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Preliminaries

All spaces are assumed to be normal T1. The set of all open covers

with ≤ m elemets of a space X is denoted by covm(X ).
By the order of a family u we mean the largest n such that u

contains n sets with a non-empty intersection. The order of u is

denoted by ordu. So,

ordu ≤ 1⇐⇒ u is a disjoint family.
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De�nitions

Def 1

Let u = (U1, . . .Um) ∈ covm(X ) and let φ = (F1, . . . ,Fm) be a

family of closed subsets of X such that

Fj ⊂ Uj , j = 1, . . . ,m;
ord φ ≤ 1.

Then (φ, u) is called an m-pair in X . The set of all m-pairs in X is

denoted by m(X ).

Def 2

Let (φ, u) be an m-pair in X and let v = (V1, . . . ,Vm) be a family

of open subsets of X such that

Fj ⊂ Vj ⊂ Uj , j = 1, . . . ,m;
ord v ≤ n.

Then (φ, v , u) is called (m, n)-triple in X .
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De�nitions

Def 3

Let (φ, u) ∈ m(X ). A closed set P ⊂ X is called an n-partition of

(φ, u) (notation: P ∈ Part(φ, u, n)), if there exists a family v of

open subsets of X such that (φ, v , u) is an (m, n)-triple in X and

P = X \
⋃

v .

Def 4

Let (φi , ui ) ∈ m(X ), i = 1, . . . , r .
The sequence ((φ1, u1), . . . , (φr , ur )) is said to be an n-inessential

in X , if there exists partitions Pi ∈ Part(φi , ui , n) such that

P1 ∩ . . . ∩ Pr = ∅.
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De�nitions

Def 5

Let τ be an in�nite cardinal number. An inverse system

S = {Xα, παβ ,A} with surjective projections παβ is said to be a

τ -spectrum if

1) all Xα are compact spaces;

2) for every chain B in A with |B| ≤ τ there is a supB in A;

3) for every chain B in A with |B| ≤ τ and supB = β, the diagonal

product 4{πβα : α ∈ B} is a homeomorphism between Xβ and

lim(S |B).
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Main de�nition

Def 6 (V. Fedorchuk)

Let m, n ∈ N, n ≤ m. To every space X one assigns the dimension

(m, n)-dimX , wich is an integer ≥ −1 or ∞. The dimensional

function (m, n)-dim is de�ned in the following way:

(1) (m, n)-dimX = −1 i� X= ∅;
(2) (m, n)-dimX ≤ k ,where k = 0, 1, . . . , if every sequence

((φ1, u1), . . . , (φk+1, uk+1)), (φi , ui ) ∈ m(X ) is n-inessential in X ;

(3) (m, n)-dimX =∞, if (m, n)-dimX > k for all k = −1, 0, 1, . . . .

Remark

(m, n)-dim is a generalization of classic Lebesgue covering

dimension. V. Fedorchuk had proved that (2, 1)-dimX = dimX for

every space X . For more details see a.

a

V.V. Fedorchuk Finite dimensions de�ned by means of m-coverings, to be

published in Mathem. Vesnik.
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Required theorems

Factorization theorem (N. Martynchuk)

Let f : X → Y be a surjective mapping of compact spaces. Then

there exist a compact space Z and mappings g : X → Z and

h : Z → Y such that f = h ◦ g, (m, n)-dimZ ≤ (m, n)-dimX, and

wZ = wY .

Theorem on compacti�cation (N. Martynchuk)

For every space X (m, n)-dimX = (m, n)-dimβX .
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Following results

Corollary 1

Let X be a compact space with (m, n)-dimX ≤ r . If X = limS,

where S = {Xα, παβ ,A} is a τ -spectrum, then for each β ∈ A there

exists α ∈ A, β ≤ α, such that (m, n)-dimXα ≤ r .

Corollary 2

For every space X there exists a compacti�cation bX such that

wX = w(bX ) and (m, n)-dimbX ≤ (m, n)-dimX .
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Main result

Lemma

Let A be an indexing set and X = ⊕α∈AXα be a discrete sum of

Xα. If (m, n)-dimXα ≤ r for every α, then (m, n)-dimX ≤ r .

Theorem

For any integers m ≥ 1, n ≥ 1, r ≥ 0, any in�nite cardinal number

τ there exists a compact space Bτ(m,n,r) such that

w(Bτ(m,n,r)) = τ, (m, n)-dim(Bτ(m,n,r)) = r , and Bτ(m,n,r) contains up

to homeomorphism every space X with wX ≤ τ and

(m, n)-dimX ≤ r .
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Thank you
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