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Permutation groups

For a set X by S(X ) we denote the symmetric group,
i.e., the group all permutations (=bijections) of X .

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group
S(G ).

By a permutation group we understand a subgroup G of a
symmetric group S(X ).
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The group Sω(X ) of finitely supported permutation

The symmetric group S(X ) contains the normal subgroup Sω(X )
consisting of all permutations f : X → X that have finite support

supp(f ) = {x ∈ X : f (x) 6= x}.

Fact

If supp(f ) ∩ supp(g) = ∅, then f ◦ g = g ◦ f .
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A natural topology on permutation groups

On each permutation group G ⊂ S(X ) ⊂ XX we can consider
the topology of pointwise convergence Tp
inherited from the Tychonoff power XX of
X endowed with the discrete topology.

Fact

The topology Tp turns G into a Hausdorff topological group.

In other words, Tp is a Hausdorff group topology on G .

A neighborhood base of the topology Tp at the neutral element 1G
consists of the subgroups

GA = {g ∈ G : g |A = id}

where A runs over finite subsets of X .
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Extremal properties of the topology Tp

Theorem (Dierolf-Schwanengel, 1977)

For any group G with Sω(X ) ⊂ G ⊂ S(X )
the topology Tp is a minimal Hausdorff group topology on G .

Theorem (Gaughan, 1967)

For the group G = S(X ),
the topology Tp is the smallest Hausdorff group topology on G .

Problem (Dikranjan, 2010)

Let G be a group such that Sω(X ) ⊂ G ⊂ S(X ).
Is Tp the smallest Hausdorff group topology on G ?

Answer (B-G-P, 2011)

Yes!
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Various sorts of topologized groups

A group G endowed with a topology T is called

a topological group if the binary operation
(x , y) 7→ xy−1 is continuous;

a quasi-topological group if the binary operation
(x , y) 7→ xy−1 is separately continuous;

a semi-topological group if the binary operation
(x , y) 7→ xy is separately continuous;

a [quasi]-topological group if the binary operations
(x , y) 7→ xy−1 and (x , y) 7→ [x , y ] = xyx−1y−1

are separately continuous;

a [semi]-topological group if the binary operations
(x , y) 7→ xy and (x , y) 7→ [x , y ] = xyx−1y−1

are separately continuous.
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Interplay between various sorts of topologized groups

topological // [quasi]-topological //

��

[semi]-topological

��
quasi-topological // semi-topological

Fact

A group G with topology T is [semi]-topological if and only if for
any a, b ∈ G

the shift sa,b : x 7→ axb and

the conjugator γa : x 7→ xax−1

are T -continuous.
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Main result answering the Dikranjan’s Problem

Theorem (B-G-P, 2011)

For any group G with Sω(X ) ⊂ G ⊂ S(X ), the topology Tp is the
smallest T1-topology turning G into a [semi]-topological group.
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Proof of Theorem

Let Sω(X ) ⊂ G ⊂ S(X ) and T be a T1-topology on G such that
(G , T ) is a [semi]-topological group.

Our aim: To prove that Tp ⊂ T .
This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

GA = {g ∈ G : g |A = id}, |A| <∞

form a neighborhood base of the topology Tp at 1G ,
while the family

{GA : A ⊂ X , |A| = 3}

is a neighborhood subbase of Tp at 1G .
So, to prove the theorem, it suffices to check that
for each 3-element subset A ⊂ X the subgroup GA is T -open.
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Continuation of the Proof

Lemma

For each 3-element subset A ⊂ X the subgroup GA is T -closed.

Proof.

Given any permutation g /∈ GA, find a point a ∈ A with g(a) 6= a.
Choose any b ∈ A \ {a, g(a)} and consider the transposition
t : X → X such that supp(t) = {a, b}. Then t ◦ g 6= g ◦ t as
g ◦ t(a) = g(b) while t ◦ g(a) = g(a).
So,

U = {f ∈ G : f ◦t 6= t◦f } = {f ∈ G : f ◦t◦f −1 6= t} = γ−1t (G\{t})

is a T -open neighborhood of g , which is disjoint with GA.
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Continuation of the Proof

Lemma

For some 3-element subset A ⊂ X the subgroup GA is T -open.

Proof. Assume not. Then for each 3-element subset A ⊂ X the
subgroup GA is not open and being closed is nowhere dense in
(G , T ).

Claim

For any 3-element subset A ⊂ X and any finite set B ⊂ X the set
G (A,B) = {g ∈ G : g(A) ⊂ B}

is closed and nowhere dense in (G , T ).

Proof. Since the set of maps A→ B is finite, we can choose a
finite subset F ⊂ G (A,B) such that for each g ∈ G (A,B) there is
f ∈ F with f |A = g |A. Then f −1 ◦ g ∈ GA and hence g ∈ f ◦ GA.
So, G (A,B) =

⋃
f ∈F f ◦ GA is closed and nowhere dense as a finite

union of closed nowhere dense subspaces.
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Continuation of the Proof

Choose two disjoint 3-element subsets A,B ⊂ X and consider the
nowhere dense subset G (A,A ∪ B) ∪ G (B,A ∪ B) in (G , T ).
For any distinct points a, b ∈ A ∪ B let ta,b ∈ Sω(X ) ⊂ G be the
transposition with supp(ta,b) = {a, b}.
Put T = {ta,b : a, b ∈ A ∪ B}.
For every t ∈ T the set

Vt = {u ∈ G : u ◦ t 6= t ◦ u} = γ−1t (G \ {t})

is T -open and contains each transposition s ∈ T with s ◦ t 6= t ◦ s.
Then the set

Us,t = γ−1s (Vt) = {u ∈ G : (usu−1)t 6= t(usu−1)}

is a T -open neighborhood of 1G and so is the intersection

U =
⋂
{Us,t : s, t ∈ T , t ◦ s 6= s ◦ t}.
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Continuation of the Proof

Choose a permutation u ∈ U \ (G (A,A ∪ B) ∪ G (B,A ∪ B)) and
observe that u(a), u(b) /∈ A∪B for some points a ∈ A and b ∈ B.

Choose any point c ∈ B \ {b} and consider two non-commuting
permutations t = ta,c and s = ta,b.

It follows from
u ∈ U ⊂ Us,t = γ−1s (Vt)

that the permutation v = usu−1 = γs(u) ∈ Vt and hence
v ◦ t 6= t ◦ v .
On the other hand, supp(v) = u(supp(s)) = u({a, b}) does not
intersect {a, b} = supp(ta,b) and hence v commutes with t.

This contradiction shows that, the subgroup GA is T -open for
some 3-element subset A ⊂ X .
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End of the proof

Claim

For each 3-element subset B ⊂ X the subgroup GB is T -open.

Proof. Choose any permutation f ∈ Sω(X ) ⊂ G with f (A) = B
and observe that GB = f ◦ GA ◦ f −1 is T -open, being a two-sided
shift of the T -open subgroup GA.
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What we have just proved

Theorem (B-G-P, 2011)

For any group G with Sω(X ) ⊂ G ⊂ S(X ), the topology Tp is the
smallest T1-topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as
the group G = Sω(Z) admits a shift-invariant Hausdorff topology
T which is incomparable with Tp.

Theorem (B-G, 2011)

The group G = Sω(X ) is σ-discrete in any T2-topology turning G
into a semi-topological group.
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in T|G |.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

an uncountable non-topologizable group (Hesse, 1979);

a countable non-topologizable group (Olshanski, 1980).
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Zariski and Markov topologies on groups

Definition

For a group G

the Markov topology MG is the intersection of all Hausdorff
groups topologies on G ;

the Zariski topology ZG is generated by the subbase consisting
of algebraically open sets

{x ∈ G : a1xk1a2xk2 · · · anxkn 6= 1G}
where a1, . . . , an ∈ G and k1, . . . , kn ∈ Z.

Fact

ZG ⊂MG ⊂ T for each group T2-topology T on G .

(G ,ZG ) and (G ,MG ) are T1 [quasi]-topological groups.

G is non-topologizable ⇔ MG is discrete ⇐ ZG is discrete.
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Coincidence of Zariski and Markov topologies

Theorem

ZG = MG if the group G is:

countable (Markov, 1946);

Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with MG 6= ZG

(so, MG is discrete while ZG is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is ZG = MG for each symmetric group G = S(X )?

Answer (B-G-P, 2011)

Yes: ZG = MG = Tp for each group G with Sω(X ) ⊂ G ⊂ S(X ).
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Answering another problem of Dikranjan and Shakhmatov

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with ZG = MG .
Is ZH = MH for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse’s non-topologizable group H with ZH 6= MH and using
Cayley theorem, embed H into the permutation group G = S(H).
Then G is a group with ZG = MG containing the subgroup H ⊂ G
with ZH 6= MH .
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Topologizing the quotient group S(X )/Sω(X )

Since the subgroup Sω(X ) is normal in S(X ), we can consider the
quotient group S(X )/Sω(X ).

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group S(X )/Sω(X ) topologizable?

Answer (B-G-P, 2011)

Yes!
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Two natural topologies on S(X )

Each discrete space X has two natural compactifications:

αX , the Aleksandrov one-point compactifications;

βX , the Čech-Stone compactification.

Fact

Each bijection f : X → X can be uniquely extended to
homeomorphisms αf : αX → αX and βf : βX → βX .

Consequently, the group S(X ) can be identified with the
homeomorphisms groups H(αX ) and H(βX ) of the
compactifications αX and βX .
This identification allows us to introduce the compact-open
topologies Tα and Tβ on S(X ).
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Topologies Tα and Tβ on S(X )

Fact

Tα = Tp. Consequently, Sω(X ) is a dense subgroup of the
topological group (Sω(X ), Tα) = H(αX ).

Theorem (B-G-P, 2011)

The subgroup Sω(X ) is closed and nowhere dense in the
topological group (S(X ), Tβ) = H(βX ).
Consequently, the quotient topological group S(X )/Sω(X ) is not
discrete and thus is topologizable.
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An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology
turning G into a quasi-topologizable group.

topologizable // [quasi]-topologizable //

��

[semi]-topologizable

��
quasi-topologizable // semi-topologizable

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?
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