Tomasz Weiss

Institute of Mathematics, University of Natural Sciences and Humanites 08-110 Siedlce, Poland, E-mail: tomaszweiss@o2.pl

ション ふゆ アメリア メリア しょうくしゃ

Terminology.

Throughout this talk we deal with subsets of the Cantor space 2^{ω} with the standard topology, measure and modulo 2 coordinatewise addition denoted by +.

$$\begin{split} \mathcal{M} & -\sigma \text{ ideal of meager subsets of } 2^{\omega}. \\ \mathcal{N} & -\sigma \text{ ideal of measure zero subsets of } 2^{\omega} \\ \mathcal{E} & -\sigma \text{ ideal generated by } F_{\sigma} \text{ measure zero sets in } 2^{\omega}. \\ \mathcal{M} \cap \mathcal{N} & -\sigma \text{ ideal of sets that are in } \mathcal{M} \text{ and in } \mathcal{N}. \\ \text{Suppose that } I \text{ and } J \text{ are } \sigma \text{-ideals of subsets in } 2^{\omega} \text{ with } I \subseteq J. \end{split}$$

Definition 1

Definition 1

Definition 1

We shall say that X is I additive $(X \in I^*)$ iff

$$X + A = \{x + a : x \in X, a \in A\} \in I,$$

for any set $A \in I$. $X \in (I, J)^*$ iff for every set $A \in I$, $X + A \in J$.

ション ふゆ アメリア メリア しょうくしゃ

-Theorem 2

Theorem 2

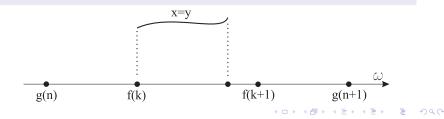
Theorem 2 (Bartoszyński–Judah–Shelah)

 $X\in\mathcal{M}^*\text{ iff }\forall f\in\omega^{\omega^\dagger}\,\exists g\in\omega^{\omega^\dagger}\text{ and }y\in2^\omega\text{ such that for every }x\in X$

$$\forall_n^{\infty} \exists k \ g(n) \leq f(k) < f(k+1) \leq g(n+1),$$

and

$$x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1)).$$



- Theorems 3, 4 and Corollary 5

Theorems 3, 4 and Corollary 5

Theorem 3

 $\mathcal{M}^* \subseteq \mathcal{E}^*.$

The following theorem is quite surprising.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 4 (Zindulka, 2010)

If $X \in \mathcal{E}^*$, then $X \in \mathcal{M}^*$.

Corollary 5 (Zindulka, 2010)

 $\mathcal{E}^* = \mathcal{M}^*.$

└─ Theorems 3, 4 and Corollary 5

This talk was inspired by the above results of Zindulka, and it consists of three parts.

- We show that Theorem 4 with a slightly weaker assumption on X does not hold.
- 2 We consider relations between various ideals defined in terms of translations of sets that belong to the intersection ideal *M* ∩ *N*.
- We construct a "new" perfecty meager in the transitive sense subset of 2^ω.

Let \mathbb{P}_{\aleph_2} be the \aleph_2 iteration of the Cohen forcing (with finite supports) over a model V of GCH. Suppose that G is a generic filter in \mathbb{P}_{\aleph_2} over V.

└─ Theorem 6

Theorem 6

Theorem 6

There exists a set $X \in V[G]$, $|X| < \mathfrak{c}$, which is not meager additive, and such that for every $F \in \mathcal{E}$, $X + F \in \mathcal{M} \cap \mathcal{N}$.

Proof.

We construct in V, two sets X and Y which are strongly meager (in V), and such that $X + Y = 2^{\omega} \cap V$. Then we show that X + F is meager for every $F \in \mathcal{E} \cap V[G]$. Notice that X + F is measure zero, since every subset of 2^{ω} of small cardinality has strong measure zero. -Theorem 7

Theorem 7

Suppose now that \rightarrow denotes the inclusion and \nleftrightarrow means that the reverse inclusion can not be proved in ZFC.

Theorem 7

The following diagram of inclusions holds.

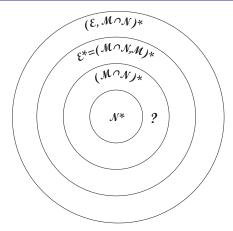
$$(\mathcal{M} \cap \mathcal{N})^* \xrightarrow{\leftarrow} (\mathcal{E}, \mathcal{M} \cap \mathcal{N})^*$$

$$\downarrow^{\uparrow}$$

$$\mathcal{E}^* = \mathcal{M}^*$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

└─ Theorem 7



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

By Theorem 6 above we have that $\mathcal{E}^* = \mathcal{M}^* \nleftrightarrow (\mathcal{E}, \mathcal{M} \cap \mathcal{N})^*.$

Claim 8

Claim 8

Claim 8 (CH)

There exists a γ set X such that $X \notin (\mathcal{M} \cap \mathcal{N})^*$. As a consequence we obtain

$$\mathcal{E}^* \nrightarrow (\mathcal{M} \cap \mathcal{N})^*, \text{ and } (\mathcal{E}, \mathcal{M} \cap \mathcal{N})^* \nrightarrow (\mathcal{M} \cap \mathcal{N})^*.$$

ション ふゆ アメリア メリア しょうくしゃ

Next fact contrasts with Theorem 6 above.

Claim 9

Claim 9

Claim 9

$$(\mathcal{M} \cap \mathcal{N}, \mathcal{M})^* \to \mathcal{E}^* = \mathcal{M}^*.$$

Proof.

For $f \in \omega^{\omega^{\dagger}}$, we construct a large set $A \in \mathcal{M} \cap \mathcal{N}$ such that " $X + A \in \mathcal{M}$ " implies that X satisfies the above Bartoszyński–Judah–Shelah characterization of a set in \mathcal{M}^* .

This provides the proof of the inclusion $(\mathcal{M} \cap \mathcal{N})^* \to \mathcal{E}^* = \mathcal{M}^*.$ Since $\mathcal{N}^* \to \mathcal{M}^*$ (Shelah), it seems natural to ask the

following question.

Problems 10, 11

Problems 10, 11

Problem 10

Is it consistent with ZFC that the class $(\mathcal{M} \cap \mathcal{N})^*$ contains sets that are not in \mathcal{N}^* ?

And if the answer is "yes".

Problem 11

Find characterization of sets in $(\mathcal{M} \cap \mathcal{N})^*$ in terms of infinite combinatorics on ω .

Also assuming that $(\mathcal{M} \cap \mathcal{N})^*$ is a wider class than \mathcal{N}^* , one might ask the following.

Problems 12 and Definition 13

Problems 12 and Definition 13

Problem 12

Is there a property \mathbb{P} (defined in terms of selections) which is weaker than "strongly γ ", and such that all sets satisfying \mathbb{P} belong to $(\mathcal{M} \cap \mathcal{N})^*$?

In relation to a certain problem of M. Scheepers the following notion of a subset of 2^{ω} was defined.

Definition 13

 $X \subseteq 2^{\omega}$ is called a set *perfectly meager in the transitive sense* (an *AFC'* set) iff for every perfect set *D*, there exists an F_{σ} set *F*, with $X \subseteq F$, such that for every $t \in 2^{\omega}$, $(F + t) \cap D$ is meager in the relative topology of *D*. Fact 14 and Remark 15

Fact 14 and Remark 15

Fact 14

 $AFC' \not\subseteq PM$ (perfectly meager sets). Examples of AFC' sets: strongly meager sets, \mathcal{M}^* sets, in particular strongly measure zero sets with the Hurewicz property, carefully constructed scales identified with subsets of 2^{ω} by characteristic functions.

Remark 15

A set X constructed in the proof of Theorem 6 is an AFC' set.

Notice that X is not strongly meager (Carlson's theorem), and it neither belongs to \mathcal{M}^* nor it is equal to a scale (in the Cohen real model: $\forall f \in V[G] \cap \omega^{\omega} \exists g \in V \cap \omega^{\omega} \exists_n^{\infty} f(n) < g(n)$). Definition 16 and Problem 17

Definition 16 and Problem 17

Definition 16 (Kraszewski)

 $X \subseteq 2^{\omega}$ is called an *everywhere meager* set (an \mathcal{EM} set) iff for any infinite $a \subseteq \omega$, the set $\{x \upharpoonright a : x \in X\} \subseteq 2^a$ is a meager subset of 2^a .

 $X \in \mathcal{EM}$ iff X + A is meager for every set A of the form $\{x \in 2^{\omega} : x \upharpoonright a \equiv \mathbb{O}\}$, where a is an infinite subset of ω .

It is easy to see that all AFC' sets mentioned above, including a "new" AFC' set X (see Remark 15), are in \mathcal{EM} . Thus the following question of Kraszewski remains open.

Problem 17

Is there an AFC' set which is not a member of the class $\mathcal{EM}?$

References

- T. Bartoszyński and H. Judah, *Set Theory*, A. K. Peters Ltd., Wellesley, MA, 1995.
- J. Kraszewski, Everywhere meager and everywhere null sets, Houston Journal of Mathematics, Volume 35, No.1. 2009, 103–111.
- **T. Weiss**, A note on the translates of sets contained in the intersection ideal $\mathcal{M} \cap \mathcal{N}$, preprint 2012.
- **O. Zindulka**, *Small sets of reals through the prism of fractal dimensions*, preprint, 2010.