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Introduction

We study some closure-type properties of the function spaces
Y X and C(X,Y ) endowed with two topologies: the topology
τB of uniform convergence on a bornology B on X and the
topology τ sB of strong uniform convergence on B.

The study of function spaces with the strong uniform topology
on a bornology was initiated by G. Beer and S. Levi in 2009
and continued by A. Caserta, G. Di Maio, L’. Holá (2010), A.
Caserta, G. Di Maio, Lj.D.R. Kočinac (2012).
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Introduction

If (X, d) is a metric space, x ∈ X, A ⊂ X and ε > 0 a real
number, we write

S(x, ε) = {y ∈ X : d(x, y) < ε},
Aε :=

⋃
a∈A S(a, ε),

to denote the open ε-ball with center x and the
ε-enlargement of A.
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Bornology

Bornology

A bornology on a metric space (X, d) is a family B of
nonempty subsets of X which is closed under finite unions,
hereditary (i.e. closed under taking nonempty subsets) and
forms a cover of X (Hu, 1948).

We suppose that X does not belong to a bornology B on X.

A base for a bornology B on (X, d) is a subfamily B0 of B

which is cofinal in B with respect to the inclusion, i.e. for
each B ∈ B there is B0 ∈ B0 such that B ⊂ B0. A base is
called closed (compact) if all its members are closed
(compact) subsets of X.
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Examples

Examples of bornologies on a metric space (X, d):

1 The family F of all nonempty finite subsets of X (the
smallest bornology on X and has a closed, in fact a
compact, base);

2 The family of all nonempty subsets of X (the largest
bornology on X);

3 The collection Kr of all nonempty relatively compact
subsets (i.e. subsets with compact closure);

4 d-bounded subsets of X;

5 Totally d-bounded subsets of X.
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Strong uniform continuity

A mapping f : X → Y from a metric space (X, d) to a metric
space (Y, ρ) is strongly uniformly continuous on a subset B
of X if for each ε > 0 there is δ > 0 such that d(x1, x2) < δ
and {x1, x2} ∩B 6= ∅ imply ρ(f(x1), f(x2)) < ε. (Beer and
Levi, 2009)

If B is a bornology on X, then f : X → Y is called strongly
uniformly continuous on B if f is strongly uniformly
continuous on B for each B ∈ B.

Beer and Levi also defined a new topology on the set Y X of
all functions from X into Y – the topology of strong uniform
convergence. They initiated the study of function spaces Y X

and C(X,Y ) with this new topology.



Some selection
properties
related to

bornologies

Selma Özçağ
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Function Spaces

Let (X, d) and (Y, ρ) be metric spaces and B a bornology on
X. By τB we denote the topology of uniform convergence on
B generated by a uniformity on Y X having as a base the sets
of the form

[B, ε] := {(f, g) : ∀x ∈ B, ρ(f(x), g(x)) < ε} (B ∈ B, ε > 0).

.
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Function Spaces

Topology of strong uniform convergence

For given metric spaces (X, d) and (Y, ρ) and a bornology B

with closed base on X the topology of strong uniform
convergence on B, denoted by τ sB, is determined by a
uniformity on Y X having as a base the sets of the form

[B, ε]s := {(f, g) : ∃δ > 0 ∀x ∈ Bδ, ρ(f(x), g(x)) < ε}.
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Function Spaces

For a function f ∈ (C(X,Y ), τB) the standard local base of f
is the collection of sets

[B, ε](f) = {g ∈ (C(X,Y ) : ρ(g(x), f(x)) < ε, ∀x ∈ B}

while in (C(X,Y ), τ sB) the standard local base of f is the
collection of sets

[B, ε]s(f) = {g ∈ (C(X,Y ), τ sB) : ∃δ > 0, ρ(g(x), f(x)) < ε, ∀x ∈ Bδ}.

For each bornology B with closed base on X the topology τ sB
on Y X is finer than the classical topology τB of uniform
convergence on B, and if B has a compact base, then
τ sB = τB ≤ τk on C(X,Y ).In particular,
τp ≤ τ sF ≤ τ sB ≤ τ sK = τk on C(X)
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B-cover

For a bornology B on a space (X, d) an open cover U is called
a B-cover if each element in B is contained in a member of U

and X /∈ U.

Bs-cover

An open cover U of a metric space (X, d) with a bornology B

is said to be a strong B-cover of X (or shortly a Bs-cover of
X) if X /∈ U and for each B ∈ B there exist U ∈ U and δ > 0
such that Bδ ⊂ U .(Caserta, Di Maio, Holá)
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Open covers

OB: The collection of all B-covers

OBs : The collection of all strong B-covers of a space

(Bs,B)-Lindelöf: Each Bs-cover contains a countable
B-subcover.

ΓBs : The collection of all (countable) γBs-covers of X.

A countable open cover U = {Un : n ∈ N} of X is said to be a
γBs-cover if it is infinite and for each B ∈ B there are n0 ∈ N
and a sequence (δn : n ≥ n0) of positive real numbers such
that Bδn ⊂ Un for all n ≥ n0.

U is a γB-cover if each member B of B belongs to Un all but
finitely many n.
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Bitopological Spaces

(X, τ1, τ2), written simply X, will be a bitopological space
(shortly bispace), i.e. the set X endowed with two topologies
τ1 and τ2. For a subset A of X, Cli(A) will denote the closure
of A in (X, τi), i = 1, 2.

A bispace (X, τ1, τ2) has countable (τi, τj)-tightness (i 6= j;
i, j = 1, 2) if for each A ⊂ X and each x ∈ Clτi(A) there is a
countable C ⊂ A such that x ∈ Clj(C).
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Bitopological Spaces

Theorem

Let (X, d) be a metric space and B a bornology on X with
closed base. The following are equivalent:

(1) (C(X), τ sB, τB) has countable (τ sB, τB) tightness;

(2) X is a (Bs,B)-Lindelöf space.
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Classical selection principles

Let A and B be sets consist of families of subsets of an infinite
set X. Then:

S1(A,B):
For each sequence (An : n ∈ N) of elements of A

there is a sequence (bn : n ∈ N) such that for each
n, bn ∈ An, and {bn : n ∈ N} is an element of B.

Sfin(A,B):
For each sequence (An : n ∈ N) of elements of A

there is a sequence (Bn : n ∈ N) of finite sets such
that for each n, Bn ⊂ An, and

⋃
n∈NBn ∈ B.

For a space X and a point x ∈ X the symbol Ωx denotes the
set {A ⊂ X \ {x} : x ∈ A}, and Σx is the set of sequences
converging to x.
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Countable fan tightness

A space X has countable fan tightness if for each x ∈ X we
have that Sfin(Ωx,Ωx) holds.

X has countable strong fan tightness if for each x ∈ X the
selection principle S1(Ωx,Ωx) holds.

Lemma

Let U be a Bs-cover of X. Set
A = {f ∈ C(X) : ∃U ∈ U, f(x) = 1 for all x ∈ X \ U}. Then
0 ∈ ClτBs (A).
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(τi, τj)-fan tightness

Let (X, τ1, τ2) be a bispace.

(τi, τj)-fan tightness

X has countable (τi, τj)-fan tightness (i 6= j; i, j = 1, 2) if for
each x ∈ X and each sequence < An : n ∈ N > of subsets of
X such that x ∈ Cli(An) for each n ∈ N, there are finite sets
Fn ⊂ An, n ∈ N, with x ∈ Clj

(⋃
n∈N Fn

)
, i.e. if for each

x ∈ X, Sfin(Ωτi
x ,Ω

τj
x ) is satisfied.

Theorem

Let (X, d) be a metric space and B a bornology on X. The
following are equivalent:

(1) (C(X), τ sB, τB) has countable (τ sB, τB)-fan tightness;

(2) X satisfies Sfin(OBs ,OB).
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(τi, τj)-strong fan tightness

X has countable (τi, τj)-strong fan tightness (i 6= j;
i, j = 1, 2), if for each x ∈ X and each sequence
< An : n ∈ N > of subsets of X such that x ∈ Cli(An) for
each n ∈ N, there are points xn ∈ An, n ∈ N, with
x ∈ Clj({xn : n ∈ N}).

Theorem

Let (X, d) be a metric space and B a bornology on X. The
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(1) (C(X), τ sB, τB) has countable strong fan tightness;

(2) X satisfies S1(OBs ,OB).
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(τi, τj)-Fréchet-Urysohn

(τi, τj)-Fréchet-Urysohn

A bispace (X, τ1, τ2) is said to be (τi, τj)-Fréchet-Urysohn if
for each A subset of X and each x ∈ Clτi(A) there is a
sequence in A τj-converging to x. X is strictly
(τi, τj)-Fréchet-Urysohn if it fulfills the selection property
S1(Ωτ1

x ,Σ
τ2
x ).

Theorem

Let (X, d) be a metric space and B be a bornology on X.
The following are equivalent:

(1) (C(X), τ sB, τB)) is a strictly (τ sB, τB)-Fréchet-Urysohn
space;

(2) X satisfies S1(OsB,ΓB).
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space;

(2) X satisfies S1(OsB,ΓB).



Some selection
properties
related to

bornologies

Selma Özçağ
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(τi, τj)-Fréchet-Urysohn

Theorem

If (X, d) is a metric space and B a bornology on X, then the
following assertions are equivalent:

(1) (C(X), τ sB, τB) is a (τ sB, τB) Fréchet-Urysohn space;

(2) (C(X), τ sB, τB)) is a strictly (τ sB, τB)-Fréchet-Urysohn
space;

(3) Each Bs-cover U of X contains a countable set
{Un : n ∈ N} which is a γB-cover of X;

(4) X satisfies S1(OBs ,ΓB).
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