

- The *cascade* (V, \leq) is a tree without infinite branches.
- \emptyset_V the root of V.
- *v*⁺ the set of immediate successors of *v*.
- max *V* the set of maximal elements.
- A cascade *V* is *sequential* if for every $v \in V \setminus \max V$ the set v^+ is countable and infinite.
- max V ≃ ω the set of maximal elements (for V ≠ Ø_V) of sequential cascade.

• We define a rank of elements of *V* inductively:

•
$$rank(v) = 0$$
 for $v \in \max V$;

• if $v \notin \max V$ then

 $rank(v) = \min\{\alpha : \alpha > rank(w) \text{ for every } w \in v^+\}.$

• $rank(V) := rank(\emptyset_V)$.

A cascade *V* is *monotonic* iff v^+ can be enumerate

 w_1, w_2, w_3, \ldots

such that

$$rank(w_1) \leq rank(w_2) \leq rank(w_3), \ldots,$$

for every $v \in V \setminus \max V$

- *V* the cascade.
- $w \in V$ its element.
- $w^{\uparrow} = \{v \in V : w \le v\}$ the subcascade give by w.
- $\bullet \ {\mathcal O}_{w^{\uparrow}} = w$
- $rank(w^{\uparrow}) = rank(w)$
- $\mathcal{O}_V^{\uparrow} = V$

3 > < 3 >

- *V* the cascade and let max $V = \omega$.
- $\int V$ a *contour* i.e a special filter on max *V*
- Contour is defined inductively for each subcascade w^{\uparrow} :
- $\int w^{\uparrow}$ is a trivial filter on $\{w\}$ for $w \in \max V$;
- otherwise
- $A \in \int w^{\uparrow}$ iff $(A \cap \max v) \in \int v^{\uparrow}$ for almost every $v \in w^{+}$;

- We define \mathcal{P}_{α} for $1 \leq \alpha < \omega_1$ on $\beta \omega$ as follows:
- $u \in \mathcal{P}_{\alpha}$ iff
 - there is no monotone sequential cascade V_{α} of rank α such that $\int V_{\alpha} \subset u$,
 - **②** for each 1 ≤ β < *α* there is a monotone sequential cascade *V*_β of rank *β* such that $\int V_β ⊂ u$.
- Moreover if for each $\alpha < \omega_1$ there is a monotone sequential cascade V_{α} of rank α such that $\int V_{\alpha} \subset u$ then we write $u \in \mathcal{P}_{\omega_1}$.

- \mathcal{P}_1 principal ultrafilters;
- \mathcal{P}_2 *P*-points;
- How to find \mathcal{P}_3 -ultrafilters?

★ 3 > < 3</p>

Theorem (Starosolski, 2008)

The following conditions are equivalent

- P-points exist
- $\mathcal{P}_{\alpha} \neq \emptyset$ for each successor $\alpha < \omega_1$;
- $\mathcal{P}_{\alpha} \neq \emptyset$ for some successor $1 < \alpha < \omega_1$;

Theorem (Starosolski, 2010)

The following conditions are equivalent Assume CH. $\mathcal{P}_{\alpha} \neq \emptyset$ *for each limit* $\alpha < \omega_1$ *;*

• • = • • = •

Theorem (Flašková, 2006)

Assume CH. Let \mathcal{I} be a tall P-ideal that contains all singletons than there exists \mathcal{I} -ultrafilter which is not a P-point.

 $u \in \beta \omega$ is is an \mathcal{I} -ultrafilter iff for any $f : \omega \to A$ there is $U \in u$ such that $f(U) \in \mathcal{I}$.

Theorem (Flašková, 2006)

Assume MA. Let I be an ideal of thin sets than there exists I-ultrafilter which is not a P-point.

Theorem (Machura & Starosolski, 2011)

Assume CH. Let \mathcal{I} be tall P-ideal that contains all singletons and let $1 \leq \alpha \leq \omega_1$. Then there exists \mathcal{I} -ultrafilter which belongs to the class \mathcal{P}_{α} .

Theorem (Machura & Starosolski, 2011)

Assume MA. Let \mathcal{I} be an ideal of thin sets and let $1 \leq \alpha \leq \omega_1$ than there exists \mathcal{I} -ultrafilter which belongs to the class \mathcal{P}_{α} .

Baumgartner:

- $J_{\alpha} = \{B \subset \omega_1 : B \text{ has order type } < \alpha\}$
- J_{α}^* a family of proper I_{α} -ultrafilters i.e. I_{α} -ultrafilters which are no I_{β} -ultrafilters for $\beta < \alpha$.
- If $J^*_{\alpha} \neq \emptyset$, then $\alpha = \omega^{\beta}$ for some β

Theorem (Starosolski, 2010)

• $u \in \mathcal{P}_2$ iff $u \in J^*_{\omega^2}$

2 If $u \in J^*_{\omega^{\alpha}}$ then $u \in \mathcal{P}_{\beta}$ for some $\beta \leq \alpha$

Theorem (Starosolski, 2008)

$$J^*_{\omega^{\omega}} = \emptyset$$
 (whilst $\mathcal{P}_{\omega} \neq \emptyset$).

THE P-HIERARCHY OF ULTRAFILTERS

伺 ト イ ヨ ト イ ヨ ト