Theorem on universal spaces for dimension function (m,n)-dim

Nikolay Martynchuk

Moscow State University

June 27, 2012

Nikolay Martynchuk Theorem on universal spaces

All spaces are assumed to be normal T_1 . The set of all open covers with $\leq m$ elemets of a space X is denoted by $\operatorname{cov}_m(X)$. By the *order* of a family u we mean the largest n such that u contains n sets with a non-empty intersection. The *order* of u is denoted by $\operatorname{ord} u$. So,

 $\operatorname{ord} u \leq 1 \iff u$ is a disjoint family.

Def 1

Let $u = (U_1, \ldots, U_m) \in \operatorname{cov}_m(X)$ and let $\phi = (F_1, \ldots, F_m)$ be a family of closed subsets of X such that $F_j \subset U_j, j = 1, \ldots, m$; ord $\phi \leq 1$. Then (ϕ, u) is called an *m*-pair in X. The set of all *m*-pairs in X is denoted by m(X).

Def 2

Let (ϕ, u) be an *m*-pair in X and let $v = (V_1, \ldots, V_m)$ be a family of open subsets of X such that $F_j \subset V_j \subset U_j, j = 1, \ldots, m$; ord $v \leq n$. Then (ϕ, v, u) is called (m, n)-triple in X.

イロト イポト イヨト イヨト

Def 3

Let $(\phi, u) \in m(X)$. A closed set $P \subset X$ is called an *n*-partition of (ϕ, u) (notation: $P \in Part(\phi, u, n)$), if there exists a family v of open subsets of X such that (ϕ, v, u) is an (m, n)-triple in X and $P = X \setminus \bigcup v$.

Def 4

Let $(\phi_i, u_i) \in m(X), i = 1, ..., r$. The sequence $((\phi_1, u_1), ..., (\phi_r, u_r))$ is said to be an *n*-inessential in X, if there exists partitions $P_i \in Part(\phi_i, u_i, n)$ such that

$$P_1 \cap \ldots \cap P_r = \emptyset.$$

・ロト ・日・ ・ ヨト

Def 5

Let τ be an infinite cardinal number. An inverse system $S = \{X_{\alpha}, \pi_{\beta}^{\alpha}, A\}$ with surjective projections π_{β}^{α} is said to be a τ -spectrum if 1) all X_{α} are compact spaces; 2) for every chain B in A with $|B| \leq \tau$ there is a supB in A; 3) for every chain B in A with $|B| \leq \tau$ and sup $B = \beta$, the diagonal product $\Delta\{\pi_{\alpha}^{\beta}: \alpha \in B\}$ is a homeomorphism between X_{β} and lim(S|B).

Def 6 (V. Fedorchuk)

Let $m, n \in \mathbb{N}, n \leq m$. To every space X one assigns the dimension (m, n)-dimX, wich is an integer ≥ -1 or ∞ . The dimensional function (m, n)-dim is defined in the following way: (1) (m, n)-dimX = -1 iff $X = \emptyset$; (2) (m, n)-dim $X \leq k$, where $k = 0, 1, \ldots$, if every sequence $((\phi_1, u_1), \ldots, (\phi_{k+1}, u_{k+1})), (\phi_i, u_i) \in m(X)$ is *n*-inessential in X; (3) (m, n)-dim $X = \infty$, if (m, n)-dimX > k for all $k = -1, 0, 1, \ldots$.

Remark

(m, n)-dim is a generalization of classic Lebesgue covering dimension. V. Fedorchuk had proved that (2, 1)-dim $X = \dim X$ for every space X. For more details see ^a.

 ${}^{a}V.V.$ Fedorchuk Finite dimensions defined by means of *m*-coverings, to be published in Mathem. Vesnik.

Factorization theorem (N. Martynchuk)

Let $f: X \to Y$ be a surjective mapping of compact spaces. Then there exist a compact space Z and mappings $g: X \to Z$ and $h: Z \to Y$ such that $f = h \circ g$, (m, n)-dim $Z \leq (m, n)$ -dimX, and wZ = wY.

Theorem on compactification (N. Martynchuk)

For every space X (m, n)-dimX = (m, n)-dim βX .

Corollary 1

Let X be a compact space with (m, n)-dim $X \le r$. If $X = \lim S$, where $S = \{X_{\alpha}, \pi_{\beta}^{\alpha}, A\}$ is a τ -spectrum, then for each $\beta \in A$ there exists $\alpha \in A$, $\beta \le \alpha$, such that (m, n)-dim $X_{\alpha} \le r$.

Corollary 2

For every space X there exists a compactification bX such that wX = w(bX) and (m, n)-dim $bX \le (m, n)$ -dimX.

Lemma

Let A be an indexing set and $X = \bigoplus_{\alpha \in A} X_{\alpha}$ be a discrete sum of X_{α} . If (m, n)-dim $X_{\alpha} \leq r$ for every α , then (m, n)-dim $X \leq r$.

Theorem

For any integers $m \ge 1, n \ge 1, r \ge 0$, any infinite cardinal number τ there exists a compact space $B^{\tau}_{(m,n,r)}$ such that $w(B^{\tau}_{(m,n,r)}) = \tau, (m, n)$ -dim $(B^{\tau}_{(m,n,r)}) = r$, and $B^{\tau}_{(m,n,r)}$ contains up to homeomorphism every space X with $wX \le \tau$ and (m, n)-dim $X \le r$.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Thank you

Nikolay Martynchuk Theorem on universal spaces

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト

æ