Stone-Čech remainders of ψ -spaces

Alan Dow and Jerry E. Vaughan

Department of Mathematics and Statistics, UNC-Charlotte Charlotte, NC 28223

Department of Mathematics and Statistics, UNC-Greensboro Greensboro, NC 27402

Presented to IVth Workshop on Coverings, Selections, and Games in Topology, Caserta, Italy, June 2012

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Almost disjoint family (of countable sets)

Definition

Let $\kappa \geq \omega$ be a cardinal number. An infinite family \mathcal{A} of countably infinite subsets of κ ($\mathcal{A} \subset [\kappa]^{\omega}$) is an *almost disjoint family* provided $A \neq A'$ in $\mathcal{A} \Rightarrow A \cap A'$ is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An almost disjoint family A is called *maximal* provided A is not properly contained in any other almost disjoint family.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\psi(\kappa, \mathcal{A})$ denote the space with underlying set $\kappa \cup \mathcal{A}$ and with the topology having as a base all singletons $\{\alpha\}$ for $\alpha < \kappa$ and all sets of the form $\{A\} \cup (A \setminus F)$ where $A \in \mathcal{A}$ and F is finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $\psi(\kappa, \mathcal{A})$ denote the space with underlying set $\kappa \cup \mathcal{A}$ and with the topology having as a base all singletons $\{\alpha\}$ for $\alpha < \kappa$ and all sets of the form $\{A\} \cup (A \setminus F)$ where $A \in \mathcal{A}$ and F is finite.

For the case $\kappa = \omega$, and \mathcal{A} maximal, $\psi(\omega, \mathcal{A})$ is the well known space of S. Mrówka which he denoted $N \cup \mathcal{R}$, and denoted by Ψ in the book by Gillman and Jerison, "Rings of Continuous Functions."

Let $\psi(\kappa, \mathcal{A})$ denote the space with underlying set $\kappa \cup \mathcal{A}$ and with the topology having as a base all singletons $\{\alpha\}$ for $\alpha < \kappa$ and all sets of the form $\{A\} \cup (A \setminus F)$ where $A \in \mathcal{A}$ and F is finite.

For the case $\kappa = \omega$, and \mathcal{A} maximal, $\psi(\omega, \mathcal{A})$ is the well known space of S. Mrówka which he denoted $N \cup \mathcal{R}$, and denoted by Ψ in the book by Gillman and Jerison, "Rings of Continuous Functions." For \mathcal{A} not necessarily maximal, this space was considered earlier by Alexandorff-Urysohn and by M. Katětov.

★ E → E → の < @</p>

ψ is first countable, locally compact

ψ is Hausdorff

▲目▶ 目 のへの

ψ is Hausdorff and zero-dimensional

▲目▶ 目 釣A@

If X is a space and $f : X \to \mathbb{R}$ continuous, we call the set $f^{-1}(0) \subset X$ a zero set of X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If X is a space and $f : X \to \mathbb{R}$ continuous, we call the set $f^{-1}(0) \subset X$ a zero set of X.

For a $T_{3\frac{1}{2}}$ -space X the Stone-Čech compactification of X (denoted βX) is that compact space containing X as a dense subset and that satisfies the condition that disjoint zero sets in X have disjoint closures in βX .

If X is a space and $f : X \to \mathbb{R}$ continuous, we call the set $f^{-1}(0) \subset X$ a zero set of X.

For a $T_{3\frac{1}{2}}$ -space X the Stone-Čech compactification of X (denoted βX) is that compact space containing X as a dense subset and that satisfies the condition that disjoint zero sets in X have disjoint closures in βX .

This is equivalent to the statement that every continuous

 $f: X \to \mathbb{R}$, has a continuous extension $\overline{f}: \beta X \to \mathbb{R}$.

Stone-Čech compactification

We view the picture of $\beta\psi$ as three levels:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Stone-Čech compactification

We view the picture of $\beta\psi$ as three levels:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

We view the picture of $\beta\psi$ as three levels:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We view the picture of $\beta\psi$ as three levels:

$\alpha\psi$: the one-point compactification

Theorem (Mrówka, 1977)

There exists MADF $\mathcal{M} \subset \omega$ satisfying $|\beta \psi(\omega, \mathcal{M}) \setminus \psi(\omega, \mathcal{M})| = 1$

 $\beta \psi = \alpha \psi.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Mrówka, 1977)

There exists MADF $\mathcal{M} \subset \omega$ satisfying $|\beta \psi(\omega, \mathcal{M}) \setminus \psi(\omega, \mathcal{M})| = 1$

$$\beta \psi = \alpha \psi.$$

We generalized this to

Theorem (Mrówka, 1977)

There exists MADF $\mathcal{M} \subset \omega$ satisfying $|\beta \psi(\omega, \mathcal{M}) \setminus \psi(\omega, \mathcal{M})| = 1$

$$\beta \psi = \alpha \psi.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We generalized this to

Theorem (D-V)

If $\kappa \leq c$, then there exists MADF $\mathcal{M} \subset [\kappa]^{\omega}$ satisfying $|\beta\psi(\kappa, \mathcal{M}) \setminus \psi(\kappa, \mathcal{M})| = 1$

But " $|\beta\psi\setminus\psi|=1$ " does not generalize for $\kappa>\mathfrak{c}$:

Theorem (D-V)

For every $\kappa > \mathfrak{c}$, and for every $\mathcal{M} \subset [\kappa]^{\omega}$ MADF, $|\beta\psi(\kappa, \mathcal{M})) \setminus \psi(\kappa, \mathcal{M})| \geq \sqrt[\omega]{\kappa} \geq \mathfrak{c}^+$. Definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ Since $\kappa > \mathfrak{c}$, implies $|\beta \psi \setminus \psi| \neq 1$, it is not immediately obvious if a definition of Mrówka MADF is warranted for $\kappa > \mathfrak{c}$. However, we discovered that the following definition leads to some interesting results and extends (1):

Definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ Since $\kappa > \mathfrak{c}$, implies $|\beta \psi \setminus \psi| \neq 1$, it is not immediately obvious if a definition of Mrówka MADF is warranted for $\kappa > \mathfrak{c}$. However, we discovered that the following definition leads to some interesting results and extends (1):

(2) For $\kappa > \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if for every continuous $f : \psi \to \mathbb{R}$ there exists $r \in \mathbb{R}$ such that

$$|\psi(\kappa,\mathcal{M})\setminus f^{-1}(r)|<|\mathcal{M}|=|\psi|.$$

Definition of Mrówka MADF for all $\kappa \geq \omega$

This gives us a definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ (2) For $\kappa > \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if for every continuous $f: \psi \to \mathbb{R}$ there exists $r \in \mathbb{R}$ such that $|\psi(\kappa, \mathcal{M}) \setminus f^{-1}(r)| < |\mathcal{M}|$.

Definition of Mrówka MADF for all $\kappa \geq \omega$

This gives us a definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ (2) For $\kappa > \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if for every continuous $f : \psi \to \mathbb{R}$ there exists $r \in \mathbb{R}$ such that $|\psi(\kappa, \mathcal{M}) \setminus f^{-1}(r)| < |\mathcal{M}|$.

Indeed (1) implies (2): If \mathcal{M} satisfies (1), let $p = \infty$ be the unique point in the reminder. Given continuous $f : \psi \to \mathbb{R}$ let $\overline{f} : \beta \psi \to \mathbb{R}$ be the continuous extension of f. Define $r = \overline{f}(p)$.

Definition of Mrówka MADF for all $\kappa \geq \omega$

This gives us a definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ (2) For $\kappa > \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if for every continuous $f : \psi \to \mathbb{R}$ there exists $r \in \mathbb{R}$ such that $|\psi(\kappa, \mathcal{M}) \setminus f^{-1}(r)| < |\mathcal{M}|$.

Indeed (1) implies (2): If \mathcal{M} satisfies (1), let $p = \infty$ be the unique point in the reminder. Given continuous $f : \psi \to \mathbb{R}$ let $\overline{f} : \beta \psi \to \mathbb{R}$ be the continuous extension of f. Define $r = \overline{f}(p)$. Then $\psi \setminus \overline{f}^{-1}(r) = \bigcup_n \{\psi \setminus f^{-1}((r - \frac{1}{n}, r + \frac{1}{n}))\}$ is a countable union of sets of finite convergent sequences, hence

$$|\psi \setminus f^{-1}(r)| \le \omega < |\mathcal{M}| = |\psi|.$$

So (2) holds.

This gives us a definition of Mrówka MADF for all $\kappa \geq \omega$:

(1) For $\kappa \leq \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if $|\beta \psi \setminus \psi| = 1$ (2) For $\kappa > \mathfrak{c}$, \mathcal{M} is called a *Mrówka MADF* if for every continuous $f : \psi \to \mathbb{R}$ there exists $r \in \mathbb{R}$ such that $|\psi(\kappa, \mathcal{M}) \setminus f^{-1}(r)| < |\mathcal{M}|$.

Indeed (1) implies (2): If \mathcal{M} satisfies (1), let $p = \infty$ be the unique point in the reminder. Given continuous $f : \psi \to \mathbb{R}$ let $\overline{f} : \beta \psi \to \mathbb{R}$ be the continuous extension of f. Define $r = \overline{f}(p)$. Then $\psi \setminus \overline{f}^{-1}(r) = \bigcup_n \{\psi \setminus f^{-1}((r - \frac{1}{n}, r + \frac{1}{n}))\}$ is a countable union of sets of finite convergent sequences, hence

$$\psi \setminus f^{-1}(r) \leq \omega < |\mathcal{M}| = |\psi|.$$

So (2) holds.

But since (1) implies a stronger condition that (2), we state the definition of "Mrówka MADF" in two parts.

$\kappa > \mathfrak{c}$: Existence of a Mrówka MADF and a special p at infinity

For $\kappa > \mathfrak{c}$, $|\beta \psi \setminus \psi| \neq 1$, yet for Mrówka MADFs $\mathcal{M} \subset [\kappa]^{\omega}$, there is still a special point $p \in \beta \psi \setminus \psi$. Since $\kappa > \mathfrak{c}$ implies $|\beta \psi \setminus \psi| \neq 1$, p is not as special as $\{p\} = \beta \psi \setminus \psi$.

Theorem (SCH for $\kappa > \mathfrak{c}$)

For every cardinal $\kappa \ge \omega$, and every Mrówka $\mathcal{M} \subset [\kappa]^{\omega}$ MADF, there is a point $p \in \beta \psi \setminus \psi$ having a clopen local base in $\beta \psi$.

Theorem (SCH for $\kappa > \mathfrak{c}$)

For every cardinal $\kappa \geq \omega$, and every Mrówka $\mathcal{M} \subset [\kappa]^{\omega}$ MADF, there is a point $p \in \beta \psi \setminus \psi$ having a clopen local base in $\beta \psi$. Moreover, if $cf(\kappa) > \omega$ and κ is not the successor of a cardinal of countable cofinality, then p is a $P(cf(\kappa))$ -point in $\beta \psi$ (hence at least a P-point).

Theorem (SCH for $\kappa > \mathfrak{c}$)

For every cardinal $\kappa \geq \omega$, and every Mrówka $\mathcal{M} \subset [\kappa]^{\omega}$ MADF, there is a point $p \in \beta \psi \setminus \psi$ having a clopen local base in $\beta \psi$.

Moreover, if $cf(\kappa) > \omega$ and κ is not the successor of a cardinal of countable cofinality, then p is a $P(cf(\kappa))$ -point in $\beta\psi$ (hence at least a P-point).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If κ is a regular cardinal (i.e., $\kappa = cf(\kappa)$), then p is a simple $P(\kappa)$ -point in $\beta\psi$.
Theorem (SCH for $\kappa > \mathfrak{c}$)

For every cardinal $\kappa \geq \omega$, and every Mrówka $\mathcal{M} \subset [\kappa]^{\omega}$ MADF, there is a point $p \in \beta \psi \setminus \psi$ having a clopen local base in $\beta \psi$.

Moreover, if $cf(\kappa) > \omega$ and κ is not the successor of a cardinal of countable cofinality, then p is a $P(cf(\kappa))$ -point in $\beta\psi$ (hence at least a P-point).

If κ is a regular cardinal (i.e., $\kappa = cf(\kappa)$), then p is a simple $P(\kappa)$ -point in $\beta\psi$.

Otherwise (i.e., $cf(\kappa) = \omega$ or $\kappa = \lambda^+$ and $cf(\lambda) = \omega$), then p is not even a weak P-point in $\beta \psi$ or $\beta \psi \setminus \psi$.

Summary: For every Mrówka MADF, in the Stone-Čech remainder of the associated ψ -space, there is a point with a clopen neighborhood base.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary: For every Mrówka MADF, in the Stone-Čech remainder of the associated ψ -space, there is a point with a clopen neighborhood base.

Using a result of Jun Terasawa, such a space $\beta\psi$ need not be zero dimensional.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (attributed to S. Mrowka by J. Terasawa)

There exists a $\mathcal{M} \subset [\omega]^{\omega}$ MADF such that $\beta \psi \setminus \psi \cong (\omega_1 + 1)$ with the order topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (attributed to S. Mrowka by J. Terasawa)

There exists a $\mathcal{M} \subset [\omega]^{\omega}$ MADF such that $\beta \psi \setminus \psi \cong (\omega_1 + 1)$ with the order topology.

Question: What ordinals (other than 1 and $\omega_1 + 1$) can be reminders of a ψ -space?

Ordinal remainders of ψ -spaces

Which ordinals, with the order topology, can be Stone-Čech remainders of ψ -spaces? Our results:

Theorem (D-V)

If $\kappa \leq \mathfrak{c}$ then for every ordinal $\delta < \kappa^+$ there exists $\mathcal{M}_{\delta} \subset [\kappa]^{\omega}$, a MADF, such that $\beta \psi(\kappa, \mathcal{M}_{\delta}) \setminus \psi(\kappa, \mathcal{M}_{\delta})$ is homeomorphic to $\delta + 1$.

Ordinal remainders of ψ -spaces

Which ordinals, with the order topology, can be Stone-Čech remainders of ψ -spaces? Our results:

Theorem (D-V)

If $\kappa \leq \mathfrak{c}$ then for every ordinal $\delta < \kappa^+$ there exists $\mathcal{M}_{\delta} \subset [\kappa]^{\omega}$, a MADF, such that $\beta \psi(\kappa, \mathcal{M}_{\delta}) \setminus \psi(\kappa, \mathcal{M}_{\delta})$ is homeomorphic to $\delta + 1$.

Theorem (D-V)

For $\kappa = \mathfrak{c}^+$, $\beta \psi(\kappa, \mathcal{M}_{\delta}) \setminus \psi(\kappa, \mathcal{M}_{\delta})$ is homeomorphic to $\delta + 1$ if and only if $\mathfrak{c}^+ \leq \delta < \mathfrak{c}^+ \cdot \omega$.

Ordinal remainders of ψ -spaces

Which ordinals, with the order topology, can be Stone-Čech remainders of ψ -spaces? Our results:

Theorem (D-V)

If $\kappa \leq \mathfrak{c}$ then for every ordinal $\delta < \kappa^+$ there exists $\mathcal{M}_{\delta} \subset [\kappa]^{\omega}$, a MADF, such that $\beta \psi(\kappa, \mathcal{M}_{\delta}) \setminus \psi(\kappa, \mathcal{M}_{\delta})$ is homeomorphic to $\delta + 1$.

Theorem (D-V)

For $\kappa = \mathfrak{c}^+$, $\beta \psi(\kappa, \mathcal{M}_{\delta}) \setminus \psi(\kappa, \mathcal{M}_{\delta})$ is homeomorphic to $\delta + 1$ if and only if $\mathfrak{c}^+ \leq \delta < \mathfrak{c}^+ \cdot \omega$.

Theorem (D-V)

If $\kappa > \mathfrak{c}^+$, then no $\psi(\kappa, \mathcal{M})$ has any ordinal as a Stone-Čech remainder.

Summary:

For κ above \mathfrak{c} , no more one-point Stone-Čech remainders of ψ -spaces. Above \mathfrak{c}^+ , no more ordinal remainders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now let us ask about ordinal remainders in the classical case $\kappa=\omega$: Mrówka's original class of $\psi\text{-space}.$ We need to define the tower number.

Mod-finite increasing chain: $\beta < \alpha$ implies $T_{\beta} <^* T_{\alpha}$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 $T_{\beta} <^{*} T_{\alpha}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

A mod-finite increasing chain in a set X is a *tower* in X if it is maximal in the sense that for all $H <^* X$ it is not the case that $T_{\alpha} \subset^* H$ for all α .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A mod-finite increasing chain in a set X is a *tower* in X if it is maximal in the sense that for all $H <^* X$ it is not the case that $T_{\alpha} \subset^* H$ for all α .

Definition

The *tower number*, denoted t, is defined to the the smallest cardinality of a tower on ω .

 $\mathfrak t$ is a "small uncountable cardinal," $\omega_1 \leq \mathfrak t \leq \mathfrak c$

For every $\lambda < \mathfrak{t}^+$, there exists $\mathcal{M} \subset [\omega]^{\omega}$ a MADF such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For every $\lambda < \mathfrak{t}^+$, there exists $\mathcal{M} \subset [\omega]^{\omega}$ a MADF such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$.

This implies the theorem attributed to Mówka by Terasawa because $\omega_1 \leq \mathfrak{t}$ hence $\omega_1 < \mathfrak{t}^+$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For every $\lambda < \mathfrak{t}^+$, there exists $\mathcal{M} \subset [\omega]^{\omega}$ a MADF such that $\beta \psi \setminus \psi$ is homeomorphic to $\lambda + 1$.

This implies the theorem attributed to Mówka by Terasawa because $\omega_1 \leq \mathfrak{t}$ hence $\omega_1 < \mathfrak{t}^+$. Moreover, the theorem is best possible in ZFC in the sense that (it is consistent that) it is not true that the ordinal $\mathfrak{t}^+ + 1$ can be a remainder of a ψ space over ω .

Recall, the cardinal $\mathfrak a$ is the smallest cardinality of a MADF on $\omega.$

 $\omega_1 \leq \mathfrak{a} \leq \mathfrak{c}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

a is one of many "small uncountable cardinals."

Let $f: \psi \to \mathbb{R}$. A *fiber* of f is any set of the form $f^{-1}(r)$. The cardinality of fibers is important in the definition of Mrówka MADF, where for every f there is $r \in \mathbb{R}$ such that $|\psi \setminus f^{-1}(r)| < |\mathcal{M}|$, which is stronger than saying $|f^{-1}(r)| = |\mathcal{M}|$. A fiber $f^{-1}(r)$ is *full* means that $|f^{-1}(r)| = |\mathcal{M}| = |\psi|$.

Question: Does every continuous real valued function on a ψ -space (on ω) always have at least one "full" fiber.

(日) (同) (三) (三) (三) (○) (○)

The following are equivalent (i) There exists a MADF $\mathcal{M} \subset [\omega]^{\omega}$, $|\mathcal{M}| = \mathfrak{c}$, and there exists continuous $f : \psi \to [0, 1]$ such that for every $r \in [0, 1]$, $|f^{-1}(r)| < \mathfrak{c} = |\mathcal{M}|$ (i.e., f does not have a full fiber).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following are equivalent (i) There exists a MADF $\mathcal{M} \subset [\omega]^{\omega}$, $|\mathcal{M}| = \mathfrak{c}$, and there exists continuous $f : \psi \to [0, 1]$ such that for every $r \in [0, 1]$, $|f^{-1}(r)| < \mathfrak{c} = |\mathcal{M}|$ (i.e., f does not have a full fiber). (ii) $\mathfrak{a} < \mathfrak{c}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Assume a < c and construct M, and f.

Step 1: Show that every countable pairwise disjoint family $\mathcal{P} \subset [\omega]^{\omega}$ is a subset of some MADF \mathcal{M} with $|\mathcal{M}| = \mathfrak{a}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two copies of ω

We now use the MADF ${\mathcal A}$ which has cardinality ${\mathfrak a}$

We now use the MADF ${\mathcal A}$ which has cardinality ${\mathfrak a}$

$$|Q| = a$$

Pick distinct $A_n \in \mathcal{A}$ for all $n \in \omega$. By removing a finite set F_n from each A_n , We get that the sets $A_n \setminus F_n$ are pairwise disjoint. Then $\mathcal{A} \setminus \{A_n : n \in \omega\} \bigcup \{A_n \setminus F_n : n \in \omega\}$ is also a MADF with $|\mathcal{A}| = \mathfrak{a}$. Denote this slightly revised version of \mathcal{A} by the same name \mathcal{A} .

・ロト・雪ト・雪ト・雪・ 今日・

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ 目 ▼ の < ⊙

・ロト・日本・日本・日本・日本・日本

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

・ロト・日本・日本・日本・日本・日本
Step 2: Think of the countable set ω as being $\mathbb{Q} \cap [0, 1]$, the set of rational numbers in [0, 1]. Then for each $r \in [0, 1]$ there is an ADF $\mathcal{M}_r \subset [\mathbb{Q} \cap [0, 1]]^{\omega}$ such that $|\mathcal{M}_r| = \mathfrak{a}$, every $M \in \mathcal{M}_r$ converges to r (in the usual sense in [0, 1]) and \mathcal{M}_r satisfies the following maximal condition:

(*) For every $C \in [\mathbb{Q} \cap [0,1]]^{\omega}$, if C converges to r, then there exists $M \in \mathcal{M}_r$ such that $M \cap C$ is infinite.

r ·

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \mathcal{P} denote the set of all infinite members of $\{P_i : i \geq 1\}$. By Step 1, there is an MADF $\mathcal{M} \subset \mathbb{Q} \cap [0, 1]$ such that $\mathcal{M} \supset \mathcal{P}$, and $|\mathcal{M}| = \mathfrak{a}$. Put

$$\mathcal{M}_r = \mathcal{M} \setminus \mathcal{P}$$

Check that \mathcal{M}_r has the required properties: First, $M \in \mathcal{M}_r$ converges to r because $M \cap P_i$ is finite for all $i \in \omega$. Second, to see that \mathcal{M}_r has the required maximal property, let C be a sequence of rationals converging to r. There exists $M \in \mathcal{M}$ such that $M \cap C$ is infinite because \mathcal{M} is a MADF. But why is $M \in \mathcal{M} \setminus P$?

Let \mathcal{P} denote the set of all infinite members of $\{P_i : i \geq 1\}$. By Step 1, there is an MADF $\mathcal{M} \subset \mathbb{Q} \cap [0, 1]$ such that $\mathcal{M} \supset \mathcal{P}$, and $|\mathcal{M}| = \mathfrak{a}$. Put

$$\mathcal{M}_r = \mathcal{M} \setminus \mathcal{P}$$

Check that \mathcal{M}_r has the required properties: First, $M \in \mathcal{M}_r$ converges to r because $M \cap P_i$ is finite for all $i \in \omega$. Second, to see that \mathcal{M}_r has the required maximal property, let C be a sequence of rationals converging to r. There exists $M \in \mathcal{M}$ such that $M \cap C$ is infinite because \mathcal{M} is a MADF. But why is $M \in \mathcal{M} \setminus P$? Since C converges to r, $C \cap P_i$ is finite for all P_i ; so

Step 3: Then $\mathcal{M} = \bigcup_{r \in [0,1]} \mathcal{M}_r$ has cardinality \mathfrak{c} . Next we construct the desired function f. Define

 $f:\psi(\mathbb{Q}\cap [0,1],\mathcal{M}) o [0,1]$

by taking f to be the identity on $\mathbb{Q} \cap [0,1]$, and for $M \in \mathcal{M}$, define f(M) = r where $M \in \mathcal{M}_r$.

Step 3: Then $\mathcal{M} = \bigcup_{r \in [0,1]} \mathcal{M}_r$ has cardinality \mathfrak{c} . Next we construct the desired function f. Define

 $f:\psi(\mathbb{Q}\cap [0,1],\mathcal{M}) o [0,1]$

by taking f to be the identity on $\mathbb{Q} \cap [0,1]$, and for $M \in \mathcal{M}$, define f(M) = r where $M \in \mathcal{M}_r$.

To check continuity of f it suffices to check that whenever a sequence in $\mathbb{Q} \cap [0, 1]$ converges to a non-isolated point $A \in \mathcal{M}$, then the image of the sequence converges to the image of the point A in [0, 1] (sequentially continuous).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

・ロト ・西ト ・ヨト ・ヨー うらぐ

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thus f is sequentially continuous, hence continuous.

Finally we show that every $r \in [0, 1]$, $|f^{-1}(r)| < \mathfrak{c} = |\mathcal{M}|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finally we show that every $r \in [0,1]$, $|f^{-1}(r)| < \mathfrak{c} = |\mathcal{M}|$.

Because f is one-to-one on $\mathbb{Q} \cap [0, 1]$, the set of isolated points in ψ , and for r irrational, $f^{-1}(r) = \mathcal{M}_r$ and $|\mathcal{M}_r| = \mathfrak{a} < \mathfrak{c}$ (the inequality is the hypothesis of (ii)). Thus $|f^{-1}(r)| \leq \mathfrak{a} < \mathfrak{c}$ for all $r \in [0, 1]$. \Box

The theorem we call Mrówka's Theorem is contained in his 1977 paper which refers to two of his earlier papers:

- S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954) 105-106.
- S. Mrówka, Some comments on the author's example of an non-R-compact space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970) 443-448.

S. Mrówka, Some set-theoretic constructions in topology, Fund. Math. 94 (1977) 83-92.

D-V papers on ψ plus Terasawa

- Alan Dow and Jerry E. Vaughan, Mrówka maximal almost disjoint families for uncountable cardinals, Topology and Appl. 157 (2010), 1379-1394.
- Alan Dow and Jerry E. Vaughan, Ordinal Remainders of ψ-spaces, Topology and Appl. 158, Issue 14 (1 September 2011) 1852-1857.
- Alan Dow and Jerry E. Vaughan, Ordinal remainders of classical ψ-spaces, Fund. Math. (to appear).
- Jun Terasawa, Spaces **N** ∪ *R* and their dimensions, Topology and its Applications 11 (1980) 93-102.

vaughanj@uncg.edu

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>