Indestructibility, Topological Games, Productive Lindelöfness, Selection Principles

Frank Tall

Caserta, 2012

イロン イロン イヨン イヨン 三日

1/16

X satisfies $S_1^{\omega}(\mathcal{O}, \mathcal{O})$, i.e., X is **Rothberger** if given any sequence of open covers $\{\mathcal{U}_n\}_{n < \omega}$, there are $\{U_n\}_{n < \omega}$, $U_n \in \mathcal{U}_n$, such that $\{U_n\}_{n < \omega}$ is a cover. $G_1^{\omega}(\mathcal{O}, \mathcal{O})$ is the game in which in inning *n*, Player ONE chooses an open cover \mathcal{U}_n and Player TWO picks $U_n \in \mathcal{U}_n$. TWO wins if $\{U_n\}_{n < \omega}$ is a cover; ONE wins otherwise. We write ONE $\ddagger G_1^{\omega}(\mathcal{O}, \mathcal{O})$ if ONE does not have a winning strategy.

Theorem 2 (Pawlikowski94) $S_1^{\omega}(\mathcal{O}, \mathcal{O})$ if and only if ONE $\uparrow G_1^{\omega}(\mathcal{O}, \mathcal{O})$.

Definition 3 $S_1^{\omega_1}(\mathcal{O}, \mathcal{O}), \ G_1^{\omega_1}(\mathcal{O}, \mathcal{O}).$

X is **indestructible** if it is Lindelöf in any countably closed forcing extension.

Theorem 5 (Scheepers-Tall10)

X is indestructible if and only if ONE $\uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

Problem 6 (Arhangel'skii69)

Is it consistent that Lindelöf T_2 spaces with pseudocharacter $\leq \aleph_0$ (i.e., points G_{δ}) have size $\leq 2^{\aleph_0}$?

Theorem 7 (Tall95)

 $Con(\exists supercompact) \rightarrow Con(indestructible Lindelöf spaces with pseudocharacter <math>\leq \aleph_0$ have size $\leq 2^{\aleph_0} = \aleph_1$).

Theorem 8 (Tall-Usuba12)

 $Con(\exists measurable) \rightarrow Con(indestructible Lindelöf spaces with pseudocharacter <math>\leq \aleph_1$ have size $\leq 2^{\aleph_0} = \aleph_1$).

Problem 9 (Scheepers-Tall10)

Does $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$ imply $ONE \ddagger G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

Theorem 10 (Dias-Tall12)

For the lexicographic order topology on 2^{ω_1} , $ONE \uparrow G_1^{\omega_1}(\mathcal{O}, \mathcal{O})$, but CH implies $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$.

\aleph_1 -Borel Conjecture

Theorem 11 (Miller05)

Borel's Conjecture is equivalent to the statement that every Rothberger subset of \mathbb{R} is countable.

Definition 12

A Lindelöf space is **projectively countable** (Arhangel'skii : ω -simple) if whenever $f : X \to \mathbb{R}$, the range of f is countable. Similarly, **projectively** \aleph_1 if $f : X \to [0,1]^{\aleph_1}$ implies $|\text{range } f| \leq \aleph_1$.

Theorem 13 (Kočinac00; Bonanzinga, Cammaroto, Matveev 10)

Borel's Conjecture holds if and only if Rothberger = projectively countable.

The \aleph_1 -Borel Conjecture is the statement that indestructible = projectively \aleph_1 .

Theorem 15 (Tall-Usuba12, Usuba, Dias-Tall12) Con(\exists an inaccessible) if and only if Con(\aleph_1 -Borel Conjecture).

Theorem 16 The \aleph_1 Borel Conjecture implies projectively countable Lindelöf spaces are projectively \aleph_1 .

Example 17

The line formed from the cofinal branches of a Kurepa tree with no Aronszajn subtree is Lindelöf, projectively countable, not projectively \aleph_1 . V = L implies such trees exist.

Productive Lindelöfness

Definition 18

A space X is **productively Lindelöf** if $X \times Y$ is Lindelöf, for every Lindelöf Y. X is **powerfully Lindelöf** if X^{ω} is Lindelöf.

Theorem 19 (Michael74)

CH implies productively Lindelöf metrizable spaces are σ -compact and hence powerfully Lindelöf.

Problem 20 (Michael)

Is every productively Lindelöf space powerfully Lindelöf?

Problem 21 (Michael)

Is every productively Lindelöf metrizable space σ -compact?

 \mathcal{G} is a *k*-cover if every compact subset of X is included in a member of \mathcal{G} . X is **Alster** if every *k*-cover by G_{δ} 's has a countable subcover.

Theorem 23 (Alster88)

- a) Alster implies productively Lindelöf and powerfully Lindelöf.
- b) CH implies productively Lindelöf spaces of weight $\leq \aleph_1$ are Alster.

Problem 24 (Alster88)

Is every productively Lindelöf space Alster?

A **Michael space** is a Lindelöf space X such that $X \times \mathbb{P}$ (the space of irrationals) is not Lindelöf.

Problem 26 (Michael63)

Is there a Michael space?

Recent Results

Theorem 27 (Burton-Tall12)

CH implies that if X is productively Lindelöf and $L(X^{\omega}) \leq \aleph_1$ then X is powerfully Lindelöf.

Corollary 28 (Burton-Tall12)

CH implies that if X is Lindelöf and the union of \aleph_1 compact sets, then X is powerfully Lindelöf.

イロト 不得 とくき とくきとう き

Problem 29 If X is productively Lindelöf, is $L(X^{\omega}) \leq 2^{\aleph_0}$?

X is a **Frolik space** if X is a closed subspace of a countable product of σ -compact spaces.

Theorem 31 (Burton-Tall12)

There is no Michael space if and only if Frolík spaces are productively Lindelöf.

Theorem 32 (Tall11)

Assume there are infinitely many Woodin cardinals and there exists a Michael space. Then productively Lindelöf projective subsets of \mathbb{R} are σ -compact.

Connections with Selection Principles

Definition 33

X is **Hurewicz** if for each sequence $\{\mathcal{U}_n\}_{n < \omega}$ of open covers without finite subcovers there are finite $\mathcal{F}_n \subseteq \mathcal{U}_n$ such that $\mathcal{F} = \{\bigcup \mathcal{F}_n : n < \omega\}$ is a cover and each point is in all but finitely many members of \mathcal{F} .

Theorem 34 (Tall11)

Alster implies Hurewicz.

Problem 35 (Aurichi-Tall11)

Is every productively Lindelöf (metrizable?) space Hurewicz?

Theorem 36 (Aurichi-Tall11)

 $\mathfrak{d}=\aleph_1$ implies every productively Lindelöf metrizable space is Hurewicz.

Theorem 37 (Tall12)

If every productively Lindelöf metrizable space is Hurewicz (Menger), then so is every productively Lindelöf space.

Proof.

Lindelöf projectively Hurewicz (projectively Menger) spaces are Hurewicz (Menger) [Bonanzinga-Cammaroto-Matveev 10], [Arhangel'skii00].

Theorem 38 (Alas-Aurichi-Junqueira-Tall11)

 $\mathfrak{b}=\aleph_1$ implies every productively Lindelöf (metrizable) space is Menger.

$\begin{array}{cccc} \mathsf{CH} & \to & (\text{productively Lindelöf metrizable spaces are} & \sigma\text{-compact}) \\ \downarrow & & \downarrow \\ \mathfrak{d} = \aleph_1 & \to & (\text{productively Lindelöf spaces are} & & \mathsf{Hurewicz}) \\ \downarrow & & \downarrow \\ \mathfrak{b} = \aleph_1 & \to & (\text{productively Lindelöf spaces are} & & \mathsf{Menger}) \end{array}$

Recent Improvements

Theorem 39 (Repovs-Zdomskyy12)

 $\exists \text{ Michael space (this follows from } \mathfrak{b} = \aleph_1) \rightarrow (\text{productively Lindelöf spaces are Menger}).$

Theorem 40 (Repovs-Zdomskyy) Add(\mathcal{M}) = $\mathfrak{d} \rightarrow$ (productively Lindelöf spaces are Hurewicz).

Theorem 41 (Zdomskyy)

 $\mathfrak{u} = \aleph_1 \to (\textit{productively Lindelöf spaces are Hurewicz}).$

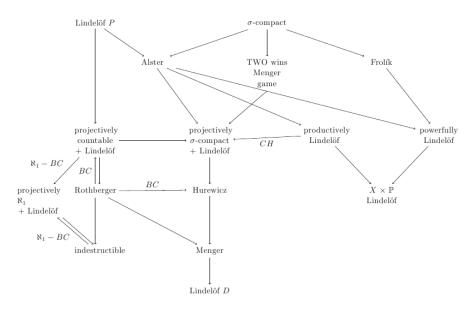
Theorem 42 (Brendle-Raghavan)

 $\operatorname{Add}(\mathcal{M}) = \mathfrak{c} < \aleph_{\omega} \rightarrow (productively Lindelöf metrizable spaces are <math>\sigma$ -compact).

Theorem 43 (Miller-Tsaban-Zdomskyy)

 $\mathfrak{d} = \aleph_1 \rightarrow$ (productively Lindelöf metrizable spaces are productively Hurewicz).

MAYBE ALL CONCLUSIONS TRUE IN ZFC!



 O. T. Alas, L. F. Aurichi, L. R. Junqueira, and F. D. Tall, Non-productively Lindelöf spaces and small cardinals, Houston J. Math. 37 (2011), 1373–1381.

- K. Alster, On the class of all spaces of weight not greater than ω₁ whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. **129** (1988), 133–140.
- A. V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Soviet Math. Dokl. 10 (1969), 951–955.
- **a** _____, Projective σ -compactness, ω_1 -caliber, and C_p -spaces, Topology Appl. **104** (2000), 13–26.
- L. F. Aurichi and F. D. Tall, *Lindelöf spaces which are indestructible, productive, or D*, Topology Appl. **159** (2011), 331–340.

- M. Bonanzinga, F. Cammaroto, and M. Matveev, *Projective versions of selection principles*, Topology Appl. 157 (2010), 874–893.
- P. Burton and F.D. Tall, Productive Lindelöfness and a class of spaces considered by Z. Frolík, Topology and its Applications, in press.
- R. R. Dias and F.D. Tall, *Indestructibility of compact spaces*, preprint.
- Lj. D.R. Kočinac, *Selection principles and continuous images*, Cubo Math. J. **8 (2)** (2000), 23–31.
- E. A. Michael, *The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc. **69** (1963), 376.
- E. A. Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199–214.

- A. W. Miller, γ-Borel conjecture, Arch. Math. Logic 44 (2005), 425–434.
- J. Pawlikowski, *Undetermined sets of point-open games*, Fund. Math. **144** (1994), 279–285.
- D. Repovš and L. Zdomskyy, *On the Menger covering property and D spaces*, Proc. Amer. Math. Soc., To appear.
- property of Hurewicz, preprint.
- M. Scheepers and F. D. Tall, Lindelöf indestructibility, topological games and selection principles, Fund. Math. 210 (2010), 1–46.
- **F**. D. Tall, On the cardinality of Lindelöf spaces with points G_{δ} , Topology Appl. **63** (1995), 21–38.

Math. Bulletin, in press, 2010.

- Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl. 158 (2011), no. 18, 2556–2563.
- F. D. Tall and B. Tsaban, *On productively Lindelöf spaces*, Topology Appl. **158** (2011), 1239–1248.
 - F.D. Tall and T. Usuba, Lindelöf spaces with small pseudocharacter and an analog of Borel's conjecture for subsets of [0, 1]^{ℵ1}, submitted.