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Introduction

We study some closure-type properties of the function spaces NP
Y* and C(X,Y) endowed with two topologies: the topology Bornology
7o of uniform convergence on a bornology 5 on X and the Function
topology 74 of strong uniform convergence on ‘B. e

Bitopological
Spaces

The study of function spaces with the strong uniform topology

on a bornology was initiated by G. Beer and S. Levi in 2009 I
and continued by A. Caserta, G. Di Maio, L. Hold (2010), A.

Caserta, G. Di Maio, Lj.D.R. Kotinac (2012).



Introduction

If (X,d) is a metric space, x € X, AC X and £ > 0 a real Introduction
. Bornolog
number, we write oneesy
Function
spaces
S(x7 6) = {y € X : d<x7 y) < E}’ Bitopological
AE = UaeA S(a7€)' Spaces
Countable fan
tightness

to denote the open c-ball with center x and the
e-enlargement of A.



Bornology

A bornology on a metric space (X,d) is a family B of
nonempty subsets of X which is closed under finite unions,
hereditary (i.e. closed under taking nonempty subsets) and
forms a cover of X (Hu, 1948).

Bornology

We suppose that X does not belong to a bornology B on X.

A base for a bornology 8 on (X, d) is a subfamily B, of B
which is cofinal in B with respect to the inclusion, i.e. for
each B € B there is By € By such that B C By. A base is
called closed (compact) if all its members are closed
(compact) subsets of X.



Bornology

Examples of bornologies on a metric space (X, d):
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Bornology

Examples of bornologies on a metric space (X, d):

@ The family § of all nonempty finite subsets of X (the
smallest bornology on X and has a closed, in fact a
compact, base);
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Examples of bornologies on a metric space (X, d):
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Bornology

Examples of bornologies on a metric space (X, d):
@ The family § of all nonempty finite subsets of X (the
smallest bornology on X and has a closed, in fact a
compact, base);

@ The family of all nonempty subsets of X (the largest
bornology on X);

© The collection X, of all nonempty relatively compact
subsets (i.e. subsets with compact closure);
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Bornology

Examples of bornologies on a metric space (X, d):
@ The family § of all nonempty finite subsets of X (the
smallest bornology on X and has a closed, in fact a
compact, base);

@ The family of all nonempty subsets of X (the largest
bornology on X);

© The collection X, of all nonempty relatively compact
subsets (i.e. subsets with compact closure);

@ d-bounded subsets of X;
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Bornology

Examples of bornologies on a metric space (X, d):

@ The family § of all nonempty finite subsets of X (the
smallest bornology on X and has a closed, in fact a
compact, base);

@ The family of all nonempty subsets of X (the largest
bornology on X);

© The collection X, of all nonempty relatively compact
subsets (i.e. subsets with compact closure);

@ d-bounded subsets of X;
© Totally d-bounded subsets of X.
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Strong uniform continuity

A mapping f: X — Y from a metric space (X, d) to a metric

space (Y, p) is strongly uniformly continuous on a subset B

of X if for each € > 0 there is § > 0 such that d(x1,x2) < 0

and {x1,z2} N B # 0 imply p(f(z1), f(z2)) < e. (Beer and Bornology
Levi, 2009)
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A mapping f: X — Y from a metric space (X, d) to a metric

space (Y, p) is strongly uniformly continuous on a subset B

of X if for each € > 0 there is § > 0 such that d(x1,x2) < 0

and {x1,z2} N B # 0 imply p(f(z1), f(z2)) < e. (Beer and Bornology
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If B is a bornology on X, then f : X — Y is called strongly
uniformly continuous on *B if f is strongly uniformly
continuous on B for each B € 8.



Strong uniform continuity

A mapping f: X — Y from a metric space (X, d) to a metric

space (Y, p) is strongly uniformly continuous on a subset B

of X if for each € > 0 there is § > 0 such that d(x1,x2) < 0

and {x1,z2} N B # 0 imply p(f(z1), f(z2)) < e. (Beer and Bornology
Levi, 2009)

If B is a bornology on X, then f : X — Y is called strongly
uniformly continuous on *B if f is strongly uniformly
continuous on B for each B € 8.

Beer and Levi also defined a new topology on the set Y of
all functions from X into Y — the topology of strong uniform
convergence. They initiated the study of function spaces Y X
and C(X,Y") with this new topology.



Function Spaces

Let (X,d) and (Y, p) be metric spaces and B a bornology on

X. By 75 we denote the topology of uniform convergence on e
B generated by a uniformity on Y having as a base the sets spaces
of the form

[B,e] :=={(f,9) : Vz € B,p(f(x),9(x)) <&} (B€B,e>0).



Function Spaces

For given metric spaces (X,d) and (Y, p) and a bornology B Function
with closed base on X the topology of strong uniform spaces
convergence on ‘B, denoted by 73, is determined by a

uniformity on YX having as a base the sets of the form

[Be)” = {(f,9) : 36 > 0¥z € B, p(f(2), g(2)) < &}.



Function Spaces

For a function f € (C(X,Y), 7s) the standard local base of f
is the collection of sets

[B,el(f) ={g € (C(X,Y) : p(g(2), f(x)) <&, Vz € B} Inroduction
Bornology
while in (C(X,Y), 735,) the standard local base of f is the Function

spaces
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Function Spaces

For a function f € (C(X,Y), 7s) the standard local base of f
is the collection of sets

[B,el(f) ={g € (C(X,Y) : p(g(), f(x)) <&, Vx € B}

while in (C(X,Y), 735,) the standard local base of f is the Function
collection of sets ’

[B,el’(f) = {g € (C(X,Y), 78) : 36 > 0, plg(x), f(2)) < &, Vg ccBs

For each bornology B with closed base on X the topology 74,
on YX is finer than the classical topology 7o of uniform
convergence on ‘B, and if B has a compact base, then

Ty = T3 < 7, on C(X,Y).In particular,

mp <73 <1 < 7z = T, on C(X)



SB°-cover

For a bornology B on a space (X, d) an open cover U is called
a B-cover if each element in B is contained in a member of U
and X ¢ u Function

spaces



For a bornology B on a space (X, d) an open cover U is called
a B-cover if each element in B is contained in a member of U
and X ¢ U.

B°-cover

An open cover U of a metric space (X, d) with a bornology B
is said to be a strong B-cover of X (or shortly a B°-cover of

X) if X ¢ U and for each B € B there exist U € U and § > 0
such that B® C U.(Caserta, Di Maio, Hol3)

Introduction
Bornology

Function
spaces

Bitopological
Spaces

Countable fan
tightness



B° cover

Og: The collection of all B-covers
Oms: The collection of all strong B-covers of a space

(°B%,B)-Lindelof: Each B°-cover contains a countable —
$B-subcover. spaces
I'gs: The collection of all (countable) ~yspgs-covers of X.

A countable open cover U = {U,, : n € N} of X is said to be a
~vms-cover if it is infinite and for each B € 93 there are ng € N

and a sequence (0, : n > ng) of positive real numbers such

that B C U, for all n > ny.

U is a yss-cover if each member B of B belongs to U, all but

finitely many n.



Bitopological Spaces

(X, 71, 72), written simply X, will be a bitopological space et
(shortly bispace), i.e. the set X endowed with two topologies S
71 and 79. For a subset A of X, Cl;(A) will denote the closure  iciion
of A in (X,Ti), 22172 spaces

Bitopological
Spaces

A bispace (X, 71, 72) has countable (7;, 7;)-tightness (i # j; Commtable fan
i,j =1,2) if for each A C X and each z € Cl,,(A) there is a tightness
countable C' C A such that z € Cl;(C).



Bitopological Spaces

Let (X, d) be a metric space and B a bornology on X with

closed base. The following are equivalent: 5 ,
itopological
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Bitopological Spaces

Let (X, d) be a metric space and B a bornology on X with

closed base. The following are equivalent: 5 ,
itopological

Spaces

(C(X), 7, 7s) has countable (73, 7o) tightness;
X is a (B°,B)-Lindelof space.



Classical selection principles

Let A and B be sets consist of families of subsets of an infinite
set X. Then:
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For a space X and a point x € X the symbol €2, denotes the
set {A C X\ {z}:2 € A}, and X, is the set of sequences
converging to x.



Classical selection principles

Let A and B be sets consist of families of subsets of an infinite
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Classical selection principles

Let A and B be sets consist of families of subsets of an infinite
set X. Then:

51 (.A, 3) 3
For each sequence (A,, : n € N) of elements of A

there is a sequence (b, : n € N) such that for each
n, by, € Ay, and {b, : n € N} is an element of B.
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For a space X and a point x € X the symbol €2, denotes the

set {A C X\ {z}:2¢€ A}, and X, is the set of sequences
converging to x.



Classical selection principles

Let A and B be sets consist of families of subsets of an infinite
set X. Then:

51 (.A, 3) 3

For each sequence (A,, : n € N) of elements of A Introduction

there is a sequence (b, : n € N) such that for each Bornology

n, by, € Ay, and {b, : n € N} is an element of B. Funcion
Bitopological
Spaces

Sfin (‘A7 B) : Countable fan

tightness

For each sequence (A, : n € N) of elements of A
there is a sequence (B, : n € N) of finite sets such

that for each n, B, C Ay, and |J,,cy B € B.

For a space X and a point x € X the symbol €2, denotes the
set {AC X\ {z}:2 € A}, and X, is the set of sequences
converging to x.



Countable fan tightness

A space X has countable fan tightness if for each x € X we
have that Sy, (€2, €2;) holds.

X has countable strong fan tightness if for each x € X the
selection principle Sy (€2, €2,) holds.

Countable fan
tightness

Let U be a B-cover of X. Set
A={feCX):qU €U, f(z)=1forall z € X \U}. Then
0 € Clyy, (A).



(13, 7j)-fan tightness

Let (X, 71, 72) be a bispace.

X has countable (7;, 7j)-fan tightness (i # j; i,j = 1,2) if for
each x € X and each sequence < A,, : n € N > of subsets of
X such that z € Cl;(A,) for each n € N, there are finite sets
F, C A,, n € N, with z € Cl; (UneN Fn), i.e. if for each

z € X, Spin (O, Q) is satisfied.
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(13, 7j)-fan tightness

Let (X, 71, 72) be a bispace.

X has countable (7;, 7j)-fan tightness (i # j; i,j = 1,2) if for
each x € X and each sequence < A,, : n € N > of subsets of
X such that z € Cl;(A,) for each n € N, there are finite sets
F, C A,, n € N, with z € Cl; (UneN Fn), i.e. if for each

z € X, Spin (O, Q) is satisfied.

Theorem

Let (X,d) be a metric space and 8 a bornology on X. The
following are equivalent:
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(13, 7j)-fan tightness

Let (X, 71, 72) be a bispace.

X has countable (7;, 7j)-fan tightness (i # j; i,j = 1,2) if for
each x € X and each sequence < A,, : n € N > of subsets of
X such that z € Cl;(A,) for each n € N, there are finite sets
F, C A,, n € N, with z € Cl; (UneN Fn), i.e. if for each

z € X, Spin (O, Q) is satisfied.

Theorem

Let (X,d) be a metric space and 8 a bornology on X. The
following are equivalent:

(1) (C(X), Ta, ™) has countable (74, 7)-fan tightness;
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(13, 7j)-fan tightness

Let (X, 71, 72) be a bispace.

X has countable (7;, 7j)-fan tightness (i # j; i,j = 1,2) if for
each x € X and each sequence < A,, : n € N > of subsets of
X such that z € Cl;(A,) for each n € N, there are finite sets
F, C A,, n € N, with z € Cl; (UneN Fn), i.e. if for each

z € X, Spin (O, Q) is satisfied.

Theorem

Let (X,d) be a metric space and 8 a bornology on X. The
following are equivalent:

(1) (C(X), Ta, ™) has countable (74, 7)-fan tightness;
(2) X satisfies Sgin(Ogs, O3).
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(73, 7j)-strong fan tightness

X has countable (7;, 7;)-strong fan tightness (i # j;

i,7 = 1,2), if for each € X and each sequence

< Ap :n € N > of subsets of X such that z € Cl;(A,,) for
each n € N, there are points x,, € A,, n € N, with

z € Clj({zn : n € N}).

Theorem

Let (X,d) be a metric space and 8 a bornology on X. The
following are equivalent:

(1) (C(X), s, ™) has countable strong fan tightness;
(2) X satisfies S1(Oms, Og).
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7;, Tj )-Fréchet-Urysohn
(75, 75) M

A bispace (X, 71, 72) is said to be (7;, 7j)-Fréchet-Urysohn if
for each A subset of X and each x € Cl,(A) there is a
sequence in A 7j-converging to x. X is strictly

(73, 7;)-Fréchet-Urysohn if it fulfills the selection property
S1(Q7, X)),

Countable fan
tightness



(i, 7j)-Fréchet-Urysohn

A bispace (X, 71, 72) is said to be (7;, 7j)-Fréchet-Urysohn if
for each A subset of X and each x € Cl,(A) there is a
sequence in A 7j-converging to x. X is strictly

(74, 7j)-Fréchet-Urysohn if it fulfills the selection property
S1(Q7, X)),

Theorem

Let (X, d) be a metric space and B be a bornology on X.
The following are equivalent:
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(i, 7j)-Fréchet-Urysohn

A bispace (X, 71, 72) is said to be (7;, 7j)-Fréchet-Urysohn if
for each A subset of X and each x € Cl,(A) there is a
sequence in A 7j-converging to x. X is strictly

(74, 7j)-Fréchet-Urysohn if it fulfills the selection property
S1(Q7, X)),

Theorem

Let (X, d) be a metric space and B be a bornology on X.

The following are equivalent:

(1) (C(X), 7o, ™8)) is a strictly (73, 7s)-Fréchet-Urysohn
space;
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(i, 7j)-Fréchet-Urysohn

A bispace (X, 71, 72) is said to be (7;, 7j)-Fréchet-Urysohn if
for each A subset of X and each x € Cl,(A) there is a
sequence in A 7j-converging to x. X is strictly

(74, 7j)-Fréchet-Urysohn if it fulfills the selection property
S1(Q7, X)),

Theorem

Let (X, d) be a metric space and B be a bornology on X.

The following are equivalent:

(1) (C(X), 7o, ™8)) is a strictly (73, 7s)-Fréchet-Urysohn
space;

(2) X satisfies S1(0%,'s).
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7;, T; )-Fréchet-Urysohn
(i, 75)

If (X,d) is a metric space and 8 a bornology on X, then the

following assertions are equivalent:
(C(X), 7o, T8) is a (T, T8) Fréchet-Urysohn space;
(C(X), 7o, T8)) is a strictly (73, Ta3)-Fréchet-Urysohn
space; Countable fan
Each B°-cover U of X contains a countable set e
{Uy, : n € N} which is a ym-cover of X
X satisfies S1(Omps, ').
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