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Almost disjoint family (of countable sets)

Definition

Let k > w be a cardinal number. An infinite family A of countably
infinite subsets of k (A C [k]¥) is an almost disjoint family
provided A# A" in A= AN A’ is finite.




Maximal ADF

Definition

An almost disjoint family A is called maximal provided A is not
properly contained in any other almost disjoint family.




Mréwka's 1)-space, generalized

Definition

Let ¥(k,.A) denote the space with underlying set x U .4 and with
the topology having as a base all singletons {a} for a < k and all
sets of the form {A} U (A\ F) where A € A and F is finite.
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sets of the form {A} U (A\ F) where A € A and F is finite.

For the case kK = w, and A maximal, ¥(w,.A) is the well known
space of S. Mréwka which he denoted N UR, and denoted by WV in
the book by Gillman and Jerison, “Rings of Continuous Functions.”



Mréwka's 1)-space, generalized

Definition

Let ¥(k,.A) denote the space with underlying set x U .4 and with

the topology having as a base all singletons {a} for a < k and all
sets of the form {A} U (A\ F) where A € A and F is finite.

For the case kK = w, and A maximal, ¥(w,.A) is the well known
space of S. Mréwka which he denoted N UR, and denoted by WV in
the book by Gillman and Jerison, “Rings of Continuous Functions.”
For A not necessarily maximal, this space was considered earlier by
Alexandorff-Urysohn and by M. Kat&tov.
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1 is first countable, locally compact



1 is Hausdorff



1 is Hausdorff and zero-dimensional
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Stone-Cech compactification

If X is a space and f : X — R continuous, we call the set
f~1(0) C X a zero set of X.
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Stone-Cech compactification

If X is a space and f : X — R continuous, we call the set
f~1(0) C X a zero set of X.

For a T3%—space X the Stone-Cech compactification of X (denoted
BX) is that compact space containing X as a dense subset and
that satisfies the condition that disjoint zero sets in X have disjoint
closures in 5X.

This is equivalent to the statement that every continuous

f : X — R, has a continuous extension f : 3X — R.
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a): the one-point compactification




Mrowka's Theorem
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By = ay.
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Mrowka's Theorem

Theorem (Mréwka, 1977)

There exists MADF M C w satisfying |f¢(w, M) \ ¥(w, M)| =1

By = ay.

We generalized this to

Theorem (D-V)

If k < ¢, then there exists MADF M C [k|* satisfying
B¢ (k, M)\ ¢(r, M)| =1




But “|5¢ \ ¢| = 1" does not generalize for k > «:

Theorem (D-V)

For every k > ¢, and for every M C [k]* MADF,
18y (k, M)\ (w5, M)| > /K > ¢t
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results and extends (1):



Extending Mréwka's Theorem for k > ¢

Definition of Mréwka MADF for all kK > w:

(1) For k < ¢, M is called a Mréwka MADF if |3\ ¢| = 1

Since k > ¢, implies |3 \ ¥| # 1, it is not immediately obvious if
a definition of Mréwka MADF is warranted for k > ¢. However, we
discovered that the following definition leads to some interesting
results and extends (1):

(2) For k > ¢, M is called a Mréwka MADF if for every
continuous f : ¢ — R there exists r € R such that

[k, MY\ FH()| < [IM] = [0,



Definition of Mréwka MADF for all Kk > w
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This gives us a definition of Mréwka MADF for all k > w:

(1) For k <¢, M is called a Mrowka MADF if |5y \ ¢| =1
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So (2) holds.



Definition of Mréwka MADF for all Kk > w

This gives us a definition of Mréwka MADF for all k > w:

(1) For k <¢, M is called a Mrowka MADF if |5y \ ¢| =1
(2) For k > ¢, M is called a Mréwka MADEF if for every continuous
f 1 — R there exists r € R such that |[¢(k, M)\ f~1(r)] < |[M].

Indeed (1) implies (2): If M satisfies (1), let p = oo be the unique
point in the reminder. Given continuous f : ) — R let f : Sy — R
be the continuous extension of f. Define r = f(p). Then
P \7_1(r) =U,{v\ f1((r— L r+ 1))} is a countable union of
sets of finite convergent sequences, hence

WA\ Sw < M| = [].
So (2) holds.
But since (1) implies a stronger condition that (2), we state the
definition of “Mréwka MADF" in two parts.



k > ¢: Existence of a Mréwka MADF and a special p at

infinity

For k > ¢, |BY \ | # 1, yet for Mréwka MADFs M C [k]“, there
is still a special point p € 51 \ 1. Since k > ¢ implies

|8\ ¥| # 1, p is not as special as {p} = B¢ \ Y.



Special point in the remainder

Theorem (SCH for k > ¢)

For every cardinal k > w, and every Mréwka M C [k]* MADF,
there is a point p € 51 \ ¥ having a clopen local base in 1.
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Special point in the remainder

Theorem (SCH for k > ¢)

For every cardinal k > w, and every Mréwka M C [k]* MADF,
there is a point p € 51 \ ¥ having a clopen local base in 1.
Moreover, if cf(k) > w and k is not the successor of a cardinal of

countable cofinality, then p is a P(cf(r))-point in 51 (hence at
least a P-point).

If k is a regular cardinal (i.e., k = cf(k)), then p is a simple
P(k)-point in (3.

Otherwise (i.e.,cf(k) = w or k = A\ and cf(\) = w), then p is not
even a weak P-point in B or B\ .




Summary

Summary: For every Mréwka MADF, in the Stone-Cech remainder
of the associated -space, there is a point with a clopen
neighborhood base.



Summary

Summary: For every Mréwka MADF, in the Stone-Cech remainder
of the associated -space, there is a point with a clopen
neighborhood base.

Using a result of Jun Terasawa, such a space v need not be zero
dimensional.
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There exists a M C [w]* MADF such that S \ ¢ = (w1 + 1) with
the order topology.




Mréwka's Theorem (attributed)

Theorem (attributed to S. Mrowka by J. Terasawa)

There exists a M C [w]* MADF such that S \ ¢ = (w1 + 1) with
the order topology.

Question: What ordinals (other than 1 and w; + 1) can be
reminders of a 1)-space?
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Ordinal remainders of 1-spaces

Which ordinals, with the order topology, can be Stone-Cech
remainders of i-spaces? Our results:

Theorem (D-V)

If k < ¢ then for every ordinal § < k there exists M C [r]“, a
MADEF, such that 5i(k, Ms) \ ¢(k, Ms) is homeomorphic to
o+1.

Theorem (D-V)

For k = ¢*, Bi(k, Ms) \ ¥(k, Ms) is homeomorphic to 6 + 1 if
and only if¢™ < § < ¢t -w.

A\

Theorem (D-V)

If & > ¢F, then no (r, M) has any ordinal as a Stone-Cech
remainder.

N




Ordinal remainders of 1-spaces

Summary:

For x above ¢, no more one-point Stone-Cech remainders of
1p-spaces. Above ¢T, no more ordinal remainders.



Now let us ask about ordinal remainders in the classical case
k = w: Mréwka's original class of -space. We need to define the
tower number.



Mod-finite increasing chain
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A mod-finite increasing chain in a set X is a tower in X if it is
maximal in the sense that for all H <* X it is not the case that
T, C* H for all a.



A mod-finite increasing chain in a set X is a tower in X if it is
maximal in the sense that for all H <* X it is not the case that
T, C* H for all a.

Definition

The tower number, denoted t, is defined to the the smallest
cardinality of a tower on w.

t is a “small uncountable cardinal,” w1 <t<c¢
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Theorem

Theorem (D-V)

For every A < t*, there exists M C [w]® a MADF such that
B \ ¢ is homeomorphic to A + 1.

This implies the theorem attributed to Méwka by Terasawa
because wi < t hence wy < tF.

Moreover, the theorem is best possible in ZFC in the sense that (it
is consistent that) it is not true that the ordinal t* + 1 can be a
remainder of a 1) space over w.



Another result regarding the classical case Kk = w

Recall, the cardinal a is the smallest cardinality of a MADF on w.

wi<a<c

a is one of many “small uncountable cardinals.”



Cardinality of f~1(r)

Let f: 4 — R. A fiber of f is any set of the form f~1(r).

The cardinality of fibers is important in the definition of Mréwka
MADF, where for every f there is r € R such that

|\ F71(r)| < M|, which is stronger than saying |f~1(r)| = |M].
A fiber f~1(r) is full means that |f~1(r)| = |[M| = ||

Question: Does every continuous real valued function on a 1-space
(on w) always have at least one “full” fiber.



Cardinality of f~1(r)

Theorem (D-V)

The following are equivalent

(i) There exists a MADF M C [w]®, |[M| = ¢, and there exists
continuous f : ¢ — [0, 1] such that for every r € [0, 1],
|F=1(r)] < ¢ = |M]| (i.e., f does not have a full fiber).




Cardinality of f~1(r)

Theorem (D-V)

The following are equivalent

(i) There exists a MADF M C [w]®, |[M| = ¢, and there exists
continuous f : ¢ — [0, 1] such that for every r € [0, 1],
|F=1(r)] < ¢ = |M]| (i.e., f does not have a full fiber).

(i) a < c.




(i) implies (i)

Assume a < ¢ and construct M, and f.

Step 1: Show that every countable pairwise disjoint family
P C [w]“ is a subset of some MADF M with | M| = a.
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(i) implies (i)

We now use the MADF A which has cardinality a

=2

Pick distinct A, € A for all n € w. By removing a finite set F,
from each A,, We get that the sets A, \ F, are pairwise disjoint.
Then A\ {A,:ncw}U{An\ Fn:n € w}is also a MADF with
|A| = a. Denote this slightly revised version of A by the same
name A.
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(i) implies (i)

0 |-2

o' (0)=2




(i) implies (i)

Step 2: Think of the countable set w as being Q N [0, 1], the set of
rational numbers in [0,1]. Then for each r € [0, 1] there is an ADF
M, C [QN[0,1]]¥ such that |[M,| = a, every M € M, converges
to r (in the usual sense in [0, 1]) and M, satisfies the following
maximal condition:

(*) For every C € [QN[0,1]]“, if C converges to r, then there
exists M € M, such that M N C is infinite.



(i) implies (i)
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(i) implies (i)
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(i) implies (i)

Let P denote the set of all infinite members of {P; : i > 1}. By
Step 1, there is an MADF M C QN [0, 1] such that M D P, and
IM|=a. Put

My =M\P
Check that M, has the required properties: First, M € M,
converges to r because M N P; is finite for all i € w. Second, to see
that M, has the required maximal property, let C be a sequence
of rationals converging to r. There exists M € M such that
M N C is infinite because M is a MADF. But why is M € M\ P?



(i) implies (i)

Let P denote the set of all infinite members of {P; : i > 1}. By
Step 1, there is an MADF M C QN [0, 1] such that M D P, and
IM|=a. Put

My =M\P
Check that M, has the required properties: First, M € M,
converges to r because M N P; is finite for all i € w. Second, to see
that M, has the required maximal property, let C be a sequence
of rationals converging to r. There exists M € M such that
M N C is infinite because M is a MADF. But why is M € M\ P?
Since C converges to r, C N P; is finite for all P;; so




(i) implies (i)

Step 3: Then M = U,E[O 1) M has cardinality ¢. Next we
construct the desired function f. Define

f:y(@Qnlo,1], M) — [0,1]

by taking f to be the identity on QN [0, 1], and for M € M, define
f(M) = r where M € M,.



(i) implies (i)

Step 3: Then M = U,E[O 1) M has cardinality ¢. Next we
construct the desired function f. Define

f:y(@Qnlo,1], M) — [0,1]

by taking f to be the identity on QN [0, 1], and for M € M, define
f(M) = r where M € M,.

To check continuity of f it suffices to check that whenever a
sequence in Q N [0, 1] converges to a non-isolated point A € M,
then the image of the sequence converges to the image of the
point A in [0, 1] (sequentially continuous).



(i) implies (i)
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(i) implies (i)
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(i) implies (i)

A Ln{“ﬂ r-{'-g




(i) implies (i)

Thus f is sequentially continuous, hence continuous.



(i) implies (i)

Finally we show that every r € [0,1], |f~1(r)| < ¢ = [M].



(i) implies (i)

Finally we show that every r € [0,1], |f~1(r)| < ¢ = [M].

Because f is one-to-one on Q N [0, 1], the set of isolated points in
¥, and for r irrational, f~1(r) = M, and |[M,| =a < ¢ (the
inequality is the hypothesis of (ii)). Thus |[f~1(r)| < a < ¢ for all
ref0,1]. O



Mréwka's papers on 1(w, M) (i.e., NUR)

The theorem we call Mréwka's Theorem is contained in his 1977
paper which refers to two of his earlier papers:

[§ S. Mréwka, On completely regular spaces, Fund. Math. 41
(1954) 105-106.

1 S. Mréwka, Some comments on the author’s example of an
non-R-compact space, Bull. Acad. Polon. Sci. Ser. Sci. Math.
Astronom. Phys. 18 (1970) 443-448.

[§ S. Mréwka, Some set-theoretic constructions in topology,
Fund. Math. 94 (1977) 83-92.



D-V papers on 1 plus Terasawa

[{ Alan Dow and Jerry E. Vaughan, Mréwka maximal almost
disjoint families for uncountable cardinals, Topology and Appl.
157 (2010), 1379-1394.

[§ Alan Dow and Jerry E. Vaughan, Ordinal Remainders of
1)-spaces, Topology and Appl. 158, Issue 14 (1 September
2011) 1852-1857.

[§ Alan Dow and Jerry E. Vaughan, Ordinal remainders of
classical 1)-spaces, Fund. Math. (to appear).

[§ Jun Terasawa, Spaces N U R and their dimensions, Topology
and its Applications 11 (1980) 93-102.
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