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Terminology.

Throughout this talk we deal with subsets of the Cantor space
2ω with the standard topology, measure and modulo 2
coordinatewise addition denoted by +.
M — σ ideal of meager subsets of 2ω.
N — σ ideal of measure zero subsets of 2ω
E — σ ideal generated by Fσ measure zero sets in 2ω.
M ∩N — σ ideal of sets that are inM and in N .
Suppose that I and J are σ-ideals of subsets in 2ω with I ⊆ J.
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Definition 1

Definition 1

Definition 1
We shall say that X is I additive (X ∈ I ∗) iff

X +A = {x + a ∶ x ∈ X , a ∈ A} ∈ I ,

for any set A ∈ I . X ∈ (I , J)∗ iff for every set A ∈ I , X +A ∈ J.



A note on the translates of sets contained in the intersection idealM ∩N

Theorem 2

Theorem 2

Theorem 2 (Bartoszyński–Judah–Shelah)

X ∈M∗ iff ∀f ∈ ωω
↑

∃g ∈ ωω
↑ and y ∈ 2ω such that for every

x ∈ X
∀∞n ∃k g(n) ≤ f (k) < f (k + 1) ≤ g(n + 1),

and
x ↾ [f (k), f (k + 1)) = y ↾ [f (k), f (k + 1)).
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Theorems 3, 4 and Corollary 5

Theorems 3, 4 and Corollary 5

Theorem 3
M∗ ⊆ E∗.

The following theorem is quite surprising.

Theorem 4 (Zindulka, 2010)

If X ∈ E∗, then X ∈M∗.

Corollary 5 (Zindulka, 2010)

E∗ =M∗.
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Theorems 3, 4 and Corollary 5

This talk was inspired by the above results of Zindulka, and it
consists of three parts.

1 We show that Theorem 4 with a slightly weaker
assumption on X does not hold.

2 We consider relations between various ideals defined in
terms of translations of sets that belong to the
intersection idealM ∩N .

3 We construct a “new” perfecty meager in the transitive
sense subset of 2ω.

Let Pℵ2 be the ℵ2 iteration of the Cohen forcing (with finite
supports) over a model V of GCH. Suppose that G is a
generic filter in Pℵ2 over V .
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Theorem 6

Theorem 6

Theorem 6
There exists a set X ∈ V [G ], ∣X ∣ < c, which is not meager
additive, and such that for every F ∈ E , X + F ∈M ∩N .

Proof.
We construct in V , two sets X and Y which are strongly
meager (in V ), and such that X +Y = 2ω ∩V . Then we show
that X + F is meager for every F ∈ E ∩V [G ]. Notice that
X + F is measure zero, since every subset of 2ω of small
cardinality has strong measure zero.
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Theorem 7

Theorem 7

Suppose now that → denotes the inclusion and ↚ means that
the reverse inclusion can not be proved in ZFC.

Theorem 7
The following diagram of inclusions holds.

(M ∩N )∗

��

//
(E ,M ∩N )∗/oo

/nnnnnn

wwnnnnnn

E∗ =M∗

/
OO 77nnnnnnnnnnnn
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Theorem 7

Proof.
By Theorem 6 above we have that
E∗ =M∗ ↚ (E ,M ∩N )∗.
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Claim 8

Claim 8

Claim 8 (CH)

There exists a γ set X such that X ∉ (M ∩N )∗. As a
consequence we obtain

E∗ ↛ (M ∩N )∗, and (E ,M ∩N )∗ ↛ (M ∩N )∗.

Next fact contrasts with Theorem 6 above.
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Claim 9

Claim 9

Claim 9
(M ∩N ,M)∗ → E∗ =M∗.

Proof.
For f ∈ ωω

↑ , we construct a large set A ∈M ∩N such that
“X +A ∈M" implies that X satisfies the above
Bartoszyński–Judah–Shelah characterization of a set
inM∗.

This provides the proof of the inclusion
(M ∩N )∗ → E∗ =M∗.

Since N ∗ →M∗ (Shelah), it seems natural to ask the
following question.
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Problems 10, 11

Problems 10, 11

Problem 10
Is it consistent with ZFC that the class (M ∩N )∗ contains
sets that are not in N ∗?

And if the answer is “yes”.

Problem 11
Find characterization of sets in (M ∩N )∗ in terms of infinite
combinatorics on ω.

Also assuming that (M ∩N )∗ is a wider class than N ∗,
one might ask the following.
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Problems 12 and Definition 13

Problems 12 and Definition 13

Problem 12
Is there a property P (defined in terms of selections) which is
weaker than “strongly γ”, and such that all sets satisfying P
belong to (M ∩N )∗?

In relation to a certain problem of M. Scheepers the
following notion of a subset of 2ω was defined.

Definition 13
X ⊆ 2ω is called a set perfectly meager in the transitive sense
(an AFC ′ set) iff for every perfect set D, there exists an Fσ set
F , with X ⊆ F , such that for every t ∈ 2ω, (F + t) ∩D is
meager in the relative topology of D.
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Fact 14 and Remark 15

Fact 14 and Remark 15

Fact 14
AFC ′ ⊊ PM (perfectly meager sets). Examples of AFC ′ sets:
strongly meager sets,M∗ sets, in particular strongly measure
zero sets with the Hurewicz property, carefully constructed
scales identified with subsets of 2ω by characteristic functions.

Remark 15
A set X constructed in the proof of Theorem 6 is an AFC ′ set.

Notice that X is not strongly meager (Carlson’s theorem),
and it neither belongs toM∗ nor it is equal to a scale (in the
Cohen real model:
∀f ∈ V [G ] ∩ ωω ∃g ∈ V ∩ ωω ∃∞n f (n) < g(n)).
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Definition 16 and Problem 17

Definition 16 and Problem 17

Definition 16 (Kraszewski)

X ⊆ 2ω is called an everywhere meager set (an EM set) iff for
any infinite a ⊆ ω, the set {x ↾ a ∶ x ∈ X} ⊆ 2a is a meager
subset of 2a.

X ∈ EM iff X +A is meager for every set A of the form
{x ∈ 2ω ∶ x ↾ a ≡ O}, where a is an infinite subset of ω.

It is easy to see that all AFC ′ sets mentioned above,
including a “new” AFC ′ set X (see Remark 15), are in EM.
Thus the following question of Kraszewski remains open.

Problem 17
Is there an AFC ′ set which is not a member of the class EM?
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