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Variational principles in optimization

Setting

X is a completely regular topological space;
f : X → R ∪ {+∞} is a given proper, lsc and bounded below function;
Y is a (complete) metric space of (bounded) continuous functions in X
(perturbations);

Question

How big is the set
S(f ) = {g ∈ Y : f + g attains its minimum in X (or f + g is well-posed)}
• How big means: nonempty? dense in Y ? residual in Y ?
• S(f ) dense: Variational principle for f ;
• S(f ) residual: Generic variational principle for f ;
• f + g is (Tykhonov) well-posed if it has unique minimum towards which
converges every minimizing sequence for f + g .
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Examples

Bishop-Phelps theorem-the Grandfather

X is a Banach space, f ≡ iBX
, Y = X ∗

Ekeland variational principle

X is a complete metric space, Y ”translations” of the distance.

Stegall variational principle

X is a subset of a Banach space E with certain properties, Y = E ∗.

Smooth principles of Borwein-Preiss and of Deville-Godefroy-Zizler

X is a Banach space and Y a family of smooth functions.

Continuous generic principles

f is continuous, Y is the family C (X ) of all bounded and continuous
functions in X , endowed with the sup norm.
Lucchetti-Patrone, De Blasi-Myjak, Čoban, Kenderov, Revalski
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Applications of variational principles

Optimization (optimality conditions);

Fixed point theory (existence);

Optimal control;

Hamilton-Jacobi equations (viscosity solutions);

Geometry of Banach spaces;

Differentiability properties of (convex) functions in Banach spaces;

Critical point theory.
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Sufficient (and necessary) conditions for validity

Ekeland principle: completeness of the metric space X ;

Stegall principle: Radon-Nikodym property of the set X (X is a
subset of a Banach space E and Y = E ∗);

Borwein-Preiss and Deville-Godefroy-Zizler smooth principles: enough
rich family of smooth functions in the Banach space X (existence of
bump functions);

continuous principles: almost completeness properties (e.g. X must
contain a dense completely metrizable subspace, or more general,
topological games have to be involved)

Julian P. Revalski (BAS) Games and perturbed optimization 25/06-30/06, 2012, Caserta 5 / 21



A general variational principle (Kenderov-Revalski, 2010)

Lemma

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function which
is bounded from below. Let x0 ∈ dom(f ) and ε > 0 be so that
f (x0) < infX f + ε. Then, there exists a continuous function g ∈ C (X )
such that ‖g‖∞ ≤ ε and the function f + g attains its infimum at x0.

Corollary

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function which
is bounded from below. Then the set {g ∈ C (X ) : f + g attains its
infimum on X} is dense in C (X ).

Corollary

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function which
is bounded from below. Then for every x0 ∈ dom(f ) there is g ∈ C (X )
such that x0 is a minimizer for the perturbed function f + g.
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Topological games: The Banach-Mazur game

Setting and rules of playing

Given a nonempty set S of a completely regular topological space X , two
players, α and β, play a game, by choosing, alternating, nonempty open
sets, Un for β (who starts the game) and Vn for α so that Un+1 ⊂ Vn ⊂ Un

for any n ≥ 1. The so obtained sequence {Un,Vn}n≥1 is called a play.

Winning rule

α wins the play {Un,Vn}n≥1 if ∩nUn = ∩nVn ⊂ S . Otherwise β wins.

Notation: usually, BM(X , S).
A well-known variant: denoted by BM(X ), is when the players are
making their choices as above and the player α wins the corresponding
play {Un,Vn}n≥1 if ∩nUn = ∩nVn 6= ∅. Otherwise β wins.

Appeared for the first time in the Scottish Book, 1936, as problem No. 43
posed by Mazur (unpublished answer by Banach).
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The Banach-Mazur game: Winning strategies

A strategy for α in BM(X ,S) is a mapping s which assigns to every
possible chain (U1,V1, . . . ,Un) corresponding to the first n legal moves of
β and the first n − 1 moves of α, n ≥ 1, a non-empty open set Vn ⊂ Un.
The play p = {Un,Vn}∞n=1, where Vn = s(U1,V1, . . . ,Un) for every n ≥ 1
is called an s-play.

The strategy s is winning for α if α wins every s-play p = {Un,Vn}∞n=1 in
the game BM(X , S) (i.e. ∩nUn ⊂ S).

The concept of a (winning) strategy for β in BM(X ,S) as well as the
corresponding notions in the variant BM(X ) are defined analogously.
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The Banach-Mazur game: some basic facts

Oxtoby (Answer to Mazur’s original question)

• α has a winning strategy BM(X ,S) if and only if S is residual in X ;
• if X is a complete metric space, β has a winning strategy in BM(X , S) if
and only if S is of the first Biare category in some open set of X .

Baire spaces and Banach-Mazur game

β does not have a winning strategy in BM(X ) exactly when X is a Baire
space (Krom, Oxtoby).

Determiness

These games are not necessarily determined, that is, the absence of a
winning strategy for one of the players does not imply the existence of a
winning one for the opponent player.

α-favorable spaces

complete metric spaces, (locally) compact spaces, ...
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The Banach-Mazur game BM(X ) and continuous
variational principles

Existence of solutions (Kenderov and Revalski)

If f : X → R is a continuous bounded function, then the set
{g ∈ C (X ) : f + g attains its minimum in X} contains a dense Gδ-subset
of C (X ) if and only if the player α has a winning strategy in the
Banach-Mazur game BM(X ).

Well-posedness (Čoban, Kenderov and Revalski)

A special kind of winning strategies for the player α in the Banach-Mazur
game BM(X ) are needed if we want also that the perturbations f + g are
well-posed.
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Another topological game

The game

Two players, Σ and Ω, play in X by choosing alternatively, nonempty sets
(Σ starts) An for Σ and Bn for Ω so that for any n ≥ 1, An+1 ⊂ Bn ⊂ An

and Bn must be relatively open subset of An.
Ω wins the play {An,Bn}n≥1 if ∩nAn = ∩Bn 6= ∅. Otherwise Σ wins. We
will denote this game by G (X ).
The game G (X ) (together with other, stronger winning conditions) was
used by Michael to characterize metric spaces with completeness
properties.

Strategies

The notions of (winning) strategy for Ω or Σ are defined as in the case of
the Banach-Mazur game.
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Relation with the Banach-Mazur game BM(X )

The game G (X ) can be considered as a generalization of the
Banach-Mazur game BM(X ):

Proposition

Let X be a completely regular topological space which admits a winning
strategy for the player Ω in the game G (X ). Then X admits also a
winning strategy for the player α in the Banach-Mazur game BM(X ).

Ω-favorable spaces

complete metric spaces, (locally) compact spaces, countably compact
spaces, Čech complete spaces, ... ; stable under open continuous
mappings.
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The game G (X ) and variational principles

Existence of minima

Theorem

Let f : X → R ∪ {+∞} be a proper lower semicontinuous function which
is bounded from below in X . Let the player Ω have a winning strategy ω
in the game G (X ). Then the set {g ∈ C (X ) : f + g attains its infimum in
X} contains a dense Gδ-subset of C (X ).

Question

Is the condition of existence of a winning strategy also necessary?—Open.
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The game G (X ) and variational principles

Well-posedness of the perturbations

Theorem

Let X be a completely regular topological space for which there exists a
winning strategy ω for the player Ω in the game G (X ) with the additional
property that for any ω-play {An,Bn}n≥1 the intersection ∩nAn = ∩nBn is
a singleton, say x ∈ X , and {Bn}n≥1 behaves as a base for x. Let
f : X → R ∪ {+∞} be a proper lower semicontinuous function in X which
is bounded from below. Then the set {g ∈ C (X ) : f + g is well-posed }
contains a dense Gδ-subset of C (X ).

Question

Is the condition of existence of such a winning strategy also
necessary?—Again open.
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Fragmentability

Fragmentable spaces

A topological space X is fragmentable (Jayne and Rogers) if there is a
metric d in X such that for any nonempty set A of X and any ε > 0 there
exists a nonempty relatively open subset B of A such that
diam(B) := sup{d(x , y) : x , y ∈ B} < ε.

Examples

Metric spaces, Eberlein compacta, bounded subsets of some dual Banach
spaces (the latter with the weak and weak start topologies).

Applications

Useful in the study of generic single-valuedness of set-valued mappings, in
the study of differentiability of convex functions and in the geometry of
Banach spaces
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Fragmentability and topological games

The fragmenting game FG (X )

The same setting as the game G (X ): two players, Σ and Ω play exactly as
in G (X ) (i.e. An+1 ⊂ Bn ⊂ An and Bn is a nonempty relatively open
subset of An for any n ≥ 1). Ω wins the play {An,Bn} if the intersection
∩nAn is no more than a singleton (may be empty!). Otherwise Σ wins.

Characterization: Kenderov and Moors

The space X is fragmentable if and only if the player Ω has a winning
strategy in the fragmenting game FG (X ).
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Fragmentability and variational principles

Corollary

Let X be a completely regular topological space which is fragmented by a
metric d whose topology contains the initial topology in X and d is
conditionally complete (i.e. each d-Cauchy sequence converges in the
initial topology). Then for any proper lower semicontinuous function
f : X → R ∪ {+∞} which is bounded from below the set
{g ∈ C (X ) : f + g is well-posed } contains a dense Gδ-subset of C (X ).
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Nonexistence of winning strategies

Theorem

Let X be a completely regular topological space which does not admit a
winning strategy for the player Σ in the game G (X ). Let
f : X → R ∪ {+∞} be a proper lower semicontinous function which is
bounded from below. Then, the set {g ∈ C (X ) : f + g attains its infimum
in X} is everywhere of the second Baire category in C (X ).

Let G ′(X ) be the game played as G (X ) in which Ω wins the corresponding
play {An,Bn}n≥1 if the intersection ∩nAn = ∩nBn is a singleton, say
x ∈ X , and {Bn}n≥1 behaves as a base for x . Otherwise Σ wins the play.

Theorem

Let X do not admit a winning strategy for the player Σ in the game
G ′(X ). Let f : X → R ∪ {+∞} be a proper lower semicontinous function
which is bounded from below. Then, the set {g ∈ C (X ) : f + g is
well-posed} is everywhere of the second Baire category in C (X ).
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Nondeterminess: Examples

Example

Let X be a Bernstein subset of the unit interval with the inherited
topology. It is known that no one of the players in the Banach-Mazur
game BM(X ) has a winning strategy (X is Baire and the results on
generic continuous principles). It can be seen that X does not admit a
winning strategy for none of the players in the game G (X ) either.

Example

There is a compact space X such that the sets
D1 = {g ∈ C (X ) : g attains its minimum at exactly one point } and
D2 = {g ∈ C (X ) : g attains its minimum at exactly two points } are
everywhere of second Baire category in (C (X ), ‖ · ‖∞). In particular, none
of the players in the fragmenting game FG (X ) possesses a winning
strategy.
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Another tool: set-valued analysis

The solution mapping

Let X be a completely regular topological space and let
f : X → R∪ {+∞} be a lower semicontinuous proper extended real-valued
function. Then the solution mapping Mf : C (X ) ⇒ X is defined as:

Mf (g) := {x ∈ X : (f + g)(x) ≤ (f + g)(y) ∀y ∈ X}, g ∈ C (X ).

The properties of the solution mapping play fundamental role in the proofs
of the results presented so far.
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Properties of Mf :

(a) Gr(Mf ) is closed in the product topology in C (X )× X ;

(b) Dom(Mf ) is dense in C (X );

(c) Mf maps C (X ) onto dom(f );

(d) for any two opens sets U of C (X ) and V of X such that
Mf (U) ∩ V 6= ∅ there is a nonempty open set U ′ ⊂ U such that
Mf (U ′) ⊂ V (important property which is called minimality or
quasi-continuity);

(e) if (Un)n≥1 is a base of neighborhoods of g0 ∈ C (X ) then
Mf (g0) = ∩nM(Un);

(f) if the restriction of f on dom(f ) is continuous then Mf is relatively
open: for any open set U of C (X ) the set Mf (U) is a (nonempty)
relatively open subset of dom(f ).
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