On the cardinality of the θ -closed hull of sets

Andrei Catalioto (joint works with *F. Cammaroto*, *B.A. Pansera*, *J. Porter* and *B. Tsaban*)

> Department of Mathematics University of Messina (Italy) acatalioto@unime.it

 IVth Workshop on Coverings, Selections and Games in Topology On the occasion of Ljubiša D.R. Kočinac's 65th birthday June 25-30, 2012 - Caserta, ITALY

イロト 不得 トイヨト イヨト ヨー ろくぐ

Introduction

Let X be a topological space and $A \subseteq X$.

The concepts of the θ -derivative $\theta(A)$ (or $cl_{\theta}(A)$) and the θ -closed hull \overline{A}^{θ} (or $[A]_{\theta}$) are known in literature ([BeCa, CaKo, Vel]).

In the past years, a major goal concerning the mentioned concepts was to provide upper bounds on the cardinalities of θ -closed hulls of sets, in terms of cardinal functions of the space X. Recently, following this line of research, we define a new topological cardinal function, the θ -bitightness small number of a space X, $bts_{\theta}(X)$, and prove that in every topological space X, $|\overline{A}^{\theta}|$ is at most $|A|^{bts_{\theta}(X)}$.

Using this cardinal bound, we synthesize all earlier results on bounds on the cardinality of θ -closed hulls.

Moreover, we provide applications to P-spaces and to the almost-Lindelöf number.

Notations and terminologies

Let X be a topological space and $A \subseteq X$.

- A Hausdorff (resp. Urysohn) space X is a space in which distinct points can be separated by open (resp. closed) neighborhoods.
- $\theta(A) := \{x \in X : \overline{U} \cap A \neq \emptyset \text{ whenever}, x \in U \in \tau(X)\}$ is the θ -derivative of A ([Vel]). $\overline{A}^{\theta} := \bigcap \{C \subseteq X : A \subseteq C \text{ and } C = \theta(C)\}$ is the θ -closed hull of A ([BeCa]).
- χ(X, x) is the minimal cardinality of a local base at x ∈ X, and the
 character χ(X) of X is the maximum of ℵ₀ and sup_{x∈X} χ(X, x)
 ([Juh]).
- χ_θ(X, x) is the minimal cardinality of a family of closed neighborhoods of x ∈ X such that each closed neighborhood of x contains one from this family, and the θ-character χ_θ(X) of X is the maximum of ℵ₀ and sup_{x∈X} χ_θ(X, x) ([AlKo]).
- [AlKo] For Hausdorff spaces X, $\chi_{\theta}(X) \leq \chi(X)$.

- [AlKo] It is easy to check that $\chi_{\theta}(X) = \chi(X_s)$ where X_s denote the semiregularization of the space X (i.e. the space in which the base consits of regular open sets).
- For a Urysohn space X, the θ -bitighness $bt_{\theta}(X)$ is the minimal cardinal κ such that, for each non- θ -closed $A \subseteq X$, there are $x \in \theta(A) \setminus A$ and sets $A_{\alpha} \in [A]^{\leq \kappa}$, $\alpha < \kappa$, such that $\bigcap_{\alpha < \kappa} \theta(A_{\alpha}) = \{x\}$ ([CaKo]).
- [CaKo] For Urysohn spaces X, $bt_{ heta}(X) \leq \chi_{ heta}(X)$.
- In their recent work, Bonanzinga, Cammaroto and Matveev defined the Urysohn number U(X) to be the minimal cardinal κ such that, for each set $\{x_{\alpha} : \alpha < \kappa\} \subseteq X$, there are open neighborhoods U_{α} of $x_{\alpha}, \alpha < \kappa$, such that $\bigcap_{\alpha < \kappa} \overline{U}_{\alpha} = \emptyset$ ([BoCaMa]). Thus, X is Urysohn if and only if U(X) = 2. A space X is said finitely-Urysohn if U(X) is finite.
 - This line of research is continued by Bonanzinga and Pansera in [BoPa].

Well-known results

In 1988, Bella and Cammaroto proved the following result:

Theorem 1 ([BeCa])

If X is Urysohn and
$$A \subseteq X$$
, then $|\overline{A}^{\theta}| \leq |A|^{\chi(X)}$.

In 2000, Alas and Kočinac improved the previous result showing:

Theorem 2 ([AlKo])

If X is Urysohn and
$$A \subseteq X$$
, then $|\overline{A}^{ heta}| \leq |A|^{\chi_{ heta}(X)}$.

Actually, in 1993, Cammaroto and Kočinac have already improved the first result in this way:

Theorem 3 ([CaKo])

If X is Urysohn and
$$A \subseteq X$$
, then $|\overline{A}^{\theta}| \leq |A|^{bt_{\theta}(X)}$.

In 2010, Bonanzinga, Cammaroto and Matveev extended the *Theorem 1* from Urysohn spaces to finitely-Urysohn spaces:

Theorem 4 ([BoCaMa])

If X is finitely-Urysohn and
$$A\subseteq X$$
, then $|\overline{A}^{ heta}|\leq |A|^{\chi(X)}.$

Analogously, in 2011, Bonanzinga and Pansera extended the *Theorem 2* from Urysohn spaces to finitely-Urysohn spaces:

Theorem 5 ([BoPa])

If X is finitely-Urysohn and
$$A\subseteq X$$
, then $|\overline{A}^{ heta}|\leq |A|^{\chi_{ heta}(X)}$.

Now, our goal was to find a similar result using the cardinal function $bt_{\theta}(X)$ or something like that.

Acually, using a variation of $bt_{\theta}(X)$, we found a very interesting result that hold in every topological space.

The situation is summarized in the following diagram:

Finite θ -bitightness & θ -bitightness small number

Definition 1 (Cam-Cat-Pan-Tsa, 2012)

The finite θ -bitightness of a space X, $fbt_{\theta}(X)$, is the minimal cardinal κ such that, for each non- θ -closed $A \subseteq X$, there are sets $A_{\alpha} \in [A]^{\leq \kappa}$, $\alpha < \kappa$, such that $\bigcap_{\alpha < \kappa} \theta(A) \setminus A$ is finite and nonempty. The invariant $fbt_{\theta}(X)$ is defined for all finitely-Urysohn spaces. Also, when $bt_{\theta}(X)$ is defined so is $fbt_{\theta}(X)$, and $fbt_{\theta}(X) \leq bt_{\theta}(X)$.

ション ふゆ とう とう とう しょうく

We have the following result:

Proposition 1 (Cam-Cat-Pan-Tsa, 2012)

For each finitely-Urysohn space X, $fbt_{\theta}(X) \leq \chi_{\theta}(X)$.

Definition 2 (Cam-Cat-Pan-Tsa, 2012)

The θ -bitightness small number of a space X, $bts_{\theta}(X)$, is the minimal cardinal κ such that, for each non- θ -closed $A \subseteq X$ that is not a singleton, there are $A_{\alpha} \in [A]^{\leq \kappa}$, $\alpha < \kappa$, such that

$$igcap_{lpha<\kappa} heta(A_lpha)\setminus A
eq \emptyset ext{ and } \left|igcap_{lpha<\kappa} heta(A_lpha)
ight|\leq |A|^\kappa.$$

The invariant $bts_{\theta}(X)$ is defined for all spaces. Obviously, $bts_{\theta}(X) \leq fbt_{\theta}(X)$ whenever the latter is defined.

We have the following result:

Proposition 2 (Cam-Cat-Pan-Tsa, 2012)

For Urysohn space X, $bts_{\theta}(X) \leq fbt_{\theta}(X) \leq bt_{\theta}(X) \leq \chi_{\theta}(X) \leq \chi(X)$.

Now, we obtained the following results:

Proposition 3 (Cam-Cat-Pan-Por, 2012)

If X is Urysohn, then $fbt_{\theta}(X) \leq bt_{\theta}(X) \leq 2^{fbt_{\theta}(X)}$.

Theorem 1 (Cam-Cat-Pan-Por, 2012)

If X is Urysohn and $A \subseteq X$, then $|\overline{A}^{\theta}| \leq |A|^{fbt_{\theta}(X)}$.

Theorem 2 (Cam-Cat-Pan-Tsa, 2012)

Let X be a space with $A \subseteq X$, then $|\overline{A}^{\theta}| \leq |A|^{bts_{\theta}(X)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now, the new situation is summarized in the following diagram:

・ロト < 置ト < 置ト < 置ト < 置 ・ のへの

Some examples

The following spaces are presented to show the existence of spaces where $bt_{\theta}(X)$ is not defined, $fbt_{\theta}(X) = \omega$, and $bts_{\theta}(X) > \chi_{\theta}(X)$ (Example 1) and where $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined with $fbt_{\theta}(X) = bt_{\theta}(X) = \omega$ (Example 2). Example 3 gives a negative answer to a question present in [BoCaMa] and in [BoPa]. What remains open is the existence of a space X where $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined and $fbt_{\theta}(X) < bt_{\theta}(X)$. All these examples are contained in [Cam-Cat-Pan-Por].

Example 1 [A first countable, Hausdorff (not Urysohn) space X for which $bt_{\theta}(X)$ is not defined, $fbt_{\theta}(X) = \omega$, and $bts_{\theta}(X) > \chi_{\theta}(X)$]

Let $\mathbb{Q} = \{r_n : n \in \omega\}$ denote the space of rational numbers with the usual topology and $\mathbb{D} = \mathbb{Q} + \sqrt{2}$ denote the dense subspace of irrational numbers. Let Λ be nonempty set and $X(\Lambda) = \mathbb{Q} \cup (\mathbb{D} \times \Lambda)$. A set $U \subseteq X(\Lambda)$ is defined to be open if

★
$$p \in U \cap \mathbb{Q}$$
 implies there is $\epsilon > 0$ such that
 $((p - \epsilon, p + \epsilon) \cap) \cup ((p - \epsilon, p + \epsilon) \cap \mathbb{D}) \times \Lambda) \subseteq U$ and

★ $(p, \alpha) \in U \cap (\mathbb{D} \times \{\alpha\})$ for some $\alpha \in \Lambda$ implies there is $\epsilon > 0$ such that $((p - \epsilon, p + \epsilon) \cap \mathbb{D}) \times \{\alpha\} \subseteq U$.

Now, we have that:

 For |Λ| ≥ 2, the space X(Λ) is Hausdorff, semiregular, and first countable but not Urysohn.

• If $|\Lambda| < \omega$, $U(X(\Lambda)) = |\Lambda| + 1$. Otherwise, if $|\Lambda| \ge \omega$, $U(X(\Lambda)) = \omega$.

- If |Λ| < ω, bts_θ(X(Λ)) = ω. On the other hand, if |Λ| ≥ ω, bts_θ(X(Λ)) = log₂(|Λ|). In particular, if |Λ| = 2^c, then bts_θ(X(Λ)) = c > ω = χ_θ(X(Λ)).
- For |Λ| = 2 (i.e. Λ = {0,1}), U(X) = 3 and the set Q is not θ-closed and θ(Q) = X. In fact, the points {(√2,0), (√2,1)} can not be separated by disjoint closed neighborhoods. Again, let B = {r_n : n ∈ ω} a sequence in Q that converges to √2 and C ⊆ B be an infinite subset. As θ(C) = C ∪ {(√2,0), (√2,1)}, bt_θ(X) is not defined. Moreover, it is easy to show that fbt_θ(X) = ω. It is straightforward to show that if Y is the irrational slope topological space (see Example 75 in [StSe]), then U(Y) = 3, fbt_θ(Y) = ω, and bt_θ(Y) is not defined.
- For each $n \in \mathbb{N}$, let Λ_n be a set with n elements and $X_n = X(\Lambda_n)$. The topological sum space $Y = \bigsqcup_{n \in \mathbb{N}} X_n$ is Hausdorff but not n-Urysohn for any $n \in \mathbb{N}$ even though $U(Y) = \omega$. However, $fbt_{\theta}(Y) = \omega$ and $bt_{\theta}(Y)$ is not defined.

Example 2 [CH - An Urysohn space X for which $fbt_{\theta}(X) = bt_{\theta}(X) = \omega$]

This example is like *Example 2.3* in [CaKo]. Let $\tau(\mathbb{R})$ be the usual topology on \mathbb{R} and let the underlying set of X be \mathbb{R} with this finer topology:

au(X) is generated by $\{U \setminus C : U \in \tau(\mathbb{R}), C \in [\mathbb{R}]^{\leq \omega_1}\}.$

Now, we have $C \in [\mathbb{R}]^{\leq \omega_1}$ in the above definition whereas, in the example in [CaKo], it is $C \in [\mathbb{R}]^{\leq \omega}$. So, we need that $\mathfrak{c} > \omega_1$ (i.e., $\neg \mathbf{CH}$). Anyway, let's look at the example where $\kappa < \mathfrak{c}$. That is, X is \mathbb{R} with this finer topology:

au(X) is generated by $\{U\setminus C: U\in au(\mathbb{R}), C\in [\mathbb{R}]^{\leq\kappa}\}.$

Now, we have that:

• X is Urysohn.

•
$$fbt_{\theta}(X) = bt_{\theta}(X) = \omega$$
.

Example 3 [A Hausdorff space X with $U(X) = \chi(X) = \omega$ for which $|\overline{A}^{\theta}| > |A|^{\chi(X)} \cdot U(X)$]

In this example, we provide a Hausdorff space X such that $U(X) = \omega$ and $|\overline{A}^{\theta}| > |A|^{\chi(X)} \cdot U(X)$; however, we know that $|\overline{A}^{\theta}| < |A|^{\chi_{\theta}(X)}$ when X is Hausdorff and finitely-Urysohn. The future research goal is to identify those spaces X for which U(X) is infinite and $|\overline{A}^{\theta}| \leq |A|^{\chi_{\theta}(X)}$. This research project is simplified by using that $U(X) = U(X_s)$ for any space X and then applying the equality $|\overline{A}_{X}^{\theta}| = |\overline{A}_{X}^{\theta}|$ for $A \subseteq X$. So, to obtain that $|\overline{A}^{\theta}| \leq |A|^{\chi_{\theta}(X)}$ is reduced to verifying $|\overline{A}^{\theta}| \leq |A|^{\chi_{\theta}(X)}$ for a semiregular Hausdorff space X for which U(X)is infinite. The question asked in both [BoCaMa, BoPa] is whether $|[A]_{\theta}| \leq |A|^{\chi_{\theta}(X)} \cdot U(X)$ is true for all Hausdorff spaces X, i.e., when U(X) is infinite. A negative answer is presented here following *Example 1*. Let Λ be a set such that $|\Lambda| > \mathfrak{c}$ and $X(\Lambda)$ be defined as in *Example 1*. As noted in Example 1, $X(\Lambda)$ is a first countable Hausdorff space with $U(X) = \omega$. As $\theta(\mathbb{Q}) = X(\Lambda), \ |\theta(\mathbb{Q})| = |\Lambda| > \mathfrak{c}.$ However, $|\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda)) = \omega^{\omega} \cdot \omega = 2^{\omega} = \mathfrak{c}$. Thus, $|\overline{\mathbb{Q}}^{\theta}| > |\mathbb{Q}|^{\chi(X(\Lambda))} \cdot U(X(\Lambda))$.

Applications to P-spaces

Bonanzinga-Cammaroto-Matveev ([BoCaMa]) and Bonanzinga-Pansera ([BoPa]) asked whether, in all Hausdorff spaces X, $|\overline{A}^{\theta}| \leq |A|^{\chi_{\theta}} \cdot U(X)$. Here, we give an interesting partial answer.

Definition 3

The θ -*P*-point number of a space X is the minimal cardinal κ such that some $x \in X$ has closed neighborhoods V_{α} , $\alpha < \kappa$, with $\bigcap_{\alpha < \kappa} V_{\alpha}$ not a neighborhood of x.

As the θ -*P*-point number of any space is at leat \aleph_0 , the following theorem generalizes the Bonanzinga-Pansera Theorem, and thus also the earlier three theorems discussed in the introduction.

Theorem 3 (Cam-Cat-Pan-Tsa, 2012)

Let X be a space whose Urysohn number is smaller than its θ -P-point number. Then, for each $A \subseteq X$, $|\overline{A}^{\theta}| \leq |A|^{\chi_{\theta}} \cdot U(X)$.

Definition 4

A space X is a *P*-space if each countable intersection of neighborhoods is a neighborhood. Thus, the θ -P-point number of a P-space is $\geq \aleph_1$.

Corollary 1 (Cam-Cat-Pan-Tsa, 2012)

Let X be a P-space with $U(X) = \aleph_0$. Then, for each $A \subseteq X$, $|\overline{A}^{\theta}| \le |A|^{\chi_{\theta}}$.

Applications to the almost-Lindelöf number

Definition 5

The almost-Lindelöf number aL(A, X) of a set $A \subseteq X$ is the minimal cardinal κ such that, for each open cover \mathcal{U} of A, there is $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ such that $A \subseteq \bigcup_{V \in \mathcal{V}} \overline{V}$.

Now, we have this interesting result:

Theorem 4 (Cam-Cat-Pan-Tsa, 2012)

Let X be a Hausdorff space. For each $A \subseteq X$, $|A| \leq 2^{aL(A,X)\chi_{\theta}(X)bts_{\theta}(X)}$.

The following corollary improves upon a result of Bonanzinga, Cammaroto and Matveev [BoCaMa], asserting that for Hausdorff, finitely-Urysohn spaces X, $|X| \leq 2^{aL(X,X)\chi(X)}$.

Corollary 2 (Cam-Cat-Pan-Tsa, 2012)

Let X be a Hausdorff, finitely-Urysohn space. For each $A \subseteq X$, $|A| \leq 2^{aL(A,X)\chi_{\theta}(X)}$. In particular, $|X| \leq 2^{aL(X,X)\chi_{\theta}(X)}$.

Open problems

Question 1 (Cam-Cat-Pan-Por-Tsa, 2012)

An unsolved problem is to characterize those Hausdorff spaces X for which $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined?

Question 2 (Cam-Cat-Pan-Por-Tsa, 2012)

Does there exist a Hausdorff (or Urysohn) space X for which $bt_{\theta}(X)$ and $fbt_{\theta}(X)$ are defined and $fbt_{\theta}(X) < bt_{\theta}(X)$?

ション ふゆ くは くちょう しょうくしょ

References

- O. Alas and L. Kočinac, More cardinal inequalities on Urysohn spaces, Mathematica Balkanica 14 (2000), 247–252.
- A. Bella, A couple of questions concerning cardinal invariants, Questions and Answers in General Topology 14 (1996), 139–143.
- A. Bella and F. Cammaroto, On the cardinality of Urysohn spaces, Canadian Mathematics Bulletin 31 (1988), 153–158.
- M. Bonanzinga, F. Cammaroto, and M. Matveev, On the Urysohn number of a topological space, Quaestiones Mathematicae 34 (2011), 441–446.
 - M. Bonanzinga and B. Pansera, *On the Urysohn number of a topological space II*, Quaestiones Mathematicae, accepted.

- F. Cammaroto, A. Catalioto, B.A. Pansera and B. Tsaban, On the cardinality of the θ-closed hull of sets, Topology and its Application, submitted.
- F. Cammaroto, A. Catalioto, B.A. Pansera and J. Porter, *On the cardinality of the* θ *-closed hull of sets II*, preprint.
- F. Cammaroto and L. Kočinac, On θ-tightness, Facta Universitatis, Series Mathematics and Informatics 8 (1993), 77–85.
- I. Juhász, Cardinal Functions in Topology Ten Years Later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- L. Steen and J. Seebach, Jr., **Counterexamples in Topology**, Springer–Verlag, New York, 1978.
- N. Veličko, *H-closed topological spaces*, Matematicheskiĭ Sbornik 70 (1966), 98–112; American Mathematical Society Translations 78 (1969), 103–118.

Thank You and... Happy Birthday Prof. Kočinac...!!! :-) :-) :-)

