The weak Hurewicz property of Pixley-Roy hyperspaces

Masami Sakai

Kanagawa University sakaim01@kanagawa-u.ac.jp

June, 2012, Caserta, Italy

Contents

- Pixley-Roy hyperspaces
- 2 Three covering properties and their weak versions
- 3 van Douwen's problem and Daniels' results
- 4 The weak Hurewicz property in the sense of Kočinac
- 5 The weak Hurewicz property

Pixley-Roy hyperspaces

All spaces are regular.

 $\mathcal{F}[X]$: the space of all nonempty finite subsets of X with the **Pixley-Roy topology**(1969):

for $A \in \mathcal{F}[X]$ and an open set $U \subset X$, let

$$[A, U] = \{B \in \mathcal{F}[X] : A \subset B \subset U\};$$

the family $\{[A, U] : A \in \mathcal{F}[X], U \text{ open in } X\}$ is a base for the Pixley-Roy topology.

Fact 2.1

Pixley-Roy hyperspaces

All spaces are regular.

 $\mathcal{F}[X]$: the space of all nonempty finite subsets of X with the **Pixley-Roy topology**(1969):

for $A \in \mathcal{F}[X]$ and an open set $U \subset X$, let

$$[A, U] = \{B \in \mathcal{F}[X] : A \subset B \subset U\};$$

the family $\{[A, U] : A \in \mathcal{F}[X], U \text{ open in } X\}$ is a base for the Pixley-Roy topology.

Fact 2.1

• $\mathcal{F}[X]$ is zero-dimensional, completely regular and hereditarily metacompact.

Pixley-Roy hyperspaces

All spaces are regular.

 $\mathcal{F}[X]$: the space of all nonempty finite subsets of X with the **Pixley-Roy topology**(1969):

for $A \in \mathcal{F}[X]$ and an open set $U \subset X$, let

$$[A, U] = \{B \in \mathcal{F}[X] : A \subset B \subset U\};$$

the family $\{[A, U] : A \in \mathcal{F}[X], U \text{ open in } X\}$ is a base for the Pixley-Roy topology.

Fact 2.1

- $\mathcal{F}[X]$ is zero-dimensional, completely regular and hereditarily metacompact.
- **2** $\mathcal{F}[X]$ is Moore iff $\mathcal{F}[X]$ is first-countable iff X is first-countable.

Three covering properties and their weak versions

Definition 3.1 (Hurewicz 1925, Daniels 1988)

A space X is **Menger** (resp., **weakly Menger**) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite $V_n \subset U_n$ such that $\bigcup\{\bigcup V_n : n \in \omega\} = X$ (resp., $\bigcup\{\bigcup V_n : n \in \omega\}$ is dense in X).

Three covering properties and their weak versions

Definition 3.1 (Hurewicz 1925, Daniels 1988)

A space X is **Menger** (resp., **weakly Menger**) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite $V_n \subset U_n$ such that $\bigcup\{\bigcup V_n : n \in \omega\} = X$ (resp., $\bigcup\{\bigcup V_n : n \in \omega\}$ is dense in X).

Definition 3.2 (Rothberger 1938, Daniels 1988)

A space X is **Rothberger** (resp., **weakly Rothberger**) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are $U_n \in \mathcal{U}_n$ such that $\bigcup \{U_n : n \in \omega\} = X$ (resp., $\bigcup \{U_n : n \in \omega\}$ is dense in X).

Three covering properties and their weak versions

Definition 3.1 (Hurewicz 1925, Daniels 1988)

A space X is **Menger** (resp., **weakly Menger**) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\bigcup\{\bigcup\mathcal{V}_n : n \in \omega\} = X$ (resp., $\bigcup\{\bigcup\mathcal{V}_n : n \in \omega\}$ is dense in X).

Definition 3.2 (Rothberger 1938, Daniels 1988)

A space X is **Rothberger** (resp., **weakly Rothberger**) if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are $U_n \in \mathcal{U}_n$ such that $\bigcup \{U_n : n \in \omega\} = X$ (resp., $\bigcup \{U_n : n \in \omega\}$ is dense in X).

Definition 3.3 (Hurewicz 1925)

A space X is **Hurewicz** if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite $V_n \subset U_n$ such that every point of X is contained in $\bigcup V_n$ for all but finitely many $n \in \omega$.

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"{o}f}$

Example 3.4

lacksquare Is not Menger.

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"{o}f}$

Example 3.4

- lacktriangle $\mathbb P$ is not Menger.
- ② C is not Rothberger.

Masami Sakai (Kanagawa Universitysakaim0:The weak Hurewicz property of Pixley-Roy hy

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"{o}f}$

Example 3.4

- lacktriangle \mathbb{P} is not Menger.
- ② C is not Rothberger.
- **3** A Lusin set is Rothberger, but not Hurewicz. A Sierpiński set is Hurewicz, but not σ -comapct.

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"{o}f}$

Example 3.4

- lacktriangle \mathbb{P} is not Menger.
- $oldsymbol{\mathbb{Q}}$ \mathbb{C} is not Rothberger.
- A Lusin set is Rothberger, but not Hurewicz.
 A Sierpiński set is Hurewicz, but not σ-comapct.
- In ZFC, $\exists X \subset \mathbb{R}$: Menger, not Hurewicz (Fremlin and Miller 1984, Chaber and R. Pol 2002).

 $\sigma\text{-compact} \to \mathsf{Hurewicz} \to \mathsf{Menger} \to \mathsf{Lindel\"{o}f}$

Example 3.4

- $lackbox{0}$ \mathbb{P} is not Menger.
- C is not Rothberger.
- A Lusin set is Rothberger, but not Hurewicz.
 A Sierpiński set is Hurewicz, but not σ-comapct.
- In ZFC, $\exists X \subset \mathbb{R}$: Menger, not Hurewicz (Fremlin and Miller 1984, Chaber and R. Pol 2002).
- **⑤** In ZFC, $\exists Y \subset \mathbb{R}$: Hurewicz, not *σ*-compact (Just, Miller, Scheepers and Szeptycki 1996).

van Douwen's problem and Daniels' results

Problem 4.1 (van Douwen, 1977)

Are $\mathcal{F}[\mathbb{R}]$ and $\mathcal{F}[\mathbb{P}]$ homeomorphic?

van Douwen's problem and Daniels' results

Problem 4.1 (van Douwen, 1977)

Are $\mathcal{F}[\mathbb{R}]$ and $\mathcal{F}[\mathbb{P}]$ homeomorphic?

Theorem 4.2 (Daniels, 1988)

- If $\mathcal{F}[X]$ is weakly Menger (resp., weakly Rothberger), then every finite power of X is Menger (resp., Rothberger).
- ② If X is metrizable and every finite power of X is Menger (resp., Rothberger), then $\mathcal{F}[X]^{\kappa}$ is weakly Menger (resp., weakly Rothberger) for any cardinal κ .

van Douwen's problem and Daniels' results

Problem 4.1 (van Douwen, 1977)

Are $\mathcal{F}[\mathbb{R}]$ and $\mathcal{F}[\mathbb{P}]$ homeomorphic?

Theorem 4.2 (Daniels, 1988)

- If $\mathcal{F}[X]$ is weakly Menger (resp., weakly Rothberger), then every finite power of X is Menger (resp., Rothberger).
- ② If X is metrizable and every finite power of X is Menger (resp., Rothberger), then $\mathcal{F}[X]^{\kappa}$ is weakly Menger (resp., weakly Rothberger) for any cardinal κ .

Corollary 4.3

 $\mathcal{F}[\mathbb{P}]$ is not a continuous image of $\mathcal{F}[\mathbb{R}]$.

The weak Hurewicz property in the sense of Kočinac

Recall:

Definition 5.1

A space X is **Hurewicz** if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that every point of X is contained in $\bigcup \mathcal{V}_n$ for all but finitely many $n \in \omega$.

Definition 5.2 (Kočinac, 2001)

A space X is **weakly Hurewicz in the sense of Kočinac** if for every sequence $\{U_n : n \in \omega\}$ of open covers of X, there are a dense subset $Y \subset X$ and finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that every point of Y is contained in $\bigcup \mathcal{V}_n$ for all but finitely many $n \in \omega$.

Kočinac observed (2001): If $\mathcal{F}[X]$ is weakly Hurewicz in the sense of Kočinac, then every finite power of X is Hurewicz.

Question 5.3

Is the converse true for a metrizable space?

Kočinac observed (2001): If $\mathcal{F}[X]$ is weakly Hurewicz in the sense of Kočinac, then every finite power of X is Hurewicz.

Question 5.3

Is the converse true for a metrizable space?

Proposition 5.4

For a space X, the following are equivalent:

- $\mathcal{F}[X]$ is weakly Hurewicz in the sense of Kočinac,
- 2 X is countable.

Kočinac observed (2001): If $\mathcal{F}[X]$ is weakly Hurewicz in the sense of Kočinac, then every finite power of X is Hurewicz.

Question 5.3

Is the converse true for a metrizable space?

Proposition 5.4

For a space X, the following are equivalent:

- $\mathcal{F}[X]$ is weakly Hurewicz in the sense of Kočinac,
- X is countable.

Example 5.5

 $\mathcal{F}[\mathbb{C}]$ is not weakly Hurewicz in the sense of Kočinac.

The weak Hurewicz property

Definition 6.1

A space X is **weakly Hurewicz** if for every sequence $\{\mathcal{U}_n : n \in \omega\}$ of open covers of X, there are finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that for every nonempty open set $U \subset X$, $U \cap (\bigcup \mathcal{V}_n) \neq \emptyset$ for all but finitely many $n \in \omega$.

weakly Hurewicz in the sense of Kočinac \rightarrow weakly Hurewicz

Lemma 6.2

The weak Hurewicz property is closed under countable unions.

Lemma 6.2

The weak Hurewicz property is closed under countable unions.

Lemma 6.3

 $\prod \{X_{\alpha} : \alpha < \kappa\}$ is weakly Hurewicz, if every finite subproduct of $\{X_{\alpha} : \alpha < \kappa\}$ is weakly Hurewicz.

Lemma 6.2

The weak Hurewicz property is closed under countable unions.

Lemma 6.3

 $\prod \{X_{\alpha} : \alpha < \kappa\}$ is weakly Hurewicz, if every finite subproduct of $\{X_{\alpha} : \alpha < \kappa\}$ is weakly Hurewicz.

Lemma 6.4 (Kočinac and Scheepers, 2003)

For a space X, the following are equivalent:

- every finite power of X is Hurewicz,
- ② for every sequence $\{\mathcal{U}_n : n \in \omega\}$ of open ω -covers of X, there are finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that every finite set $F \subset X$ is contained in some member of \mathcal{V}_n for all but finitely many $n \in \omega$.

Lemma 6.5 (Creede, 1970)

A space (X, τ) is **semi-stratifiable** if and only if there is a function $g : \omega \times X \to \tau$ such that $(i) \{x\} = \bigcap \{g(n, x) : n \in \omega\}$ for all $x \in X$, $(ii) x \in \bigcap \{g(n, x_n) : n \in \omega\}$ implies $x_n \to x$.

 $metrizable \rightarrow stratifiable = monotonically normal + semi-stratifiable$

Lemma 6.5 (Creede, 1970)

A space (X, τ) is **semi-stratifiable** if and only if there is a function $g : \omega \times X \to \tau$ such that (i) $\{x\} = \bigcap \{g(n, x) : n \in \omega\}$ for all $x \in X$, (ii) $x \in \bigcap \{g(n, x_n) : n \in \omega\}$ implies $x_n \to x$.

 $\mathsf{metrizable} o \mathsf{stratifiable} = \mathsf{monotonically} \ \mathsf{normal} \ + \ \mathsf{semi-stratifiable}$

Theorem 6.6

- If $\mathcal{F}[X]$ is weakly Hurewicz, then every finite power of X is Hurewicz.
- ② if X is semi-stratifiable and every finite power of X is Hurewicz, then $\mathcal{F}[X]^{\kappa}$ is weakly Hurewicz for any cardinal κ .