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Definition 1
X satisfies Sω1 (O,O), i.e., X is Rothberger if given any sequence
of open covers {Un}n<ω, there are {Un}n<ω, Un ∈ Un, such that
{Un}n<ω is a cover. Gω

1 (O,O) is the game in which in inning n,
Player ONE chooses an open cover Un and Player TWO picks
Un ∈ Un. TWO wins if {Un}n<ω is a cover; ONE wins otherwise.
We write ONE ↑– Gω

1 (O,O) if ONE does not have a winning
strategy.

Theorem 2 (Pawlikowski94)

Sω1 (O,O) if and only if ONE ↑– Gω
1 (O,O).

Definition 3
Sω1
1 (O,O), Gω1

1 (O,O).
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Definition 4
X is indestructible if it is Lindelöf in any countably closed forcing
extension.

Theorem 5 (Scheepers-Tall10)

X is indestructible if and only if ONE ↑– Gω1
1 (O,O).

Problem 6 (Arhangel’skĭi69)

Is it consistent that Lindelöf T2 spaces with pseudocharacter ≤ ℵ0
(i.e., points Gδ) have size ≤ 2ℵ0?

Theorem 7 (Tall95)

Con(∃ supercompact)→ Con(indestructible Lindelöf spaces with
pseudocharacter ≤ ℵ0 have size ≤ 2ℵ0 = ℵ1).

3 / 16



Theorem 8 (Tall-Usuba12)

Con(∃ measurable)→ Con(indestructible Lindelöf spaces with
pseudocharacter ≤ ℵ1 have size ≤ 2ℵ0 = ℵ1).

Problem 9 (Scheepers-Tall10)

Does Sω1
1 (O,O) imply ONE ↑– Gω1

1 (O,O).

Theorem 10 (Dias-Tall12)

For the lexicographic order topology on 2ω1 , ONE ↑ Gω1
1 (O,O),

but CH implies Sω1
1 (O,O).
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ℵ1-Borel Conjecture

Theorem 11 (Miller05)

Borel’s Conjecture is equivalent to the statement that every
Rothberger subset of R is countable.

Definition 12
A Lindelöf space is projectively countable (Arhangel’skĭi :
ω-simple) if whenever f : X → R, the range of f is countable.
Similarly, projectively ℵ1 if f : X → [0, 1]ℵ1 implies |range f | ≤ ℵ1.

Theorem 13 (Kočinac00; Bonanzinga, Cammaroto, Matveev
10)

Borel’s Conjecture holds if and only if Rothberger = projectively
countable.
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Definition 14
The ℵ1-Borel Conjecture is the statement that indestructible =
projectively ℵ1.

Theorem 15 (Tall-Usuba12, Usuba, Dias-Tall12)

Con(∃ an inaccessible) if and only if Con(ℵ1-Borel Conjecture).

Theorem 16
The ℵ1 Borel Conjecture implies projectively countable Lindelöf
spaces are projectively ℵ1.

Example 17

The line formed from the cofinal branches of a Kurepa tree with no
Aronszajn subtree is Lindelöf, projectively countable, not
projectively ℵ1. V = L implies such trees exist.
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Productive Lindelöfness

Definition 18
A space X is productively Lindelöf if X × Y is Lindelöf, for every
Lindelöf Y . X is powerfully Lindelöf if Xω is Lindelöf.

Theorem 19 (Michael74)

CH implies productively Lindelöf metrizable spaces are σ-compact
and hence powerfully Lindelöf.

Problem 20 (Michael)

Is every productively Lindelöf space powerfully Lindelöf?

Problem 21 (Michael)

Is every productively Lindelöf metrizable space σ-compact?
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Definition 22
G is a k-cover if every compact subset of X is included in a
member of G. X is Alster if every k-cover by Gδ’s has a countable
subcover.

Theorem 23 (Alster88)

a) Alster implies productively Lindelöf and powerfully Lindelöf.

b) CH implies productively Lindelöf spaces of weight ≤ ℵ1 are
Alster.

Problem 24 (Alster88)

Is every productively Lindelöf space Alster?
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Definition 25
A Michael space is a Lindelöf space X such that X × P (the
space of irrationals) is not Lindelöf.

Problem 26 (Michael63)

Is there a Michael space?
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Recent Results

Theorem 27 (Burton-Tall12)

CH implies that if X is productively Lindelöf and L(Xω) ≤ ℵ1 then
X is powerfully Lindelöf.

Corollary 28 (Burton-Tall12)

CH implies that if X is Lindelöf and the union of ℵ1 compact sets,
then X is powerfully Lindelöf.

Problem 29
If X is productively Lindelöf, is L(Xω) ≤ 2ℵ0?

10 / 16



Definition 30
X is a Froĺık space if X is a closed subspace of a countable
product of σ-compact spaces.

Theorem 31 (Burton-Tall12)

There is no Michael space if and only if Froĺık spaces are
productively Lindelöf.

Theorem 32 (Tall11)

Assume there are infinitely many Woodin cardinals and there exists
a Michael space. Then productively Lindelöf projective subsets of
R are σ-compact.
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Connections with Selection Principles

Definition 33
X is Hurewicz if for each sequence {Un}n<ω of open covers
without finite subcovers there are finite Fn ⊆ Un such that
F = {

⋃
Fn : n < ω} is a cover and each point is in all but finitely

many members of F .

Theorem 34 (Tall11)

Alster implies Hurewicz.

Problem 35 (Aurichi-Tall11)

Is every productively Lindelöf (metrizable?) space Hurewicz?

Theorem 36 (Aurichi-Tall11)

d = ℵ1 implies every productively Lindelöf metrizable space is
Hurewicz.
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Theorem 37 (Tall12)

If every productively Lindelöf metrizable space is Hurewicz
(Menger), then so is every productively Lindelöf space.

Proof.
Lindelöf projectively Hurewicz (projectively Menger) spaces are
Hurewicz (Menger) [Bonanzinga-Cammaroto-Matveev 10],
[Arhangel’skĭi00].

Theorem 38 (Alas-Aurichi-Junqueira-Tall11)

b = ℵ1 implies every productively Lindelöf (metrizable) space is
Menger.
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CH → (productively Lindelöf metrizable spaces are σ-compact)
↓ ↓

d = ℵ1 → (productively Lindelöf spaces are Hurewicz)
↓ ↓

b = ℵ1 → (productively Lindelöf spaces are Menger)

14 / 16



Recent Improvements

Theorem 39 (Repovs-Zdomskyy12)

∃ Michael space (this follows from b = ℵ1) → (productively
Lindelöf spaces are Menger).

Theorem 40 (Repovs-Zdomskyy)

Add(M) = d→ (productively Lindelöf spaces are Hurewicz).

Theorem 41 (Zdomskyy)

u = ℵ1 → (productively Lindelöf spaces are Hurewicz).

Theorem 42 (Brendle-Raghavan)

Add(M) = c < ℵω → (productively Lindelöf metrizable spaces are
σ-compact).

Theorem 43 (Miller-Tsaban-Zdomskyy)

d = ℵ1 → (productively Lindelöf metrizable spaces are productively
Hurewicz).

MAYBE ALL CONCLUSIONS TRUE IN ZFC!
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