Algebraically determined topologies on permutation groups

Taras Banakh, Igor Guran, Igor Protasov

Kielce-Lviv-Kyiv

SPM 2012, Caserta

Taras Banakh, Igor Guran, Igor Protasov Algebraically determined topologies on permutation groups

For a set X by S(X) we denote the symmetric group, i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group S(G).

By a **permutation group** we understand a subgroup G of a symmetric group S(X).

/□ ▶ < 글 ▶ < 글

For a set X by S(X) we denote the symmetric group, i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group S(G).

By a **permutation group** we understand a subgroup G of a symmetric group S(X).

For a set X by S(X) we denote the symmetric group, i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group S(G).

By a permutation group we understand a subgroup G of a symmetric group S(X).

伺 ト イ ヨ ト イ ヨ ト

The symmetric group S(X) contains the normal subgroup $S_{\omega}(X)$ consisting of all permutations $f : X \to X$ that have finite support

$$\operatorname{supp}(f) = \{x \in X : f(x) \neq x\}.$$

Fact

If $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$, then $f \circ g = g \circ f$.

伺 ト イヨト イヨト

The symmetric group S(X) contains the normal subgroup $S_{\omega}(X)$ consisting of all permutations $f : X \to X$ that have finite support

$$\operatorname{supp}(f) = \{x \in X : f(x) \neq x\}.$$

Fact

If $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$, then $f \circ g = g \circ f$.

伺 ト イヨト イヨト

A natural topology on permutation groups

On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology T_p turns G into a Hausdorff topological group. In other words, T_p is a Hausdorff group topology on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}$$

where A runs over finite subsets of X.

• = • •

On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology \mathcal{T}_p turns G into a Hausdorff topological group.

In other words, \mathcal{T}_p is a Hausdorff group topology on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}$$

where A runs over finite subsets of X.

On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology T_p turns G into a Hausdorff topological group. In other words, T_p is a Hausdorff group topology on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}$$

where A runs over finite subsets of X.

A 3 3 4 4

On each permutation group $G \subset S(X) \subset X^X$ we can consider the *topology of pointwise convergence* \mathcal{T}_p inherited from the Tychonoff power X^X of X endowed with the discrete topology.

Fact

The topology T_p turns G into a Hausdorff topological group. In other words, T_p is a Hausdorff group topology on G.

A neighborhood base of the topology \mathcal{T}_p at the neutral element 1_G consists of the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}$$

where A runs over finite subsets of X.

Extremal properties of the topology \mathcal{T}_p

Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$ the topology \mathcal{T}_{p} is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X), the topology T_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_{\omega}(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$ the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X), the topology T_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_{\omega}(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!

(人間) ト く ヨ ト く ヨ ト

Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$ the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X),

the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_{\omega}(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!

Theorem (Dierolf-Schwanengel, 1977)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$ the topology \mathcal{T}_p is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X),

the topology \mathcal{T}_p is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that $S_{\omega}(X) \subset G \subset S(X)$. Is \mathcal{T}_p the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)

Yes!

- 4 同 ト 4 ヨ ト 4 ヨ ト

Various sorts of topologized groups

A group G endowed with a topology \mathcal{T} is called

- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation (x, y) → xy⁻¹ is separately continuous;
- a semi-topological group if the binary operation
 (x, y) → xy is separately continuous;
- a [quasi]-topological group if the binary operations (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹ are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

伺 ト イヨト イヨト

Various sorts of topologized groups

A group G endowed with a topology ${\mathcal T}$ is called

- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a semi-topological group if the binary operation
 (x, y) → xy is separately continuous;
- a [quasi]-topological group if the binary operations (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹ are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

Various sorts of topologized groups

A group G endowed with a topology ${\mathcal T}$ is called

- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a semi-topological group if the binary operation
 (x, y) → xy is separately continuous;
- a [quasi]-topological group if the binary operations (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹ are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

A group G endowed with a topology \mathcal{T} is called

- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a semi-topological group if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a [quasi]-topological group if the binary operations
 (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

A group G endowed with a topology \mathcal{T} is called

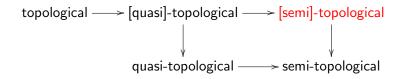
- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a semi-topological group if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a [quasi]-topological group if the binary operations
 (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

A group G endowed with a topology \mathcal{T} is called

- a topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is continuous;
- a quasi-topological group if the binary operation $(x, y) \mapsto xy^{-1}$ is separately continuous;
- a semi-topological group if the binary operation $(x, y) \mapsto xy$ is separately continuous;
- a [quasi]-topological group if the binary operations
 (x, y) → xy⁻¹ and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous;
- a [semi]-topological group if the binary operations
 (x, y) → xy and (x, y) → [x, y] = xyx⁻¹y⁻¹
 are separately continuous.

伺下 イヨト イヨト

Interplay between various sorts of topologized groups



Fact

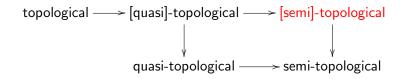
A group G with topology $\mathcal T$ is [semi]-topological if and only if for any $a,b\in G$

- the shift $s_{a,b} : x \mapsto axb$ and
- the conjugator $\gamma_a : x \mapsto xax^{-1}$

are \mathcal{T} -continuous.

伺 と く ヨ と く ヨ と

Interplay between various sorts of topologized groups



Fact

A group G with topology $\mathcal T$ is [semi]-topological if and only if for any a, $b\in G$

- the shift $s_{a,b} : x \mapsto axb$ and
- the conjugator $\gamma_a : x \mapsto xax^{-1}$

are \mathcal{T} -continuous.

「同 ト イ ヨ ト イ ヨ ト ― ヨ

Main result answering the Dikranjan's Problem

Theorem (B-G-P, 2011)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1 -topology turning G into a [semi]-topological group.

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$. This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G , while the family

$$\{G_A:A\subset X,\ |A|=3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G . So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

直 と く ヨ と く ヨ と

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G , while the family

$$\{G_A:A\subset X,\ |A|=3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G . So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

直 と く ヨ と く ヨ と

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$. This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G , while the family

$$\{G_A:A\subset X,\ |A|=3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G . So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

直 と く ヨ と く ヨ と

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$. This is trivial if X is finite. So, we assume that X is infinite. Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at $\mathbf{1}_G$, while the family

 $\{G_A:A\subset X,\ |A|=3\}$

is a neighborhood subbase of \mathcal{T}_p at 1_G . So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

伺 ト イ ヨ ト イ ヨ ト

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$. This is trivial if X is finite. So, we assume that X is infinite. Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G , while the family

$$\{G_A:A\subset X, |A|=3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G .

So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

伺 ト イ ヨ ト イ ヨ ト

Our aim: To prove that $\mathcal{T}_p \subset \mathcal{T}$. This is trivial if X is finite. So, we assume that X is infinite. Observe that the subgroups

$$G_A = \{g \in G : g | A = \mathrm{id}\}, \ |A| < \infty$$

form a neighborhood base of the topology \mathcal{T}_p at 1_G , while the family

$$\{G_A:A\subset X, |A|=3\}$$

is a neighborhood subbase of \mathcal{T}_p at 1_G . So, to prove the theorem, it suffices to check that for each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

伺 ト イヨト イヨト

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\operatorname{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$. So,

 $U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$

is a \mathcal{T} -open neighborhood of g, which is disjoint with G_A .

- 4 同 ト 4 ヨ ト 4 ヨ ト

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\operatorname{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$. So,

 $U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$

is a \mathcal{T} -open neighborhood of g, which is disjoint with G_A .

- 4 同 ト 4 ヨ ト 4 ヨ ト

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\operatorname{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$. So,

 $U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$

is a \mathcal{T} -open neighborhood of g, which is disjoint with G_A .

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t: X \to X$ such that $\operatorname{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$. So,

 $U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$

is a \mathcal{T} -open neighborhood of g, which is disjoint with G_A .

For each 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -closed.

Proof.

Given any permutation $g \notin G_A$, find a point $a \in A$ with $g(a) \neq a$. Choose any $b \in A \setminus \{a, g(a)\}$ and consider the transposition $t : X \to X$ such that $\operatorname{supp}(t) = \{a, b\}$. Then $t \circ g \neq g \circ t$ as $g \circ t(a) = g(b)$ while $t \circ g(a) = g(a)$. So,

$$U = \{f \in G : f \circ t \neq t \circ f\} = \{f \in G : f \circ t \circ f^{-1} \neq t\} = \gamma_t^{-1}(G \setminus \{t\})$$

is a \mathcal{T} -open neighborhood of g, which is disjoint with G_A .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Continuation of the Proof

Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, \mathcal{T}) .

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set $G(A, B) = \{g \in G : g(A) \subset B\}$ is closed and nowhere dense in (G, \mathcal{T}) .

Proof. Since the set of maps $A \to B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with f|A = g|A. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.

Continuation of the Proof

Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, \mathcal{T}) .

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set $G(A, B) = \{g \in G : g(A) \subset B\}$ is closed and nowhere dense in (G, \mathcal{T}) .

Proof. Since the set of maps $A \to B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with f|A = g|A. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.

Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, \mathcal{T}) .

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set $G(A, B) = \{g \in G : g(A) \subset B\}$ is closed and nowhere dense in (G, \mathcal{T}) .

Proof. Since the set of maps $A \to B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with f|A = g|A. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.

Lemma

For some 3-element subset $A \subset X$ the subgroup G_A is \mathcal{T} -open.

Proof. Assume not. Then for each 3-element subset $A \subset X$ the subgroup G_A is not open and being closed is nowhere dense in (G, \mathcal{T}) .

Claim

For any 3-element subset $A \subset X$ and any finite set $B \subset X$ the set $G(A, B) = \{g \in G : g(A) \subset B\}$ is closed and nowhere dense in (G, \mathcal{T}) .

Proof. Since the set of maps $A \to B$ is finite, we can choose a finite subset $F \subset G(A, B)$ such that for each $g \in G(A, B)$ there is $f \in F$ with f|A = g|A. Then $f^{-1} \circ g \in G_A$ and hence $g \in f \circ G_A$. So, $G(A, B) = \bigcup_{f \in F} f \circ G_A$ is closed and nowhere dense as a finite union of closed nowhere dense subspaces.

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}) .

For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_{\omega}(X) \subset G$ be the transposition with $supp(t_{a,b}) = \{a, b\}$. Put $T = \{t_{a,b} : a, b \in A \cup B\}$. For every $t \in T$ the set

$$V_t = \{ u \in G : u \circ t \neq t \circ u \} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T} -open and contains each transposition $s \in \mathcal{T}$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T} -open neighborhood of 1_G and so is the intersection

$$U = \bigcap \{ U_{s,t} : s, t \in T, t \circ s \neq s \circ t \}.$$

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}) . For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_{\omega}(X) \subset G$ be the transposition with $\operatorname{supp}(t_{a,b}) = \{a, b\}$. Put $\mathcal{T} = \{t_{a,b} : a, b \in A \cup B\}$.

For every $t \in T$ the set

$$V_t = \{ u \in G : u \circ t \neq t \circ u \} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T} -open and contains each transposition $s \in \mathcal{T}$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T} -open neighborhood of 1_G and so is the intersection

$$U = \bigcap \{ U_{s,t} : s, t \in T, t \circ s \neq s \circ t \}.$$

伺 ト イ ヨ ト イ ヨ ト

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}) . For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_{\omega}(X) \subset G$ be the transposition with $\operatorname{supp}(t_{a,b}) = \{a, b\}$. Put $T = \{t_{a,b} : a, b \in A \cup B\}$. For every $t \in \mathcal{T}$ the set

$$V_t = \{ u \in G : u \circ t \neq t \circ u \} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T} -open and contains each transposition $s \in \mathcal{T}$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a \mathcal{T} -open neighborhood of 1_G and so is the intersection

$$U = \bigcap \{ U_{s,t} : s, t \in T, t \circ s \neq s \circ t \}.$$

伺 ト イ ヨ ト イ ヨ ト

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}) . For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_{\omega}(X) \subset G$ be the transposition with $\operatorname{supp}(t_{a,b}) = \{a, b\}$. Put $T = \{t_{a,b} : a, b \in A \cup B\}$. For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T} -open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{ u \in G : (usu^{-1})t \neq t(usu^{-1}) \}$$

is a \mathcal{T} -open neighborhood of 1_G and so is the intersection

$$U = \bigcap \{ U_{s,t} : s, t \in T, t \circ s \neq s \circ t \}.$$

→ □ → → □ →

Choose two disjoint 3-element subsets $A, B \subset X$ and consider the nowhere dense subset $G(A, A \cup B) \cup G(B, A \cup B)$ in (G, \mathcal{T}) . For any distinct points $a, b \in A \cup B$ let $t_{a,b} \in S_{\omega}(X) \subset G$ be the transposition with $\operatorname{supp}(t_{a,b}) = \{a, b\}$. Put $T = \{t_{a,b} : a, b \in A \cup B\}$. For every $t \in T$ the set

$$V_t = \{u \in G : u \circ t \neq t \circ u\} = \gamma_t^{-1}(G \setminus \{t\})$$

is \mathcal{T} -open and contains each transposition $s \in T$ with $s \circ t \neq t \circ s$. Then the set

$$U_{s,t} = \gamma_s^{-1}(V_t) = \{u \in G : (usu^{-1})t \neq t(usu^{-1})\}$$

is a $\mathcal T\text{-}\mathsf{open}$ neighborhood of $1_{\mathcal G}$ and so is the intersection

$$U = \bigcap \{ U_{s,t} : s, t \in T, t \circ s \neq s \circ t \}.$$

Choose a permutation $u \in U \setminus (G(A, A \cup B) \cup G(B, A \cup B))$ and observe that $u(a), u(b) \notin A \cup B$ for some points $a \in A$ and $b \in B$.

Choose any point $c \in B \setminus \{b\}$ and consider two non-commuting permutations $t = t_{a,c}$ and $s = t_{a,b}$.

It follows from

$$u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$$

that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$. On the other hand, $\operatorname{supp}(v) = u(\operatorname{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \operatorname{supp}(t_{a,b})$ and hence v commutes with t. This contradiction shows that, the subgroup G_A is \mathcal{T} -open for some 3 element subset $A \subset X$

・ 同 ト ・ ヨ ト ・ ヨ ト

It follows from

 $u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$

that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$. On the other hand, $\operatorname{supp}(v) = u(\operatorname{supp}(s)) = u(\{a, b\})$ does interval (a, b) and the support of the second s

intersect $\{a, b\} = \operatorname{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T} -open for some 3-element subset $A \subset X$.

・ 同 ト ・ ヨ ト ・ ヨ ト

It follows from

$$u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$$

that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$.

On the other hand, $\operatorname{supp}(v) = u(\operatorname{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \operatorname{supp}(t_{a,b})$ and hence v commutes with t.

This contradiction shows that, the subgroup G_A is \mathcal{T} -open for some 3-element subset $A \subset X$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

It follows from

$$u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$$

that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$. On the other hand, $\operatorname{supp}(v) = u(\operatorname{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \operatorname{supp}(t_{a,b})$ and hence v commutes with t. This contradiction shows that, the subgroup G_A is \mathcal{T} -open for

some 3-element subset $A \subset X$.

(4月) (4日) (4日) 日

It follows from

$$u \in U \subset U_{s,t} = \gamma_s^{-1}(V_t)$$

that the permutation $v = usu^{-1} = \gamma_s(u) \in V_t$ and hence $v \circ t \neq t \circ v$. On the other hand, $\operatorname{supp}(v) = u(\operatorname{supp}(s)) = u(\{a, b\})$ does not intersect $\{a, b\} = \operatorname{supp}(t_{a,b})$ and hence v commutes with t. This contradiction shows that, the subgroup G_A is \mathcal{T} -open for some 3-element subset $A \subset X$.

・同・ ・ヨ・ ・ヨ・ ・ヨ

Claim

For each 3-element subset $B \subset X$ the subgroup G_B is \mathcal{T} -open.

Proof. Choose any permutation $f \in S_{\omega}(X) \subset G$ with f(A) = B and observe that $G_B = f \circ G_A \circ f^{-1}$ is \mathcal{T} -open, being a two-sided shift of the \mathcal{T} -open subgroup G_A .

Claim

For each 3-element subset $B \subset X$ the subgroup G_B is \mathcal{T} -open.

Proof. Choose any permutation $f \in S_{\omega}(X) \subset G$ with f(A) = B and observe that $G_B = f \circ G_A \circ f^{-1}$ is \mathcal{T} -open, being a two-sided shift of the \mathcal{T} -open subgroup G_A .

Theorem (B-G-P, 2011)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1 -topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_{\omega}(\mathbb{Z})$ admits a shift-invariant Hausdorff topology \mathcal{T} which is incomparable with \mathcal{T}_p .

Theorem (B-G, 2011)

The group $G = S_{\omega}(X)$ is σ -discrete in any T_2 -topology turning G into a semi-topological group.

- 4 同 2 4 日 2 4 日 2

Theorem (B-G-P, 2011)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1 -topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_{\omega}(\mathbb{Z})$ admits a shift-invariant Hausdorff topology \mathcal{T} which is incomparable with \mathcal{T}_p .

Theorem (B-G, 2011)

The group $G = S_{\omega}(X)$ is σ -discrete in any T_2 -topology turning G into a semi-topological group.

- 4 同 6 4 日 6 4 日 6

Theorem (B-G-P, 2011)

For any group G with $S_{\omega}(X) \subset G \subset S(X)$, the topology \mathcal{T}_p is the smallest T_1 -topology turning G into a [semi]-topological group.

Remark

The [semi]-topological cannot be replaced by semi-topological as the group $G = S_{\omega}(\mathbb{Z})$ admits a shift-invariant Hausdorff topology \mathcal{T} which is incomparable with \mathcal{T}_p .

Theorem (B-G, 2011)

The group $G = S_{\omega}(X)$ is σ -discrete in any T_2 -topology turning G into a semi-topological group.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).

・ 同 ト ・ ヨ ト ・ ヨ ト

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).

- (1) - (1)

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).

・ 同 ト ・ ヨ ト ・ ヨ ト

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).

Taras Banakh, Igor Guran, Igor Protasov Algebraically determined topologies on permutation groups

イロト イポト イヨト イヨト

A group G is topologizable if G admits a non-discrete Hausdorff group topology.

Remark

Each infinite abelian group G is topologizable as G embeds in $\mathbb{T}^{|G|}$.

Problem (Markov, 1946)

Is each infinite group topologizable?

Answer

There exist:

- an uncountable non-topologizable group (Hesse, 1979);
- a countable non-topologizable group (Olshanski, 1980).

イロト イポト イヨト イヨト

Definition

For a group G

- the *Markov topology* \mathfrak{M}_G is the intersection of all Hausdorff groups topologies on G;
- the Zariski topology 3_G is generated by the subbase consisting of algebraically open sets
 {x ∈ G : a₁x^{k₁}a₂x^{k₂} ··· a_nx^{k_n} ≠ 1_G}
 where a₁,..., a_n ∈ G and k₁,..., k_n ∈ Z.

Fact

- $\mathfrak{Z}_G \subset \mathfrak{M}_G \subset \mathcal{T}$ for each group T_2 -topology \mathcal{T} on G.
- (G, \mathfrak{Z}_G) and (G, \mathfrak{M}_G) are T_1 [quasi]-topological groups.
- *G* is non-topologizable $\Leftrightarrow \mathfrak{M}_G$ is discrete $\Leftarrow \mathfrak{Z}_G$ is discrete.

Definition

For a group G

- the *Markov topology* \mathfrak{M}_G is the intersection of all Hausdorff groups topologies on G;
- the Zariski topology \mathfrak{Z}_G is generated by the subbase consisting of algebraically open sets $\{x \in G : a_1 x^{k_1} a_2 x^{k_2} \cdots a_n x^{k_n} \neq 1_G\}$

where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathfrak{Z}_G \subset \mathfrak{M}_G \subset \mathcal{T}$ for each group T_2 -topology \mathcal{T} on G.
- (G, \mathfrak{Z}_G) and (G, \mathfrak{M}_G) are T_1 [quasi]-topological groups.
- *G* is non-topologizable $\Leftrightarrow \mathfrak{M}_G$ is discrete $\Leftarrow \mathfrak{Z}_G$ is discrete.

Definition

For a group G

- the *Markov topology* \mathfrak{M}_G is the intersection of all Hausdorff groups topologies on G;
- the Zariski topology ℑ_G is generated by the subbase consisting of algebraically open sets
 {x ∈ G : a₁x^{k₁}a₂x^{k₂} ··· a_nx^{k_n} ≠ 1_G}

where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathfrak{Z}_G \subset \mathfrak{M}_G \subset \mathcal{T}$ for each group T_2 -topology \mathcal{T} on G.
- (G, \mathfrak{Z}_G) and (G, \mathfrak{M}_G) are T_1 [quasi]-topological groups.
- *G* is non-topologizable $\Leftrightarrow \mathfrak{M}_G$ is discrete $\Leftarrow \mathfrak{Z}_G$ is discrete.

Definition

For a group G

- the *Markov topology* \mathfrak{M}_G is the intersection of all Hausdorff groups topologies on G;
- the Zariski topology \mathfrak{Z}_G is generated by the subbase consisting of algebraically open sets $\{x \in G : a_1 x^{k_1} a_2 x^{k_2} \cdots a_n x^{k_n} \neq 1_G\}$

where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathfrak{Z}_G \subset \mathfrak{M}_G \subset \mathcal{T}$ for each group T_2 -topology \mathcal{T} on G.
- (G, \mathfrak{Z}_G) and (G, \mathfrak{M}_G) are T_1 [quasi]-topological groups.
- *G* is non-topologizable $\Leftrightarrow \mathfrak{M}_G$ is discrete $\Leftarrow \mathfrak{Z}_G$ is discrete.

Definition

For a group G

- the *Markov topology* \mathfrak{M}_G is the intersection of all Hausdorff groups topologies on G;
- the Zariski topology \mathfrak{Z}_G is generated by the subbase consisting of algebraically open sets $\{x \in G : a_1 x^{k_1} a_2 x^{k_2} \cdots a_n x^{k_n} \neq 1_G\}$

where $a_1, \ldots, a_n \in G$ and $k_1, \ldots, k_n \in \mathbb{Z}$.

Fact

- $\mathfrak{Z}_G \subset \mathfrak{M}_G \subset \mathcal{T}$ for each group T_2 -topology \mathcal{T} on G.
- (G, \mathfrak{Z}_G) and (G, \mathfrak{M}_G) are T_1 [quasi]-topological groups.
- G is non-topologizable $\Leftrightarrow \mathfrak{M}_G$ is discrete $\Leftarrow \mathfrak{Z}_G$ is discrete.

・ロト ・得ト ・ヨト ・ヨト

Theorem

- $\mathfrak{Z}_G = \mathfrak{M}_G$ if the group G is:
 - countable (Markov, 1946);
 - Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with $\mathfrak{M}_G \neq \mathfrak{Z}_G$ (so, \mathfrak{M}_G is discrete while \mathfrak{Z}_G is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ for each symmetric group G = S(X)?

Answer (B-G-P, 2011)

Yes: $\mathfrak{Z}_G = \mathfrak{M}_G = \mathcal{T}_p$ for each group G with $S_{\omega}(X) \subset G \subset S(X)$.

Theorem

- $\mathfrak{Z}_G = \mathfrak{M}_G$ if the group G is:
 - countable (Markov, 1946);
 - Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with $\mathfrak{M}_G \neq \mathfrak{Z}_G$ (so, \mathfrak{M}_G is discrete while \mathfrak{Z}_G is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ for each symmetric group G = S(X)?

Answer (B-G-P, 2011)

Yes: $\mathfrak{Z}_G = \mathfrak{M}_G = \mathcal{T}_p$ for each group G with $S_{\omega}(X) \subset G \subset S(X)$.

Theorem

- $\mathfrak{Z}_G = \mathfrak{M}_G$ if the group G is:
 - countable (Markov, 1946);
 - Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with $\mathfrak{M}_G \neq \mathfrak{Z}_G$ (so, \mathfrak{M}_G is discrete while \mathfrak{Z}_G is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ for each symmetric group G = S(X)?

Answer (B-G-P, 2011)

Yes: $\mathfrak{Z}_G = \mathfrak{M}_G = \mathcal{T}_p$ for each group G with $S_{\omega}(X) \subset G \subset S(X)$.

Theorem

- $\mathfrak{Z}_G = \mathfrak{M}_G$ if the group G is:
 - countable (Markov, 1946);
 - Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with $\mathfrak{M}_G \neq \mathfrak{Z}_G$ (so, \mathfrak{M}_G is discrete while \mathfrak{Z}_G is not).

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))

Is $\mathfrak{Z}_G = \mathfrak{M}_G$ for each symmetric group G = S(X)?

Answer (B-G-P, 2011)

Yes: $\mathfrak{Z}_G = \mathfrak{M}_G = \mathcal{T}_p$ for each group G with $S_\omega(X) \subset G \subset S(X)$.

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $\mathfrak{Z}_G = \mathfrak{M}_G$. Is $\mathfrak{Z}_H = \mathfrak{M}_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse's non-topologizable group H with $\mathfrak{Z}_H \neq \mathfrak{M}_H$ and using Cayley theorem, embed H into the permutation group G = S(H). Then G is a group with $\mathfrak{Z}_G = \mathfrak{M}_G$ containing the subgroup $H \subset G$ with $\mathfrak{Z}_H \neq \mathfrak{M}_H$.

| 4 同 1 4 三 1 4 三 1

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $\mathfrak{Z}_G = \mathfrak{M}_G$. Is $\mathfrak{Z}_H = \mathfrak{M}_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse's non-topologizable group H with $\mathfrak{Z}_H \neq \mathfrak{M}_H$ and using Cayley theorem, embed H into the permutation group G = S(H). Then G is a group with $\mathfrak{Z}_G = \mathfrak{M}_G$ containing the subgroup $H \subset G$ with $\mathfrak{Z}_H \neq \mathfrak{M}_H$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with $\mathfrak{Z}_G = \mathfrak{M}_G$. Is $\mathfrak{Z}_H = \mathfrak{M}_H$ for each subgroup H of G?

Answer (B-G-P, 2011)

No!

Proof.

Take Hesse's non-topologizable group H with $\mathfrak{Z}_H \neq \mathfrak{M}_H$ and using Cayley theorem, embed H into the permutation group G = S(H). Then G is a group with $\mathfrak{Z}_G = \mathfrak{M}_G$ containing the subgroup $H \subset G$ with $\mathfrak{Z}_H \neq \mathfrak{M}_H$.

伺 ト イ ヨ ト イ ヨ ト

Since the subgroup $S_{\omega}(X)$ is normal in S(X), we can consider the quotient group $S(X)/S_{\omega}(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_{\omega}(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!

・ 同 ト ・ ヨ ト ・ ヨ ト

Since the subgroup $S_{\omega}(X)$ is normal in S(X), we can consider the quotient group $S(X)/S_{\omega}(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_{\omega}(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!

・ 同 ト ・ ヨ ト ・ ヨ ト …

Since the subgroup $S_{\omega}(X)$ is normal in S(X), we can consider the quotient group $S(X)/S_{\omega}(X)$.

Problem (Giordano Bruno and Dikranjan, 2008)

Is the group $S(X)/S_{\omega}(X)$ topologizable?

Answer (B-G-P, 2011)

Yes!

伺 ト イヨト イヨト

- αX , the *Aleksandrov* one-point compactifications;
- βX , the *Čech-Stone* compactification.

Fact

Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.

Consequently, the group S(X) can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX . This identification allows us to introduce the compact-oper topologies \mathcal{T}_{α} and \mathcal{T}_{β} on S(X).

- αX , the *Aleksandrov* one-point compactifications;
- βX , the *Čech-Stone* compactification.

Fact

Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.

Consequently, the group S(X) can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX . This identification allows us to introduce the compact-oper topologies \mathcal{T}_{α} and \mathcal{T}_{β} on S(X).

同 ト イヨ ト イヨ ト

- αX , the *Aleksandrov* one-point compactifications;
- βX , the *Čech-Stone* compactification.

Fact

Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.

Consequently, the group S(X) can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX .

This identification allows us to introduce the compact-open topologies \mathcal{T}_{α} and \mathcal{T}_{β} on S(X).

直 ト イヨ ト イヨ ト

- αX , the *Aleksandrov* one-point compactifications;
- βX , the *Čech-Stone* compactification.

Fact

Each bijection $f : X \to X$ can be uniquely extended to homeomorphisms $\alpha f : \alpha X \to \alpha X$ and $\beta f : \beta X \to \beta X$.

Consequently, the group S(X) can be identified with the homeomorphisms groups $\mathcal{H}(\alpha X)$ and $\mathcal{H}(\beta X)$ of the compactifications αX and βX . This identification allows us to introduce the compact-open topologies \mathcal{T}_{α} and \mathcal{T}_{β} on S(X).

伺 ト イ ヨ ト イ ヨ ト

Fact

 $\mathcal{T}_{\alpha} = \mathcal{T}_{p}$. Consequently, $S_{\omega}(X)$ is a dense subgroup of the topological group $(S_{\omega}(X), \mathcal{T}_{\alpha}) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_{\omega}(X)$ is closed and nowhere dense in the topological group $(S(X), T_{\beta}) = \mathcal{H}(\beta X)$. Consequently, the quotient topological group $S(X)/S_{\omega}(X)$ is not discrete and thus is topologizable.

(人間) ト く ヨ ト く ヨ ト

Fact

 $\mathcal{T}_{\alpha} = \mathcal{T}_{p}$. Consequently, $S_{\omega}(X)$ is a dense subgroup of the topological group $(S_{\omega}(X), \mathcal{T}_{\alpha}) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_{\omega}(X)$ is closed and nowhere dense in the topological group $(S(X), \mathcal{T}_{\beta}) = \mathcal{H}(\beta X)$.

Consequently, the quotient topological group $S(X)/S_{\omega}(X)$ is not discrete and thus is topologizable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fact

 $\mathcal{T}_{\alpha} = \mathcal{T}_{p}$. Consequently, $S_{\omega}(X)$ is a dense subgroup of the topological group $(S_{\omega}(X), \mathcal{T}_{\alpha}) = \mathcal{H}(\alpha X)$.

Theorem (B-G-P, 2011)

The subgroup $S_{\omega}(X)$ is closed and nowhere dense in the topological group $(S(X), T_{\beta}) = \mathcal{H}(\beta X)$. Consequently, the quotient topological group $S(X)/S_{\omega}(X)$ is not discrete and thus is topologizable.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?

(日) (同) (三) (三)

A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?

イロト イポト イヨト イヨト 二日

A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

 $\begin{array}{c} \mbox{topologizable} \longrightarrow \mbox{[quasi]-topologizable} \longrightarrow \mbox{[semi]-topologizable} \\ & \downarrow & \downarrow \\ \mbox{quasi-topologizable} \longrightarrow \mbox{semi-topologizable} \end{array}$

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?

A group G is *quasi-topologizable* if G admits a Hausdorff topology turning G into a quasi-topologizable group.

 $\begin{array}{c} \mbox{topologizable} \longrightarrow \mbox{[quasi]-topologizable} \longrightarrow \mbox{[semi]-topologizable} \\ & \downarrow & \downarrow \\ \mbox{quasi-topologizable} \longrightarrow \mbox{semi-topologizable} \end{array}$

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?

< ロ > < 同 > < 回 > < 回 > 、 □ > 、 □ > ∞ □ >

T.Banakh, I.Guran, I.Protasov, Algebraically determined topologies on permutation groups, Topology Appl. 159 (2012) 2258-2268.

* * *

4 3 b

T.Banakh, I.Guran, I.Protasov, Algebraically determined topologies on permutation groups, Topology Appl. 159 (2012) 2258-2268.

Thanks!