

Covering properties and products

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic, Universität Wien
<http://www.logic.univie.ac.at/~lzdomsky>

IVth Workshop on Coverings, Selections, and Games in Topology
Caserta, June 27, 2012

Selection principles (combinatorial properties of open covers)

Let \mathcal{A}, \mathcal{B} be classes of open covers of a space X .

$\bigcup_{fin}(\mathcal{A}, \mathcal{B})$: For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of elements of \mathcal{A} there is a sequence $\langle \mathcal{T}_m : m < \omega \rangle$ with each \mathcal{T}_m a finite subset of \mathcal{O}_m , and $\langle \bigcup \mathcal{T}_m : m < \omega \rangle \in \mathcal{B}$.

$S_1(\mathcal{A}, \mathcal{B})$: For each sequence $\langle \mathcal{O}_m : m < \omega \rangle$ of elements of \mathcal{A} there is a sequence $\langle \mathcal{T}_m : m < \omega \rangle$ with each $\mathcal{T}_m \in \mathcal{O}_m$ and $\langle \mathcal{T}_m : m < \omega \rangle \in \mathcal{B}$.

Similarly we define the property $S_{fin}(\mathcal{A}, \mathcal{B})$.

Various types of open covers are relevant to this discussion. A cover \mathcal{U} of a topological space X is:

- ▶ An ω -cover if $X \notin \mathcal{U}$ and for each finite set $F \subset X$ there is a $U \in \mathcal{U}$ with $F \subset U$.
- ▶ A γ -cover, if it is an infinite cover and the set $\{U \in \mathcal{U} : x \notin U\}$ is finite for all $x \in X$.

Selection principles (combinatorial properties of open covers)

Collections of *open* covers of a space X (which are ω -, γ -covers) will be denoted by $\mathcal{O}(X)$ (resp. $\Omega(X)$, $\Gamma(X)$).

Collections of *countable Borel* covers of a space X (which are ω -, γ -covers) will be denoted by $\mathcal{B}(X)$ (resp. $\mathcal{B}_\Omega(X)$, $\mathcal{B}_\Gamma(X)$)

Properties we are going to consider:

$\bigcup_{fin}(\mathcal{O}, \mathcal{O})$ (Menger); $\bigcup_{fin}(\mathcal{O}, \Omega)$ (Scheepers);
 $\bigcup_{fin}(\mathcal{O}, \Gamma)$ (Hurewicz); $S_1(\mathcal{O}, \mathcal{O})$ (Rothberger);
 $S_1(\Omega, \Gamma)$ (γ -set); Borel versions of these properties.

Relations between selection principles

$$\begin{array}{ccccccc} |X| = \omega & \rightarrow & S_1(\Omega, \Gamma) & \rightarrow & S_1(\Gamma, \Gamma) & \rightarrow & \bigcup_{fin}(\mathcal{O}, \Gamma) & \rightarrow & \bigcup_{fin}(\mathcal{O}, \Omega) \\ & & & & \nearrow \sigma\text{-comp.} & & & & \downarrow \\ & & & & & S_1(\mathcal{O}, \mathcal{O}) & \rightarrow & \bigcup_{fin}(\mathcal{O}, \mathcal{O}) \end{array}$$

because $\bigcup_{fin}(\mathcal{O}, \mathcal{A}) = \bigcup_{fin}(\Omega, \mathcal{A}) = \bigcup_{fin}(\Gamma, \mathcal{A})$
for most of the families \mathcal{A} .

Theorem (Laver 1976)

It is consistent that every $S_1(\mathcal{O}, \mathcal{O})$ set of reals is countable. □

Theorem (Z. 2005)

*If $\mathfrak{u} < \mathfrak{g}$, then $\bigcup_{fin}(\mathcal{O}, \mathcal{O}) = \bigcup_{fin}(\mathcal{O}, \Omega)$ and
 $S_1(\mathcal{O}, \mathcal{O}) \Rightarrow \bigcup_{fin}(\mathcal{O}, \Gamma)$.* □

Some examples

A subset X of \mathbb{R} is called a *Luzin* (resp. *Sierpinski*) set, if $|X| > \omega$ and $|X \cap A| \leq \omega$ for every meager (resp. measure zero) set $A \subset \mathbb{R}$.

Theorem (Rothberger 38; Just-Miller-Scheepers-Szeptycki 96)

Every Luzin set has property $S_1(\mathcal{B}, \mathcal{B})$.

Every Sierpinski has property $\bigcup_{fin}(\mathcal{B}, \mathcal{B}_\Gamma)$.

□

Theorem (Scheepers-Tall 2010)

Every ground model Lindelöf space is $S_1(O, O)$ after adding uncountably many Cohen reals.

□

Some examples, continued

If $x, y \in [\omega]^\omega$, then $x \leq^* y$ means that the set $\{n : x(n) > y(n)\}$ is finite. \mathfrak{b} -scale is an unbounded set $\{b_\alpha : \alpha < \mathfrak{b}\} \subset [\omega]^\omega$ such that the enumeration is increasing with respect to \leq^* .

Theorem (Bartoszynski-Tsaban 2006, Bartoszynski-Shelah 2001 for $n = 1$.)

Let B be a \mathfrak{b} -scale and $n \in \omega$. Then $(B \cup [\omega]^{<\omega})^n$ is $\bigcup_{fin}(\mathcal{O}, \Gamma)$. \square

A set $B = \{b_\alpha : \alpha < \kappa\} \subset [\omega]^\omega$ is a *tower* if $|b_\alpha \setminus b_\beta| < \omega$ for all $\alpha > \beta$ and B has no pseudointersection.

Theorem (A. Miller-Tsaban 2010; Scheepers 1998 under $\mathfrak{t} = \mathfrak{b}$.)

If $B = \{b_\alpha : \alpha < \mathfrak{b}\}$ is an unbounded tower (and $\mathfrak{h} = \mathfrak{b}$), then $B \cup [\omega]^\omega$ has property $S_1(\Gamma, \Gamma)$ (in all finite powers). \square

Unbounded towers exist in models of $\mathfrak{b} < \mathfrak{d}$, and hence $\mathfrak{t} = \mathfrak{b}$ is not equivalent to the existence of an unbounded tower.

Theorem (Orenstein-Tsaban 2011)

If $\mathfrak{p} = \mathfrak{b}$ and $B = \{b_\alpha : \alpha < \mathfrak{b}\}$ is an unbounded tower, then $B \cup [\omega]^\omega$ has property $S_1(\Omega, \Gamma)$. \square

Some limitations

Theorem (Sierpinski 192?; Just-Miller-Scheepers-Szeptycki 1996)

Luzin sets do not have property $\bigcup_{fin}(\mathcal{O}, \Gamma)$.

Sierpinski sets do not have property $S_1(\mathcal{O}, \mathcal{O})$.

□

Theorem (Repovš-Tsaban-Zdomskyy 2008)

If $\mathfrak{b} = \mathfrak{c}$, then there exists a \mathfrak{b} -scale B such that $B \cup [\omega]^{<\omega}$ does not have property $S_1(\Gamma, \Gamma)$.

□

Question (Scheepers)

Is there a ZFC example of a set X of reals without copies of 2^ω inside which is $\bigcup_{fin}(\mathcal{O}, \Gamma)$ but does not have property $S_1(\Gamma, \Gamma)$?

Proposition (Scheepers-Tall 2011)

The old reals do not have property $\bigcup_{fin}(\mathcal{O}, \Gamma)$ after adding ω_1 -many Cohen reals.

□

Properties of products: known results.

Theorem (Just-Miller-Scheepers-Szeptycki 1996)

Assume CH. Then

- ▶ There exists a Luzin set L such that L^2 does not have property $\bigcup_{fin}(\mathcal{O}, \mathcal{O})$;
- ▶ There exists a Sierpinski set S such that S^2 does not have property $\bigcup_{fin}(\mathcal{O}, \mathcal{O})$. □

Theorem (A. Miller-Tsaban-Z. 201?)

(CH) There exist subsets X, Y of 2^ω with property $S_1(\mathcal{B}_\Omega, \mathcal{B}_\Gamma)$ such that $X \times Y$ is not $\bigcup_{fin}(\mathcal{O}, \mathcal{O})$, i.e., it is not Menger. □

Surprisingly, but

Theorem (Barman-Dow 201?)

In any model obtained by adding $> \omega_1$ many Cohen reals over a model of CH the product of finitely many sets of reals with property $S_1(\Omega, \Gamma)$ (i.e., γ -sets) is $\bigcup_{fin}(\mathcal{O}, \mathcal{O})$.

The same conclusion follows from PFA. □

Productive spaces

Let \mathcal{P} be a property. A space X is said to be *productively* \mathcal{P} , if $X \times Y$ has property \mathcal{P} provided so does the space Y .

Theorem (A. Miller-Tsaban-Z. 201?)

Let B be a \mathfrak{b} -scale. Then

- ▶ $B \cup [\omega]^{<\omega}$ is productively $\bigcup_{fin}(\mathcal{O}, \Gamma)$ for sets of reals;
- ▶ If B is dominating (this implies $\mathfrak{b} = \mathfrak{d}$), then $B \cup [\omega]^{<\omega}$ is productively $\bigcup_{fin}(\mathcal{O}, \Omega)$ for sets of reals;
- ▶ If B is dominating or $\mathfrak{b} < \mathfrak{g}$, then $B \cup [\omega]^{<\omega}$ is productively $\bigcup_{fin}(\mathcal{O}, \mathcal{O})$ for sets of reals;
- ▶ In Miller's model, $B \cup [\omega]^{<\omega}$ is productively $S_1(\mathcal{O}, \mathcal{O})$ for sets of reals.
- ▶ If $\mathfrak{b} = \omega_1$ and B is an unbounded tower, then $B \cup [\omega]^{<\omega}$ is productively* $S_1(\Omega, \Gamma)$.
- ▶ If B is an unbounded tower and X is $S_1(\mathcal{B}_\Gamma, \mathcal{B}_\Gamma)$, then $(B \cup [\omega]^{<\omega}) \times X$ is $S_1(\Gamma, \Gamma)$.

□

Proof of the Hurewicz case

Base of the standard topology on $\mathcal{P}(\omega)$ consists of the sets $O(s, l) = \{b \subset \omega : b \cap [0, l) = s\}$, where $l \in \omega$ and $s \subset [0, l)$.

Base of the standard topology on $\mathcal{P}(\omega)$ at $a \subset \omega$ consist of the sets $O(a \cap [0, l), l)$, where $l \in \omega$.

Recall from the Boaz' talk:

Let $\mathcal{U} = \langle U_n : n \in \omega \rangle$ be an ω -cover of $[\omega]^{<\omega}$. Then there are increasing sequences $\langle a(k) : n \in \omega \rangle$ and $\langle n(k) : k \in \omega \rangle$ such that *if $a \subset \omega$ has empty intersection with $[a(k), a(k + 1))$, then $a \in U_{n(k)}$.*

These sequences can be constructed by induction: Given $a(k)$, let $n(k)$ be such that $U_{n(k)} \supset \mathcal{P}([0, a(k)))$.

For every $s \subset [0, a(k))$ find $l_s \in \omega$ such that $O(s, l_s) \subset U_{n(k)}$. Let $a(k + 1)$ be any upper bound of $\{l_s : s \subset [0, a(k))\}$.

Proof of the Hurewicz case, continued

Let $\mathcal{U} = \langle U_n : n \in \omega \rangle$ be an ω -cover of $[\omega]^{<\omega}$. Set $a_{\mathcal{U}}(0) = 0$. Recursively construct increasing sequences $\langle a_{\mathcal{U}}(k) : n \in \omega \rangle$ and $\langle n_{\mathcal{U}}(k) : k \in \omega \rangle$ such that

1. $n_{\mathcal{U}}(k)$ is the minimal natural number m such that $\mathcal{P}([0, a_{\mathcal{U}}(k)]) \subset U_m$; and
2. $a_{\mathcal{U}}(k+1)$ is the minimal natural number l such that if $a \subset \omega$ has empty intersection with $[a_{\mathcal{U}}(k), l)$, then $a \in U_{n_{\mathcal{U}}(k)}$.

Suppose that Y has the property $\bigcup_{\text{fin}}(O, \Gamma)$ and $\langle \mathcal{U}_m : m \in \omega \rangle$ is a sequence of ω -covers of $(B \cup Q) \times Y$ by clopen subsets of $2^\omega \times 2^\omega$, where $\mathcal{U}_m = \langle U_{m,n} : n \in \omega \rangle$ and $U_{m,n} = V_{m,n} \times W_{m,n}$.

For every subset A of $2^\omega \times 2^\omega$ and $t \in 2^\omega$ set

$A^t = \{x : (x, t) \in A\}$. Set also $\mathcal{U}_m^y = \langle U_{m,n}^y : n \in \omega \rangle$ for every $y \in Y$ and note that $U_{m,n}^y$ is either $V_{m,n}$ or \emptyset depending on whether $y \in W_{m,n}$ or $y \notin W_{m,n}$, respectively.

Consider the map $\varphi : Y \rightarrow \omega^\omega$, $\varphi(y)(k) = n_{\mathcal{U}_k^y}(k+1)$. It is continuous.

Since Y is Hurewicz, there exists $b \in \omega^\omega$ such that $\varphi(y) \leq^* b$ for all $y \in Y$.

Let $\beta < \mathfrak{b}$ be such that $K := \{k : b(k) < b_\beta(k)\}$ is infinite. Set $O_k = \bigcup_{i \leq b(k)} U_{k,i}$. We claim that $\{O_k : k \in K\}$ is a γ -cover of $\{b_\alpha : \alpha \geq \beta\} \times Y$.

Proof of the Hurewicz case, continued

Indeed, let us fix $\alpha \geq \beta$ and $y \in Y$. It is enough to show that if $b_\alpha(k) > b(k)$ and $b(k) > \varphi(y)(k) = n_{\mathcal{U}_k^y}(k+1)$, then $(b_\alpha, y) \in O_k$.

Given such a $k \in K$, observe that there exists $j \leq k$ such that $[n_{\mathcal{U}_k^y}(j), n_{\mathcal{U}_k^y}(j+1)) \cap b_\alpha = \emptyset$, and hence $b_\alpha \in U_{k, n_{\mathcal{U}_k^y}(j)}^y$. The

latter means that $(b_\alpha, y) \in U_{k, n_{\mathcal{U}_k^y}(j)}$.

Since $b(k) > n_{\mathcal{U}_k^y}(k+1) > n_{\mathcal{U}_k^y}(j)$, we conclude that $(b_\alpha, y) \in O_k$, which finishes our proof of the fact that $\{O_k : k \in K\}$ is a γ -cover of $\{b_\alpha : \alpha \geq \beta\} \times Y$.

The last slide

Thank you for your attention.