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1. Introduction

While our results are all valid for complex valued functions, they will be

stated about functions defined on metric spaces with values in the set of real

numbers R.

Notation for a metric space

• 〈X, d〉 will denote a set X equipped with a metric d

• RX = the vector space of real-valued functions defined on X

• B(x, ε) = the open ball with center x ∈ X and radius ε > 0

• For A ⊆ X, diam(A) = sup{d(a1, a2) : a1 ∈ A, a2 ∈ A}.

Both continuity and uniform continuity of real-valued functions on metric

spaces can be explained in terms of the classical notion of oscillation.

For each n ∈ N, f : X → R, and x ∈ X, put ωn(f, x) := diam f(B(x, 1n)),

where of course the diameter of the image is taken with respect to the usual

metric for R. Then the oscillation of f at x is defined by the formula

ω(f, x) := limn→∞ ωn(f, x) = infn∈N ωn(f, x).

While f takes values in R, the associated oscillation function x 7→ ω(f, x)

takes values in [0,∞].
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Example 1.1. Suppose E and X\E are both dense in X; if f : X → R is

defined by f(x) = 1 if x ∈ E and f(x) = 0 if x /∈ E satisfies ω(f, x) ≡ 1.

Example 1.2. Suppose f : [0,∞)→ R is defined by f(x) = 1/x for x ∈ (0, 1)

and f(x) = 0 otherwise, the associated oscillation function is defined by

ω(f, x) =


∞ if x = 0

1 if x = 1

0 otherwise

.

Given f ∈ RX ,

• ω(f, ·) is upper semicontinuous;

• f is continuous at p ∈ X if and only if ω(f, p) = 0;

• f is uniformly continuous on X if and only if 〈ωn(f, ·)〉 converges

uniformly to the zero function.

While the pointwise product of two continuous real functions remains con-

tinuous, uniformly continuity is not preserved under taking products: in RR,

take f(x) = g(x) = x.

It is standard exercise to show that the product of two bounded real uni-

formly continuous functions remains uniformly continuous, but uniform con-

tinuity of the product may fail if just one of the factors is bounded.
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For counterexamples we will always work in discrete metric subspaces of

the real line.

Put X̂ := {1, 11
2 , 2, 21

3 , 3, 31
4 , 4, 41

5 , . . .}, equipped with the usual metric

from the line.

Example 1.3. Let f be the identity function on X̂, i.e, f(x) = x, and let g

be defined by g(x) = 1
x if x ∈ N and g(x) = 0 otherwise. Then f and g are

in fact both Lipschitz on X̂ and g is bounded, while

(fg)(x) =

1 if x ∈ N

0 otherwise

fails to be uniformly continuous.

2. Necessary and Sufficient Conditions for Uniform

Continuity of a Product

We intend to give necessary and sufficient conditions on a pair of uniformly

continuous real functions such that their pointwise product is uniformly con-

tinuous.

Our conditions prove sufficient without assuming anything whatsoever about

the factors. On the other hand, necessity holds for a class of pairs ∆ that is

much broader than the class of all pairs of functions that are both uniformly

continuous. Seemingly, one must put some restriction on the class of pairs

of functions under consideration for uniform continuity of their product, in

that given any strictly positive function f no matter how pathological it may

be, f · 1f will be uniformly continuous.
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Our distinguished class of function pairs ∆ is characterized by a uniform

joint oscillation condition. For {f, g} ⊆ RX and δ > 0 put

λ(f, g, δ) := sup{|(f(x)− f(p))(g(x)− g(p))| : {x, p} ⊆ X and d(x, p) < δ}.

We now define ∆ by

∆ := {(f, g) ∈ RX × RX : limn→∞ λ(f, g,
1

n
) = infn∈N λ(f, g,

1

n
) = 0}.

Evidently, ∆ contains all pairs (f, g) where both functions are uniformly

continuous. It also contains all (f, g) where one function is uniformly con-

tinuous and the other function is bounded. But how is membership to ∆

related to the classical notion of oscillation?

Theorem 2.1. Let 〈X, d〉 be a metric space and let {f, g} ⊆ RX. Then

(f, g) ∈ ∆ if and only if limn→∞supx∈X ωn(f, x)ωn(g, x) = 0.

Remark: For (f, g) ∈ ∆, at each point of X, at least one of the functions

must be continuous!

Remark: Proof of sufficiency is trivial whereas proof of necessity is delicate.
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Example 2.2. As an example of (f, g) in ∆ where neither function is uniformly

continuous nor bounded, let X̂ be the discrete metric space introduced before

and let f : X̂ → R and g : X̂ → R be defined by

f(x) =


n if x = n and n is even

2n if x = n+ 1
n+1 and n is even

0 otherwise

,

g(x) =


n if x = n and n is odd

2n if x = n+ 1
n+1 and n is odd

0 otherwise

.

Note ∀x ∈ X, (fg)(x) = 0. This example shows that we can have (f, g) ∈ ∆

while for each n ∈ N,

sup {|f(x)− f(p)| : d(x, p) <
1

n
} = sup {|g(x)− g(p)| : d(x, p) <

1

n
} =∞,

because large local variability in one function is corrected by small local

variability in the other.

Our necessary and sufficient conditions amount to a continuity notion for a

product fg that is properly stronger than uniform continuity of the product,

and which for uniformly continuous factors, reduces to uniform continuity.

We call a product fg that satisfies this condition emphatically uniformly

continuous.
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Definition 2.3. Let f, g be real-valued functions on a metric space 〈X, d〉. We

call their product fg emphatically uniformly continuous provided

∀ε > 0, ∃δ > 0 such that ∀x ∈ X, ∀p ∈ X, d(x, p) < δ implies

|1
2

(f(x)g(p) + f(p)g(x))− f(x)g(x)| < ε.

Proposition 2.4. Let 〈X, d〉 be a metric space and let {f, g} ⊆ RX. Then the

product fg is emphatically uniformly continuous if and only if fg is uniformly

continuous and (f, g) ∈ ∆

Proof. For necessity, let ε > 0 and choose δ > 0 such ∀x ∈ X, ∀p ∈ X,

d(x, p) < δ ⇒ |12(f(x)g(p) + f(p)g(x)) − f(x)g(x)| < ε
2 . By symmetry, it is

clear that also |f(p)g(p)− 1
2(f(x)g(p) + f(p)g(x))| < ε

2 .

Let {x, p} ⊆ X satisfying d(x, p) < δ be arbitrary, and put

α =
1

2
(f(x)g(p) + f(p)g(x))− f(x)g(x)

and

β = f(p)g(p)− 1

2
(f(x)g(p) + f(p)g(x)).

Then the inequality |α + β| ≤ |α|+ |β| gives

|f(p)g(p)− f(x)g(x)| < ε,

while the inequality |β − α| ≤ |β|+ |α| gives

|(f(x)− f(p))(g(x)− g(p))| < ε,

establishing at once uniform continuity of fg and (f, g) ∈ ∆. �
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The next example presents a pair of continuous bounded real functions

whose product is uniformly continuous but not emphatically uniformly con-

tinuous.

Example 2.5. Let X̂ be our usual discrete metric space. Define f : X̂ → R
by

f(x) =

1 if x = n for some n ∈ N

−1 if x = n+ 1
n+1 for some n ∈ N

,

and let g(x) = −f(x) for all x. The product fg being constant is uniformly

continuous. We show that emphatic uniform continuity of the product fails.

For each n ∈ N put xn = n and pn = n+ 1
n+1 . For each n we have

1

2
(f(xn)g(pn) + f(pn)g(xn)) =

1

2
(1 · 1 + (−1) · (−1)) = 1,

while f(xn)g(xn) = −1.

We can also show that the uniform joint oscillation condition fails. We

compute

(f(xn)− f(pn))(g(pn)− g(xn)) = 4

while limn→∞d(xn, pn) = 0. This shows that (f, g) /∈ ∆.

Our main result is an immediate consequence of Proposition 2.4

Theorem 2.6. Let 〈X, d〉 be a metric space and let (f, g) ∈ ∆. Then the

product fg is emphatically uniformly continuous if and only if fg is uniformly

continuous.
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Corollary 2.7. Let 〈X, d〉 be a metric space and let f and g be uniformly

continuous real functions on X. Then the product fg is emphatically uni-

formly continuous if and only if fg is uniformly continuous.

Corollary 2.8. Let 〈X, d〉 be a metric space and let f : X → R be uni-

formly continuous and let g : X → R be bounded. Then the product fg is

emphatically uniformly continuous if and only if fg is uniformly continuous.

Corollary 2.9. Let 〈X, d〉 be a metric space and let f ∈ RX be uniformly

continuous. Then f 2 is uniformly continuous if and only if for each ε >

0,∃δ > 0 such that whenever d(x, p) < δ, we have |f(x)(f(p)− f(x))| < ε.

Proof. This follows from 1
2(2f(x)f(p))− (f(x))2 = f(x)(f(p)− f(x)). �


