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Almost disjoint family (of countable sets)

Definition

Let κ ≥ ω be a cardinal number. An infinite family A of countably
infinite subsets of κ (A ⊂ [κ]ω) is an almost disjoint family
provided A 6= A′ in A ⇒ A ∩ A′ is finite.



Maximal ADF

Definition

An almost disjoint family A is called maximal provided A is not
properly contained in any other almost disjoint family.



Mrówka’s ψ-space, generalized

Definition

Let ψ(κ,A) denote the space with underlying set κ ∪ A and with
the topology having as a base all singletons {α} for α < κ and all
sets of the form {A} ∪ (A \ F ) where A ∈ A and F is finite.

For the case κ = ω, and A maximal, ψ(ω,A) is the well known
space of S. Mrówka which he denoted N ∪R, and denoted by Ψ in
the book by Gillman and Jerison, “Rings of Continuous Functions.”
For A not necessarily maximal, this space was considered earlier by
Alexandorff-Urysohn and by M. Katětov.
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ψ is first countable, locally compact



ψ is Hausdorff



ψ is Hausdorff and zero-dimensional



Stone-Čech compactification

If X is a space and f : X → R continuous, we call the set
f −1(0) ⊂ X a zero set of X .

For a T3 1
2
-space X the Stone-Čech compactification of X (denoted

βX ) is that compact space containing X as a dense subset and
that satisfies the condition that disjoint zero sets in X have disjoint
closures in βX .
This is equivalent to the statement that every continuous
f : X → R, has a continuous extension f : βX → R.
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αψ: the one-point compactification



Mrówka’s Theorem

Theorem (Mrówka, 1977)

There exists MADF M⊂ ω satisfying |βψ(ω,M) \ ψ(ω,M)| = 1

βψ = αψ.

We generalized this to

Theorem (D-V)

If κ ≤ c, then there exists MADF M⊂ [κ]ω satisfying
|βψ(κ,M) \ ψ(κ,M)| = 1
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κ > c?

But “|βψ \ ψ| = 1” does not generalize for κ > c:

Theorem (D-V)

For every κ > c, and for every M⊂ [κ]ω MADF,
|βψ(κ,M)) \ ψ(κ,M)| ≥ ω

√
κ ≥ c+.



Extending Mrówka’s Theorem for κ > c

Definition of Mrówka MADF for all κ ≥ ω:

(1) For κ ≤ c, M is called a Mrówka MADF if |βψ \ ψ| = 1

Since κ > c, implies |βψ \ ψ| 6= 1, it is not immediately obvious if
a definition of Mrówka MADF is warranted for κ > c. However, we
discovered that the following definition leads to some interesting
results and extends (1):

(2) For κ > c, M is called a Mrówka MADF if for every
continuous f : ψ → R there exists r ∈ R such that

|ψ(κ,M) \ f −1(r)| < |M| = |ψ|.
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Definition of Mrówka MADF for all κ ≥ ω

This gives us a definition of Mrówka MADF for all κ ≥ ω:

(1) For κ ≤ c, M is called a Mrówka MADF if |βψ \ ψ| = 1
(2) For κ > c, M is called a Mrówka MADF if for every continuous
f : ψ → R there exists r ∈ R such that |ψ(κ,M) \ f −1(r)| < |M|.

Indeed (1) implies (2): If M satisfies (1), let p =∞ be the unique
point in the reminder. Given continuous f : ψ → R let f : βψ → R
be the continuous extension of f . Define r = f (p). Then

ψ \ f
−1

(r) =
⋃

n{ψ \ f −1((r − 1
n , r + 1

n ))} is a countable union of
sets of finite convergent sequences, hence

|ψ \ f −1(r)| ≤ ω < |M| = |ψ|.
So (2) holds.
But since (1) implies a stronger condition that (2), we state the
definition of “Mrówka MADF” in two parts.
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κ > c: Existence of a Mrówka MADF and a special p at
infinity

For κ > c, |βψ \ ψ| 6= 1, yet for Mrówka MADFs M⊂ [κ]ω, there
is still a special point p ∈ βψ \ ψ. Since κ > c implies
|βψ \ ψ| 6= 1, p is not as special as {p} = βψ \ ψ.



Special point in the remainder

Theorem (SCH for κ > c)

For every cardinal κ ≥ ω, and every Mrówka M⊂ [κ]ω MADF,
there is a point p ∈ βψ \ ψ having a clopen local base in βψ.

Moreover, if cf (κ) > ω and κ is not the successor of a cardinal of
countable cofinality, then p is a P(cf (κ))-point in βψ (hence at
least a P-point).

If κ is a regular cardinal (i.e., κ = cf (κ)), then p is a simple
P(κ)-point in βψ.

Otherwise (i.e.,cf (κ) = ω or κ = λ+ and cf (λ) = ω), then p is not
even a weak P-point in βψ or βψ \ ψ.
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Summary

Summary: For every Mrówka MADF, in the Stone-Čech remainder
of the associated ψ-space, there is a point with a clopen
neighborhood base.

Using a result of Jun Terasawa, such a space βψ need not be zero
dimensional.
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Mrówka’s Theorem (attributed)

Theorem (attributed to S. Mrowka by J. Terasawa)

There exists a M⊂ [ω]ω MADF such that βψ \ ψ ∼= (ω1 + 1) with
the order topology.

Question: What ordinals (other than 1 and ω1 + 1) can be
reminders of a ψ-space?
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Ordinal remainders of ψ-spaces

Which ordinals, with the order topology, can be Stone-Čech
remainders of ψ-spaces? Our results:

Theorem (D-V)

If κ ≤ c then for every ordinal δ < κ+ there exists Mδ ⊂ [κ]ω, a
MADF, such that βψ(κ,Mδ) \ ψ(κ,Mδ) is homeomorphic to
δ + 1.

Theorem (D-V)

For κ = c+, βψ(κ,Mδ) \ ψ(κ,Mδ) is homeomorphic to δ + 1 if
and only if c+ ≤ δ < c+ · ω.

Theorem (D-V)

If κ > c+, then no ψ(κ,M) has any ordinal as a Stone-Čech
remainder.
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Ordinal remainders of ψ-spaces

Summary:

For κ above c, no more one-point Stone-Čech remainders of
ψ-spaces. Above c+, no more ordinal remainders.



tower

Now let us ask about ordinal remainders in the classical case
κ = ω: Mrówka’s original class of ψ-space. We need to define the
tower number.



Mod-finite increasing chain

Mod-finite increasing chain: β < α implies Tβ <
∗ Tα
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tower

A mod-finite increasing chain in a set X is a tower in X if it is
maximal in the sense that for all H <∗ X it is not the case that
Tα ⊂∗ H for all α.

Definition

The tower number, denoted t, is defined to the the smallest
cardinality of a tower on ω.

t is a “small uncountable cardinal,” ω1 ≤ t ≤ c
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Theorem

Theorem (D-V)

For every λ < t+, there exists M⊂ [ω]ω a MADF such that
βψ \ ψ is homeomorphic to λ+ 1.

This implies the theorem attributed to Mówka by Terasawa
because ω1 ≤ t hence ω1 < t+.
Moreover, the theorem is best possible in ZFC in the sense that (it
is consistent that) it is not true that the ordinal t+ + 1 can be a
remainder of a ψ space over ω.
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Another result regarding the classical case κ = ω

Recall, the cardinal a is the smallest cardinality of a MADF on ω.

ω1 ≤ a ≤ c

a is one of many “small uncountable cardinals.”



Cardinality of f −1(r)

Let f : ψ → R. A fiber of f is any set of the form f −1(r).
The cardinality of fibers is important in the definition of Mrówka
MADF, where for every f there is r ∈ R such that
|ψ \ f −1(r)| < |M|, which is stronger than saying |f −1(r)| = |M|.
A fiber f −1(r) is full means that |f −1(r)| = |M| = |ψ|.

Question: Does every continuous real valued function on a ψ-space
(on ω) always have at least one “full” fiber.



Cardinality of f −1(r)

Theorem (D-V)

The following are equivalent
(i) There exists a MADF M⊂ [ω]ω, |M| = c, and there exists
continuous f : ψ → [0, 1] such that for every r ∈ [0, 1],
|f −1(r)| < c = |M| (i.e., f does not have a full fiber).

(ii) a < c.
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(ii) implies (i)

Assume a < c and construct M, and f .

Step 1: Show that every countable pairwise disjoint family
P ⊂ [ω]ω is a subset of some MADF M with |M| = a.
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(ii) implies (i)

We now use the MADF A which has cardinality a

Pick distinct An ∈ A for all n ∈ ω. By removing a finite set Fn

from each An, We get that the sets An \ Fn are pairwise disjoint.
Then A \ {An : n ∈ ω}

⋃
{An \ Fn : n ∈ ω} is also a MADF with

|A| = a. Denote this slightly revised version of A by the same
name A.
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(ii) implies (i)

Step 2: Think of the countable set ω as being Q ∩ [0, 1], the set of
rational numbers in [0, 1]. Then for each r ∈ [0, 1] there is an ADF
Mr ⊂ [Q ∩ [0, 1]]ω such that |Mr | = a, every M ∈Mr converges
to r (in the usual sense in [0, 1]) and Mr satisfies the following
maximal condition:

(*) For every C ∈ [Q ∩ [0, 1]]ω, if C converges to r , then there
exists M ∈Mr such that M ∩ C is infinite.
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(ii) implies (i)

Let P denote the set of all infinite members of {Pi : i ≥ 1}. By
Step 1, there is an MADF M⊂ Q ∩ [0, 1] such that M⊃ P, and
|M| = a. Put

Mr =M\P
Check that Mr has the required properties: First, M ∈Mr

converges to r because M ∩ Pi is finite for all i ∈ ω. Second, to see
that Mr has the required maximal property, let C be a sequence
of rationals converging to r . There exists M ∈M such that
M ∩ C is infinite because M is a MADF. But why is M ∈M \ P?

Since C converges to r , C ∩ Pi is finite for all Pi ; so

M ∈M \ P =Mr .
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Step 3: Then M =
⋃

r∈[0,1]Mr has cardinality c. Next we
construct the desired function f . Define

f : ψ(Q ∩ [0, 1],M)→ [0, 1]

by taking f to be the identity on Q∩ [0, 1], and for M ∈M, define
f (M) = r where M ∈Mr .

To check continuity of f it suffices to check that whenever a
sequence in Q ∩ [0, 1] converges to a non-isolated point A ∈M,
then the image of the sequence converges to the image of the
point A in [0, 1] (sequentially continuous).
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Thus f is sequentially continuous, hence continuous.
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Finally we show that every r ∈ [0, 1], |f −1(r)| < c = |M|.

Because f is one-to-one on Q ∩ [0, 1], the set of isolated points in
ψ, and for r irrational, f −1(r) =Mr and |Mr | = a < c (the
inequality is the hypothesis of (ii)). Thus |f −1(r)| ≤ a < c for all
r ∈ [0, 1]. �
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ψ, and for r irrational, f −1(r) =Mr and |Mr | = a < c (the
inequality is the hypothesis of (ii)). Thus |f −1(r)| ≤ a < c for all
r ∈ [0, 1]. �



Mrówka’s papers on ψ(ω,M) (i.e., N ∪R)

The theorem we call Mrówka’s Theorem is contained in his 1977
paper which refers to two of his earlier papers:

S. Mrówka, On completely regular spaces, Fund. Math. 41
(1954) 105-106.

S. Mrówka, Some comments on the author’s example of an
non-R-compact space, Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astronom. Phys. 18 (1970) 443-448.

S. Mrówka, Some set-theoretic constructions in topology,
Fund. Math. 94 (1977) 83-92.



D-V papers on ψ plus Terasawa

Alan Dow and Jerry E. Vaughan, Mrówka maximal almost
disjoint families for uncountable cardinals, Topology and Appl.
157 (2010), 1379-1394.

Alan Dow and Jerry E. Vaughan, Ordinal Remainders of
ψ-spaces, Topology and Appl. 158, Issue 14 (1 September
2011) 1852-1857.

Alan Dow and Jerry E. Vaughan, Ordinal remainders of
classical ψ-spaces, Fund. Math. (to appear).

Jun Terasawa, Spaces N ∪R and their dimensions, Topology
and its Applications 11 (1980) 93-102.
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