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Permutation groups

For a set X by S(X) we denote the symmetric group,
i.e., the group all permutations (=bijections) of X.
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Permutation groups

For a set X by S(X) we denote the symmetric group,
i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)

Each group G is isomorphic to a subgroup of the symmetric group

S(G).
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Permutation groups

For a set X by S(X) we denote the symmetric group,
i.e., the group all permutations (=bijections) of X.

Symmetric groups are important because of

Theorem (Cayley, 1854)
Each group G is isomorphic to a subgroup of the symmetric group

S(G).

By a permutation group we understand a subgroup G of a
symmetric group S(X).
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The group S, (X) of finitely supported permutation

The symmetric group S(X) contains the normal subgroup S, (X)
consisting of all permutations f : X — X that have finite support

supp(f) = {x € X : f(x) # x}.
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The group S, (X) of finitely supported permutation

The symmetric group S(X) contains the normal subgroup S, (X)
consisting of all permutations f : X — X that have finite support

supp(f) = {x € X : f(x) # x}.

If supp(f) Nsupp(g) = 0, then fog =gof.
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A natural topology on permutation groups

On each permutation group G C S(X) C XX we can consider
the topology of pointwise convergence T,

inherited from the Tychonoff power XX of

X endowed with the discrete topology.
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inherited from the Tychonoff power XX of

X endowed with the discrete topology.

The topology T, turns G into a Hausdorff topological group.
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A natural topology on permutation groups

On each permutation group G C S(X) C XX we can consider
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A natural topology on permutation groups

On each permutation group G C S(X) C XX we can consider
the topology of pointwise convergence T,

inherited from the Tychonoff power XX of

X endowed with the discrete topology.

The topology T, turns G into a Hausdorff topological group.

In other words, Ty, is a Hausdorff group topology on G.

A neighborhood base of the topology 7, at the neutral element 1¢
consists of the subgroups

Ga={geG:glA=1id}

where A runs over finite subsets of X.
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Extremal properties of the topology 7,

Theorem (Dierolf-Schwanengel, 1977)

For any group G with S,(X) C G C 5(X)
the topology Tp is a minimal Hausdorff group topology on G.
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Extremal properties of the topology 7,

For any group G with S,(X) C G C 5(X)
the topology Tp is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X),
the topology Tp is the smallest Hausdorff group topology on G.
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Extremal properties of the topology 7,

Theorem (Dierolf-Schwanengel, 1977)

For any group G with S,(X) C G C 5(X)
the topology Tp is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X),
the topology Tp is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that S,(X) C G C S(X).
Is T, the smallest Hausdorff group topology on G?
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Extremal properties of the topology 7,

For any group G with S,(X) C G C 5(X)
the topology Tp is a minimal Hausdorff group topology on G.

Theorem (Gaughan, 1967)

For the group G = S(X),
the topology Tp is the smallest Hausdorff group topology on G.

Problem (Dikranjan, 2010)

Let G be a group such that S,(X) C G C S(X).
Is T, the smallest Hausdorff group topology on G?

Answer (B-G-P, 2011)
Yes!
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Various sorts of topologized groups

A group G endowed with a topology 7T is called
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Various sorts of topologized groups

A group G endowed with a topology 7T is called

@ a topological group if the binary operation
(x,y) — xy~1is continuous;
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Various sorts of topologized groups

A group G endowed with a topology 7T is called

@ a topological group if the binary operation
(x,y) — xy~1is continuous;

@ a quasi-topological group if the binary operation
(x,y) = xy~ ! is separately continuous;
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Various sorts of topologized groups

A group G endowed with a topology 7T is called

@ a topological group if the binary operation
(x,y) — xy~1is continuous;

@ a quasi-topological group if the binary operation
(x,y) = xy~ ! is separately continuous;

@ a semi-topological group if the binary operation
(x,y) — xy is separately continuous;
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Various sorts of topologized groups

A group G endowed with a topology 7T is called

@ a topological group if the binary operation
(x,y) — xy~1is continuous;

@ a quasi-topological group if the binary operation
(x,y) = xy~ ! is separately continuous;

@ a semi-topological group if the binary operation
(x,y) — xy is separately continuous;

@ a [quasi]-topological group if the binary operations
(x,y) = xy~tand (x,y) = [x,y] = xyx Ty 7!
are separately continuous;
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Various sorts of topologized groups

A group G endowed with a topology 7T is called
@ a topological group if the binary operation
(x,y) — xy~1is continuous;
@ a quasi-topological group if the binary operation
(x,y) + xy~Lis separately continuous;
@ a semi-topological group if the binary operation
(x,y) — xy is separately continuous;

a [quasi]-topological group if the binary operations
(x,y) = xy~tand (x,y) = [x,y] = xyx Ty 7!
are separately continuous;

a [semi]-topological group if the binary operations

(x,¥) = xy and (x,y) = [x,y] = xyx Ty}
are separately continuous.
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Interplay between various sorts of topologized groups

topological —— [quasi]-topological —— [semi]-topological

l !

quasi-topological ——— semi-topological
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Interplay between various sorts of topologized groups

topological —— [quasi]-topological —— [semi]-topological

l !

quasi-topological ——— semi-topological

Fact
A group G with topology T is [semi]-topological if and only if for
any a,be G

@ the shift s, : x — axb and

@ the conjugator y, : x — xax ™!

are T -continuous. )
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Main result answering the Dikranjan’s Problem

Theorem (B-G-P, 2011)

For any group G with S,(X) C G C S(X), the topology T, is the
smallest Ty-topology turning G into a [semi]-topological group.
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.
Our aim: To prove that T, C T.
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.

Our aim: To prove that T, C T.
This is trivial if X is finite. So, we assume that X is infinite.
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.

Our aim: To prove that T, C T.
This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups
Ga={geG:glA=1id}, |A <

form a neighborhood base of the topology 7, at 1g,
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.

Our aim: To prove that T, C T.
This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups
Ga={geG:glA=1id}, |A <

form a neighborhood base of the topology 7, at 1g,

while the family
{Ga:AC X, |A| =3}

is a neighborhood subbase of 7, at 1¢.
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Proof of Theorem

Let S,(X) € G C S(X) and T be a T;-topology on G such that
(G,T) is a [semi]-topological group.

Our aim: To prove that T, C T.

This is trivial if X is finite. So, we assume that X is infinite.

Observe that the subgroups
Ga={geG:glA=1id}, |A <

form a neighborhood base of the topology 7, at 1g,

while the family
{Ga:AC X, |A| =3}

is a neighborhood subbase of 7, at 1¢.
So, to prove the theorem, it suffices to check that
for each 3-element subset A C X the subgroup Ga is T-open.
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Continuation of the Proof

For each 3-element subset A C X the subgroup Gu is T -closed.
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Continuation of the Proof

For each 3-element subset A C X the subgroup Gu is T -closed.

Given any permutation g ¢ Ga, find a point a € A with g(a) # a.
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Continuation of the Proof
For each 3-element subset A C X the subgroup Gu is T -closed.

Proof.

Given any permutation g ¢ Ga, find a point a € A with g(a) # a.
Choose any b € A\ {a,g(a)} and consider the transposition

t : X — X such that supp(t) = {a, b}.
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Continuation of the Proof
For each 3-element subset A C X the subgroup Gu is T -closed.

Proof.

Given any permutation g ¢ Ga, find a point a € A with g(a) # a.
Choose any b € A\ {a,g(a)} and consider the transposition

t : X — X such that supp(t) = {a,b}. Thentog # got as

g o t(a) = g(b) while t o g(a) = g(a).
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Continuation of the Proof

For each 3-element subset A C X the subgroup Gu is T -closed.

Proof.

Given any permutation g ¢ Ga, find a point a € A with g(a) # a.
Choose any b € A\ {a,g(a)} and consider the transposition

t : X — X such that supp(t) = {a,b}. Thentog # got as

g o t(a) = g(b) while t o g(a) = g(a).

So,

U={fe€G:fot#tof} ={f€G:fotof 1t} =171(G\{t})

is a T-open neighborhood of g, which is disjoint with Gj4. O

v
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Continuation of the Proof

For some 3-element subset A C X the subgroup Gp is T -open.
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Continuation of the Proof

For some 3-element subset A C X the subgroup Gp is T -open.

Proof. Assume not. Then for each 3-element subset A C X the
subgroup Gg is not open and being closed is nowhere dense in

(G, T).
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Continuation of the Proof

For some 3-element subset A C X the subgroup Gp is T -open.

Proof. Assume not. Then for each 3-element subset A C X the
subgroup Gg is not open and being closed is nowhere dense in

(G, T).

For any 3-element subset A C X and any finite set B C X the set
G(A,B)={g € G:g(A) C B}
is closed and nowhere dense in (G, 7).
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Continuation of the Proof
For some 3-element subset A C X the subgroup Gp is T -open.

Proof. Assume not. Then for each 3-element subset A C X the
subgroup Gg is not open and being closed is nowhere dense in

(G, T).

For any 3-element subset A C X and any finite set B C X the set
G(A,B)={g € G:g(A) C B}
is closed and nowhere dense in (G, 7).

Proof. Since the set of maps A — B is finite, we can choose a
finite subset F C G(A, B) such that for each g € G(A, B) there is
f € F with flJA=g|A. Then f"1og € G4 and hence g € f o Gy.
So, G(A,B) = Jscp f 0 Ga is closed and nowhere dense as a finite
union of closed nowhere dense subspaces.

Taras Banakh, Igor Guran, Igor Protasov Algebraically determined topologies on permutation groups



Continuation of the Proof

Choose two disjoint 3-element subsets A, B C X and consider the
nowhere dense subset G(A,AUB)U G(B,AUB) in (G, T).
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Continuation of the Proof

Choose two disjoint 3-element subsets A, B C X and consider the
nowhere dense subset G(A,AUB)U G(B,AUB) in (G,T).

For any distinct points a,b € AU B let t,, € S, (X) C G be the
transposition with supp(t, ) = {a, b}.
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Continuation of the Proof

Choose two disjoint 3-element subsets A, B C X and consider the
nowhere dense subset G(A,AUB)U G(B,AUB) in (G,T).

For any distinct points a,b € AU B let t,, € S, (X) C G be the
transposition with supp(t, ) = {a, b}.

Put T={t,,:a,bec AUB}.
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Continuation of the Proof

Choose two disjoint 3-element subsets A, B C X and consider the
nowhere dense subset G(A,AUB)U G(B,AUB) in (G,T).

For any distinct points a,b € AU B let t,, € S, (X) C G be the
transposition with supp(t, ) = {a, b}.

Put T={t,,:a,bec AUB}.

For every t € T the set

Vi={ue G :uot#tou}=~(G\{t})

is T-open and contains each transposition s € T with sot # tos.
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Continuation of the Proof

Choose two disjoint 3-element subsets A, B C X and consider the
nowhere dense subset G(A,AUB)U G(B,AUB) in (G,T).

For any distinct points a,b € AU B let t,, € S, (X) C G be the
transposition with supp(t, ) = {a, b}.

Put T={t,,:a,bec AUB}.

For every t € T the set

Vi={ue G :uot#tou}=~(G\{t})

is T-open and contains each transposition s € T with sot # tos.
Then the set

Us: = ’ys_l(Vt) ={ueG: (usu_l)t % t(usu_l)}
is a T-open neighborhood of 15 and so is the intersection

U:ﬂ{Usvt:s,te T, tos#sot}.
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Continuation of the Proof

Choose a permutation v € U\ (G(A,AUB)U G(B,AU B)) and
observe that u(a), u(b) ¢ AU B for some points a € Aand b € B.
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Continuation of the Proof

Choose a permutation v € U\ (G(A,AUB)U G(B,AU B)) and
observe that u(a), u(b) ¢ AU B for some points a € Aand b € B.

Choose any point ¢ € B\ {b} and consider two non-commuting
permutations t = t, . and s = t, p.
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Continuation of the Proof

Choose a permutation v € U\ (G(A,AUB)U G(B,AU B)) and
observe that u(a), u(b) ¢ AU B for some points a € Aand b € B.

Choose any point ¢ € B\ {b} and consider two non-commuting
permutations t = t, . and s = t, p.
It follows from
-1
ue lUC Usy =, (Ve)

that the permutation v = usu™! = ~5(u) € V; and hence
vot#tov.
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Continuation of the Proof

Choose a permutation v € U\ (G(A,AUB)U G(B,AU B)) and
observe that u(a), u(b) ¢ AU B for some points a € Aand b € B.
Choose any point ¢ € B\ {b} and consider two non-commuting
permutations t = t, . and s = t, p.
It follows from

ueUC Usy = H(Ve)

that the permutation v = usu™! = ~5(u) € V; and hence
vot#tov.

On the other hand, supp(v) = u(supp(s)) = u({a, b}) does not
intersect {a, b} = supp(t, ) and hence v commutes with t.
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Continuation of the Proof

Choose a permutation v € U\ (G(A,AUB)U G(B,AU B)) and
observe that u(a), u(b) ¢ AU B for some points a € Aand b € B.
Choose any point ¢ € B\ {b} and consider two non-commuting
permutations t = t, . and s = t, p.

It follows from
ueUC Usy = H(Ve)

that the permutation v = usu™! = ~5(u) € V; and hence
vot#tov.

On the other hand, supp(v) = u(supp(s)) = u({a, b}) does not
intersect {a, b} = supp(t, ) and hence v commutes with t.

This contradiction shows that, the subgroup G4 is 7-open for
some 3-element subset A C X.
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End of the proof

For each 3-element subset B C X the subgroup Gg is T-open.
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End of the proof

For each 3-element subset B C X the subgroup Gg is T-open.

Proof. Choose any permutation f € S,(X) C G with f(A) =B
and observe that Gg = f 0 G4 o f~1 is T-open, being a two-sided
shift of the T-open subgroup Ga.
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What we have just proved

Theorem (B-G-P, 2011)

For any group G with 5,,(X) C G C S(X), the topology T, is the
smallest Ty-topology turning G into a [semi]-topological group.

Taras Banakh, Igor Guran, Igor Protasov Algebraically determined topologies on permutation groups



What we have just proved

Theorem (B-G-P, 2011)

For any group G with 5,,(X) C G C S(X), the topology T, is the
smallest Ty-topology turning G into a [semi]-topological group.

The [semi]-topological cannot be replaced by semi-topological as
the group G = S, (Z) admits a shift-invariant Hausdorff topology
T which is incomparable with 7.
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What we have just proved

Theorem (B-G-P, 2011)

For any group G with 5,,(X) C G C S(X), the topology T, is the
smallest Ty-topology turning G into a [semi]-topological group.

The [semi]-topological cannot be replaced by semi-topological as
the group G = S, (Z) admits a shift-invariant Hausdorff topology
T which is incomparable with 7.

Theorem (B-G, 2011)

The group G = S,,(X) is o-discrete in any Tp-topology turning G
into a semi-topological group.
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Each infinite abelian group G is topologizable as G embeds in TIC¢!.
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Each infinite abelian group G is topologizable as G embeds in TIC¢!.

Problem (Markov, 1946)

Is each infinite group topologizable?
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Each infinite abelian group G is topologizable as G embeds in TIC¢!.

Problem (Markov, 1946)

Is each infinite group topologizable?

There exist:

@ an uncountable non-topologizable group (Hesse, 1979);
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Topologizable groups

Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Each infinite abelian group G is topologizable as G embeds in TIC¢!.

Problem (Markov, 1946)

Is each infinite group topologizable?

There exist:

@ an uncountable non-topologizable group (Hesse, 1979);

@ a countable non-topologizable group (Olshanski, 1980).
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Zariski and Markov topologies on groups

For a group G

o the Markov topology ¢ is the intersection of all Hausdorff
groups topologies on G;
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Zariski and Markov topologies on groups

For a group G

o the Markov topology ¢ is the intersection of all Hausdorff
groups topologies on G;
o the Zariski topology 3¢ is generated by the subbase consisting
of algebraically open sets
{x € G:axFaxke ... a,xkn £ 15}
where aj,...,a, € G and ky, ..., k, € Z.
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Zariski and Markov topologies on groups

For a group G

o the Markov topology ¢ is the intersection of all Hausdorff
groups topologies on G;
o the Zariski topology 3¢ is generated by the subbase consisting
of algebraically open sets
{x € G:axFaxke ... a,xkn £ 15}
where aj,...,a, € G and ky, ..., k, € Z.

@ 36 C Mg C T for each group Ty-topology T on G.
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Zariski and Markov topologies on groups

For a group G

o the Markov topology ¢ is the intersection of all Hausdorff
groups topologies on G;
o the Zariski topology 3¢ is generated by the subbase consisting
of algebraically open sets
{x € G:axFaxke ... a,xkn £ 15}
where aj,...,a, € G and ky, ..., k, € Z.

@ 36 C Mg C T for each group Ty-topology T on G.

e (G,3¢) and (G, M) are T1 [quasi]-topological groups.
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Zariski and Markov topologies on groups

For a group G

o the Markov topology ¢ is the intersection of all Hausdorff
groups topologies on G;
o the Zariski topology 3¢ is generated by the subbase consisting
of algebraically open sets
{x € G:axFaxke ... a,xkn £ 15}
where aj,...,a, € G and ky, ..., k, € Z.

@ 36 C Mg C T for each group Ty-topology T on G.

e (G,3¢) and (G, M) are T1 [quasi]-topological groups.

@ G is non-topologizable < Mi¢ is discrete <= 3¢ is discrete.
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Coincidence of Zariski and Markov topologies

3¢ = Mg if the group G is:
@ countable (Markov, 1946);
o Abelian (Dikranjan-Shakhmatov, 2010).
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Coincidence of Zariski and Markov topologies

3¢ = Mg if the group G is:
@ countable (Markov, 1946);
o Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with M¢ # 3¢
(so, Mg is discrete while 3¢ is not).
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Coincidence of Zariski and Markov topologies

3¢ = Mg if the group G is:
@ countable (Markov, 1946);
o Abelian (Dikranjan-Shakhmatov, 2010).

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with M¢ # 3¢
(so, Mg is discrete while 3¢ is not).

v

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))
Is 3¢ = Mg for each symmetric group G = S(X)?
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Coincidence of Zariski and Markov topologies

3¢ = Mg if the group G is:
@ countable (Markov, 1946);
o Abelian (Dikranjan-Shakhmatov, 2010).

v

Theorem (Hesse, 1979)

There is an uncountable non-topologizable group G with M¢ # 3¢
(so, Mg is discrete while 3¢ is not).

v

Problem (Dikranjan-Shakhmatov, 2007 (OPIT2))
Is 3¢ = Mg for each symmetric group G = S(X)?

Answer (B-G-P, 2011)

Yes: 3¢ = Mg = Tp for each group G with S,(X) C G C S(X).
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Answering another problem of Dikranjan and Shakhmatov

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with 3¢ = Mg.
Is 3y = 9My for each subgroup H of G?
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Answering another problem of Dikranjan and Shakhmatov

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with 3¢ = Mg.
Is 3y = 9My for each subgroup H of G?

Answer (B-G-P, 2011)
No!
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Answering another problem of Dikranjan and Shakhmatov

Problem (Dikranjan-Shakhmatov, 2010)

Let G be a group with 3¢ = Mg.
Is 3y = 9My for each subgroup H of G?

Answer (B-G-P, 2011)
No!

Take Hesse's non-topologizable group H with 34 # 9ty and using
Cayley theorem, embed H into the permutation group G = S(H).

Then G is a group with 3¢ = 9 containing the subgroup H C G
with 34 # My. L]
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Topologizing the quotient group S(X)/S,(X)

Since the subgroup S, (X) is normal in S(X), we can consider the
quotient group S(X)/S,(X).

Taras Banakh, Igor Guran, Igor Protasov Algebraically determined topologies on permutation groups



Topologizing the quotient group S(X)/S,(X)

Since the subgroup S, (X) is normal in S(X), we can consider the
quotient group S(X)/S,(X).

Problem (Giordano Bruno and Dikranjan, 2008)
Is the group S(X)/S,(X) topologizable?
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Topologizing the quotient group S(X)/S,(X)

Since the subgroup S, (X) is normal in S(X), we can consider the
quotient group S(X)/S,(X).

Problem (Giordano Bruno and Dikranjan, 2008)
Is the group S(X)/S,(X) topologizable?

Answer (B-G-P, 2011)
Yes!
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Two natural topologies on S(X)

Each discrete space X has two natural compactifications:
o aX, the Aleksandrov one-point compactifications;

e X, the Cech-Stone compactification.
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Two natural topologies on S(X)

Each discrete space X has two natural compactifications:
o aX, the Aleksandrov one-point compactifications;

e X, the Cech-Stone compactification.

Each bijection f : X — X can be uniquely extended to
homeomorphisms af : aX — aX and Bf : X — BX.
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Two natural topologies on S(X)

Each discrete space X has two natural compactifications:
o aX, the Aleksandrov one-point compactifications;

e X, the Cech-Stone compactification.

Each bijection f : X — X can be uniquely extended to
homeomorphisms af : aX — aX and Bf : X — BX.

Consequently, the group S(X) can be identified with the
homeomorphisms groups H(aX) and H(5X) of the
compactifications aX and 5X.
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Two natural topologies on S(X)

Each discrete space X has two natural compactifications:
o aX, the Aleksandrov one-point compactifications;

e X, the Cech-Stone compactification.

Each bijection f : X — X can be uniquely extended to
homeomorphisms af : aX — aX and Bf : X — BX.

Consequently, the group S(X) can be identified with the
homeomorphisms groups H(aX) and H(5X) of the
compactifications aX and 5X.

This identification allows us to introduce the compact-open
topologies 7, and 7z on S(X).
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Topologies 7, and 73 on S(X)

To = Tp. Consequently, S,,(X) is a dense subgroup of the
topological group (S, (X), Ta) = H(aX).
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Topologies 7, and 73 on S(X)

To = Tp. Consequently, S,,(X) is a dense subgroup of the
topological group (S,(X), Ta) = H(aX).

Theorem (B-G-P, 2011)

The subgroup S,,(X) is closed and nowhere dense in the
topological group (S(X),Tg) = H(BX).
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Topologies 7, and 73 on S(X)

To = Tp. Consequently, S,,(X) is a dense subgroup of the
topological group (S,(X), Ta) = H(aX).

Theorem (B-G-P, 2011)

The subgroup S,,(X) is closed and nowhere dense in the
topological group (S(X),Tg) = H(BX).

Consequently, the quotient topological group S(X)/S.(X) is not
discrete and thus is topologizable.
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An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology
turning G into a quasi-topologizable group.
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An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology
turning G into a quasi-topologizable group.

topologizable —— [quasi]-topologizable —— [semi]-topologizable

l |

quasi-topologizable —— semi-topologizable
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An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology
turning G into a quasi-topologizable group.

topologizable —— [quasi]-topologizable —— [semi]-topologizable

l |

quasi-topologizable —— semi-topologizable

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.
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An Open Problem

Definition

A group G is quasi-topologizable if G admits a Hausdorff topology
turning G into a quasi-topologizable group.

topologizable —— [quasi]-topologizable —— [semi]-topologizable

l |

quasi-topologizable —— semi-topologizable

Theorem (Zelenyuk, 2000)

Each infinite group is quasi-topologizable.

Open Problem

Is each infinite group [quasi]-topologizable? [semi]-topologizable?
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