simplified by using that U(X) = U(X;) for any space X and then applying the
equality |Zi| = |Z§<'| for AC X. So, to obtain that |Z9| < |APX*™X) is reduced
to verifying |Z9| < |A¢™) for a semiregular Hausdorff space X for which U(X)
is infinite. The question asked in both [BoCaMa, BoPa] is whether

I[A]o] < |AXe™) . U(X) is true for all Hausdorff spaces X, i.e., when U(X) is
infinite. A negative answer is presented here following Example 1.

Let A be a set such that |[A| > ¢ and X(A) be defined as in Example 1. As noted
in Example 1, X(A) is a first countable Hausdorff space with U(X) = w. As
0(Q) = X(N), |6(Q)| = |A] > ¢. However,

QXXM . U(X(A)) = w* - w = 2% = c. Thus, [@ | > |QXM) . U(X(A)).
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Applications to P-spaces

Bonanzinga-Cammaroto-Matveev ([BoCaMa]) and Bonanzinga-Pansera

([BoPa]) asked whether, in all Hausdorff spaces X, |Z9| < |AXe - U(X).
Here, we give an interesting partial answer.

Definition 3
The 0-P-point number of a space X is the minimal cardinal s such that some

x € X has closed neighborhoods V,,, « < &, with V,, not a neighborhood

of x.

a<k

As the 0-P-point number of any space is at leat Ng, the following theorem
generalizes the Bonanzinga-Pansera Theorem, and thus also the earlier three
theorems discussed in the introduction.

Theorem 3 (Cam-Cat-Pan-Tsa, 2012)

Let X be a space whose Urysohn number is smaller than its §-P-point number.
Then, for each A C X, [A’| < |A[ - U(X).
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Definition 4

A space X is a P-space if each countable intersection of neighborhoods is a
neighborhood. Thus, the 6-P-point number of a P-space is > N;.

Corollary 1 (Cam-Cat-Pan-Tsa, 2012)

Let X be a P-space with U(X) = No.
Then, for each A C X, |Z0| < |Alxe.
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Applications to the almost-Lindel6f number

Definition 5

The almost-Lindeléf number aL(A, X) of a set A C X is the minimal cardinal x
such that, for each open cover U of A, there is V € [U]<" such that

ACUyey V.

Now, we have this interesting result:

Theorem 4 (Cam-Cat-Pan-Tsa, 2012)
Let X be a Hausdorff space. For each A C X, |A| < 22L(AX)xo(X)btse(X)

The following corollary improves upon a result of Bonanzinga, Cammaroto and

Matveev [BoCaMa], asserting that for Hausdorff, finitely-Urysohn spaces X,
|X| S 23L(X,X)x(X).

Corollary 2 (Cam-Cat-Pan-Tsa, 2012)

Let X be a Hausdorff, finitely-Urysohn space. For each A C X,
Al < 22L(AX)xo(X) " |n particular, IX| < 9al(X,X)xo(X)
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Open problems

Question 1 (Cam-Cat-Pan-Por-Tsa, 2012)

An unsolved problem is to characterize those Hausdorff spaces X for
which bty(X) and fbty(X) are defined?

Question 2 (Cam-Cat-Pan-Por-Tsa, 2012)

Does there exist a Hausdorff (or Urysohn) space X for which bty(X) and
fbty(X) are defined and fbty(X) < bty(X)?
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Thank You and... Happy Birthday Prof. Kocinac...!!! :-) :-) :-)




	A. Catalioto, SPMC 2012

