IV Workshop on Coverings, Selections and Games in Topology

Caserta, Italy, June 25-30, 2012

Selection properties of uniform structures: symmetric and asymmetric cases

Ljubiša D.R. Kočinac

University of Niš, Serbia Ikocinac@gmail.com

1. Introduction

In 2002 (I Workshop on Coverings, Selections and games in Topology, Lecce, June 26–30), I introduced selection principles in uniform spaces (and proved that these selection principles are different from selection principles in topological spaces).

Goal: Selection properties in generalizations of metric spaces (quasi-metric spaces and partial metric spaces) and uniform spaces (quasi-uniform spaces).

Differences between selection properties of these generalizations and selection properties of metric and uniform spaces.

1.1. Quasi-metric

A mapping $q: X^2 \rightarrow [0,\infty)$ is called a *quasimetric* on X if for all $x, y, z \in X$ the following hold:

(QM1) $x = y \Leftrightarrow q(x, y) = q(y, x) = 0;$

(QM2) $q(x,y) \le q(x,y) + q(y,z)$.

(X,q) is a quasi-metric space.

If (QM1) is replaced by (QPM1): q(x,x) = 0 for each $x \in X$, then q is called a *quasi-pseudometric on* X.

If (X,q) is a quasi-(psedo)metric space, then the collection

$$S_q(x,\varepsilon) = \{y \in X : q(x,y) < \varepsilon\}, x \in X, \varepsilon > 0$$

is a base for the topology τ_q on X.

The collection

$$V_{\varepsilon} = \{(x,y) \in X^2 : d(x,y) < \varepsilon\}, \quad \varepsilon > 0,$$

is a base for the quasi-uniformity \mathbb{U}_q on X.

1.2. Quasi-uniformity

A *quasi-uniformity* on a set X is a filter \mathbb{U} on $X \times X$ satisfying the following two conditions:

 $(QU1) \ \Delta_X \subset U$ for each $U \in \mathbb{U}$;

(QU2) For each $U \in \mathbb{U}$ there is $V \in \mathbb{U}$ such that $V \circ V \subset U$,

where $\Delta_X = \{(x,x) : x \in X\}$ is the diagonal of X, and $V \circ V = \{(x,y) \in X \times X : \exists z \in X \text{ with } (x,z) \in V, (z,y) \in V\}.$

The pair (X, \mathbb{U}) is called a *quasi-uniform space*.

A quasi-uniformity \mathbb{U} is a *uniformity* on X, and (X, \mathbb{U}) is a uniform space, if \mathbb{U} satisfies also the condition implies $U^{-1} \in \mathbb{U}$, where $U^{-1} = \{(x, y) \in X \times X : (y, x) \in U\}$.

If (X, \mathbb{U}) is a quasi-uniform space, then (X, \mathbb{U}^{-1}) is also a quasi-uniform space. Here

$$\mathbb{U}^{-1} = \{ U^{-1} : U \in \mathbb{U} \}$$

is called the *conjugate* of \mathbb{U} .

 $\sup\{\mathbb{U}, \mathbb{U}^{-1}\} = \mathbb{U}^s$ is a uniformity (symmetrization of \mathbb{U})

For $U \in \mathbb{U}$, $x \in X$ and $A \subset X$ we put

 $U[x] = \{y \in X : (x, y) \in U\}, \ U[A] = \bigcup_{a \in A} U[a].$

If \mathbb{U} is a quasi-uniformity on X, then \mathbb{U} generates a topology $\tau_{\mathbb{U}}$ on X such that for each $x \in X$ the family $\{U[x] : U \in \mathbb{U}\}$ is a local base at x.

For each of these three topologies we consider the following three classical (topological) selection properties. A topological space Z has the Menger property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of Z there are finite sets $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an open cover of Z.

Z has the Rothberger property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of Z there are $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\{U_n : n \in \mathbb{N}\}$ is an open cover of Z.

Z has the Hurewicz property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of Z there are finite sets $\mathcal{V}_n \subset \mathcal{U}_n$, $n \in \mathbb{N}$, such that each $z \in Z$ belongs to $\cup \mathcal{V}_n$ for all but finitely many n.

2. Q-U spaces and selections

A quasi-uniform space (X, \mathbb{U}) is:

- (1) precompact (resp. pre-Lindelöf) if for each $U \in \mathbb{U}$ there is a finite (resp. countable) set $F \subset X$ such that U[F] = X;
- (2) *totally bounded* if for each $U \in \mathbb{U}$ there is a finite cover C of X such that $C \times C \subset U$ for each $C \in C$.

In uniform spaces these two notions coincide.

Selective versions:

Definition. A quasi-uniform space (X, \mathbb{U}) is:

- (pre-M) *pre-Menger* if \forall ($U_n : n \in \mathbb{N}$) of elements of $\mathbb{U} \exists$ ($F_n : n \in \mathbb{N}$) of finite subsets of X such that $X = \bigcup_{n \in \mathbb{N}} U_n[F_n]$;
- (pre- ω M) pre- ω -Menger if \forall ($U_n : n \in \mathbb{N}$) in $\mathbb{U} \exists$ ($F_n : n \in \mathbb{N}$) of finite subsets of X such that each finite subset $A \subset X$ is contained in $U_n[F_n]$ for some $n \in \mathbb{N}$;
 - (pre-H) pre-Hurewicz if $\forall (U_n : n \in \mathbb{N})$ of elements of $\mathbb{U} \exists (F_n : n \in \mathbb{N})$ of finite subsets of X such that each $x \in X$ belongs to all but finitely many sets $U_n[F_n]$;

- (pre-R) *pre-Rothberger* if \forall sequence $(U_n : n \in \mathbb{N})$ of elements of $\mathbb{U} \exists (x_n : n \in \mathbb{N})$ of elements of X such that $X = \bigcup_{n \in \mathbb{N}} U_n[x_n]$;
- (pre-GN) *pre-Gerlits-Nagy* if for each sequence $(U_n : n \in \mathbb{N})$ of elements of \mathbb{U} there is a sequence $(x_n : n \in \mathbb{N})$ of elements of X such that each $x \in X$ belongs to all but finitely many $U_n[x_n]$.

Definition. Let (X, \mathbb{U}) be a quasi-uniform space and let $\mathcal{P} \in \{M, \omega M, H, R, GN\}$. X is said to be \mathcal{P} -bounded if the uniform space (X, \mathbb{U}^s) is \mathcal{P} bounded. **Remark.** A quasi-uniform space (X, \mathbb{U}) is Mengerbounded if and only if for each sequence $(U_n : n \in \mathbb{N})$ there is a sequence $(C_n : n \in \mathbb{N})$ of finite subsets of X such that $\bigcup_{n \in \mathbb{N}} C_n$ covers X and for each $n \in \mathbb{N}$, $C \times C \subset U_n$ for each $C \in C_n$.

Proposition. Each Menger-bounded quasiuniform space (X, \mathbb{U}) is (hereditarily) pre-Menger.

Evidently, we have $\begin{array}{cccc} comp & \Rightarrow & Hur & \Rightarrow & Menger & \leftarrow & Roth \\ & \downarrow & \downarrow & \downarrow & & \downarrow \\ pre-com \Rightarrow pre-Hur & \Rightarrow pre-Menger \leftarrow pre-Roth \\ & \uparrow & \uparrow & \uparrow \\ tot bound \Rightarrow H-bound & \Rightarrow M-bound \leftarrow R-bound \end{array}$ **Example.** There is a (hereditarily) pre-Menger quasi-metric space which is not precompact.

Let $X = \mathbb{Q} \cup \{\infty\}$ with the usual order \leq , and let $q : X^2 \to [0, \infty)$ be the quasi-metric on Xdefined by

$$q(x,y) = \begin{cases} 0 & \text{if } x = y, \\ \frac{1}{n} & \text{if } x = n, x < y, \\ 1 & \text{otherwise.} \end{cases}$$

Any subspace of X is pre-Menger. X is not precompact. Let $\varepsilon \in (0,1)$, $F = \{x_1 < x_2 < \cdots < x_k\} \subset X$ finite. If F does not contain a natural number or contains only natural numbers n with $n < 1/\varepsilon$, then $\{B_q(x_i,\varepsilon) : i \leq k\}$ cannot cover X. So, let $F \cap \mathbb{N} \neq \emptyset$; suppose $x_1 \in F$ is the least natural number with $x_1 > 1/\varepsilon$. $\{B_q(x_i,\varepsilon) : i \leq k\}$ covers $[x_1,\infty] \neq X$. **Example.** There is a hereditarily pre-Hurewicz quasi-pseudo-metric space which is not hered-itarily precompact.

Let $X = \mathbb{N}$ and let $q : X^2 \to [0,\infty)$ be the quasi-pseudo-metric on X defined by

$$q(m,n) = \begin{cases} 0 & \text{ if } m = n, \\ \frac{1}{n} & \text{ if } m = 1, n > 1, \\ 1 & \text{ otherwise.} \end{cases}$$

(X,q) is Hurewicz, so pre-Hurewicz. Also hereditarily pre-Hurewicz. Let $Y \subset X$, $(\varepsilon_n : n \in \mathbb{N})$ in in (0,1). If $1 \in Y$, then Y is pre-Hurewicz. If $1 \notin Y$ and $Y = \{m_1 < m_2 < \cdots < m_n < \cdots\}$, then for each $k \in Y$ and each $n \in \mathbb{N}$, the ball $B_q(k, \varepsilon_n) = \{k\}$. For each $n \in \mathbb{N}$ let $F_n = \{m_1, \cdots, m_n\}$. $(F_n : n \in \mathbb{N})$ witnesses:Y is pre-Hurewicz. Easy: Y is not precompact. **Example.** Let (X, τ_{coc}) be an uncountable set with the cocountable topology, and let \mathbb{U} be the Pervin quasi-uniformity compatible with τ_{coc} .

 $[(X, \tau)$ topological space, $G \subset X$. $S_G = [(X \setminus G) \times [X \times G]]$. The Pervin quasi-uniformity is generated by $\{S_G : G \in \tau\}$ (as a subbase)]

The spaces (X, \mathbb{U}) and (X, \mathbb{U}^{-1}) are both hereditarily precompact (since the space (X, \mathbb{U}) is totally bounded), hence hereditarily pre-Hurewicz. But $\tau_{\mathbb{U}^{-1}}$ is discrete, so (X, \mathbb{U}^{-1}) is not Hurewicz. The supremum of two precompact quasi-uniformities need not be precompact (which is true for totally bounded case).

Theorem (KMRV, 1993; Künzi, 2009) The supremum of two hereditarily precompact quasi-uniformities is also hereditarily precompact.

However, the supremum of two pre-Hurewicz quasi-uniformities need not be pre-Hurewicz.

Example: Let $X = \mathbb{R}$. The collection of all $V_{a,b} = \{(x,y) : x = y \text{ or } a < x < b\}, a, b \in \mathbb{R}, a < b$, is a base for a pre-Hurewicz quasi-uniformity $\mathcal{U}_{a,b}$. But, $\mathcal{U}_{0,1} \lor \mathcal{U}_{1,2}$ is the discrete uniformity on X which cannot be pre-Hurewicz.

2.1. Subspaces

Known:

Theorem. ([K], 2004) Every subspace of a M-bounded uniform space (X, \mathbb{U}) is also M-bounded.

Theorem. A subspace of a Menger-bounded quasi-uniform space is also Menger-bounded.

Theorem. For a QU-space (X, \mathbb{U}) TFAE:

(1) X is hereditarily (relatively) pre-Menger;

(2) Each G_{δ} subset of $(X, \tau_{\mathbb{U}})$ is pre-Menger.

Theorem. If a quasi-uniform space (X, \mathbb{U}) is pre-Menger and Y is a dense subset of (X, \mathbb{U}^{-1}) , then (Y, \mathbb{U}_Y) is pre-Menger.

Theorem. If a quasi-uniform space (X, \mathbb{U}) is pre-Menger and Y is a dense subset of (X, \mathbb{U}^{-1}) , then (Y, \mathbb{U}_Y) is pre-Menger.

Theorem. ([K], 2004) If a uniform space (X, \mathbb{U}) contains a dense Hurewicz-bounded subspace Y, then X is also Hurewicz-bounded.

Example. There is a quasi-metric space (X,q) containing a dense pre-Menger subspace Y, but (X,q^s) is not pre-Menger.

$$X = \left\{ x = (x_k)_{k \in \mathbb{N}} \in \ell^\infty : \sum_{k=1}^\infty \frac{x_k}{2^k} = 0 \right\}$$

endowed with the quasi-metric \boldsymbol{q} defined by

$$q(x,y) = \sup_{k \in \mathbb{N}} (y_k - x_k), \ x, y \in X.$$

Observe that $q^s(x,y) = \sup_{k \in \mathbb{N}} |y_k - x_k|$, and (X,q^s) is not separable. By a result of Künzi et al. (MV, 1994), (X,q^s) is not pre-Lindelöf and thus it cannot be pre-Menger.

On the other hand, the countable set $Y = \{x \in X : x_k \in \mathbb{Q} \ \forall k \in \mathbb{N}, \text{ and } \exists n_0 = n_0(x) \in \mathbb{N}$ with $x_{n_0} = x_m \forall m > n_0\}$ is dense in X, and pre-Menger being countable.

2.2. Products

Theorem. ([K], 2004) The product of two Hurewicz-bounded uniform spaces is also Hurewiczbounded.

Theorem. The product of two pre-Hurewicz quasi-uniform spaces is also pre-Hurewicz.

Theorem. ([BKS], 2007) *G* is ω -Menger bounded $\Leftrightarrow G^n$ is M-bounded $\forall n \in \mathbb{N}$.

Theorem. ([BKS]) G^n , $n \in \mathbb{N}$, is Mengerbounded $\Leftrightarrow \forall (U_i : i \in \mathbb{N})$ in $\mathcal{N}_e \ e \in G \exists (A_i : i \in \mathbb{N})$ finite in G s.t.: $\forall F \subset G$ with $|F| = n, \exists i$ such that $F \subset A_i \cdot U_i$.

Theorem. (Machura+Shelah+Tsaban, 2010) Under CH there is a Menger-bounded group $G \leq \mathbb{Z}^{\mathbb{N}}$ whose square is not Menger-bounded.

Theorem. (Machura+Shelah+Tsaban, 2010) Under some additional assumptions (weaker than CH) there is for each $k \in \mathbb{N}$ a metrizable group G such that G^k is Menger-bounded but G^{k+1} is not.

Note. [Banakh+Zdomskyy (2006) and (independently) Mildenberger+Shelah] Consistently, every topological group G such that G^2 is Menger-bounded has Menger-bounded all finite powers.

3. Partial metric spaces

Let X be a nonempty set. $p: X \times X \rightarrow [0, \infty)$ is a *partial metric* on X if $\forall x, y, z \in X$ p satisfies:

(PM1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y);$

(PM2) $p(x,x) \leq p(x,y)$;

(PM3) p(x,y) = p(y,x);

(PM4) $p(x,y) \le p(x,z) + p(z,y) - p(z,z)$.

(X, p) is a partial metric space.

In difference of metric spaces in partial metric spaces the distance p(x, x) need not be 0.

An open ball in a partial metric space X with center $x \in X$ and radius $\varepsilon > 0$ is the set

$$B_p(x,\varepsilon) := \{ y \in X : p(x,y) < \varepsilon + p(x,x) \}.$$

The collection $\{B_p(x,\varepsilon) : x \in X, \varepsilon > 0\}$ is the base of a T_0 topology τ_p on X.

Each partial metric p on X generates the quasimetric q_p and the metric d_p on X:

$$q_p(x,y) = p(x,y) - p(x,x), \ (x,y \in X),$$

 $d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y), \ (x,y \in X).$

Associated topologies τ_{q_p} , τ_{d_p} . [Matthews, 1994] $\tau_{q_p} = \tau_p$ and $\tau_p \leq \tau_{d_p}$. Similar to (quasi-)uniform selection principles.

Definition. A partial metric space (X, p) is:

- (1) *p*-Menger-bounded (or M_p -bounded) if for each sequence ($\varepsilon_n : n \in \mathbb{N}$) there is a sequence ($F_n : n \in \mathbb{N}$) of finite subsets of Xsuch that $X = \bigcup_{n \in \mathbb{N}} \bigcup_{x \in F_n} B_p(x, \varepsilon_n)$;
- (2) *p*-*Rothberger-bounded* (or R_p -bounded) if for each sequence ($\varepsilon_n : n \in \mathbb{N}$) there is a sequence ($x_n : n \in \mathbb{N}$) of elements of Xsuch that $X = \bigcup_{n \in \mathbb{N}} B_p(x_n, \varepsilon_n)$;

(3) *p*-Hurewicz-bounded (or H_p -bounded) if for each sequence $(\varepsilon_n : n \in \mathbb{N})$ there is a sequence $(F_n : n \in \mathbb{N})$ of finite subsets of Xsuch that each $x \in X$ belongs to $\bigcup_{a \in F_n} B_p(a, \varepsilon_n)$ for all but finitely many n.

Example. A partial metric space which is R_{p} -bounded, but not R_{d_p} -bounded.

Let $X = [0, \infty)$ and $p(x, y) = \max\{x, y\}, x, y \in X$. Then $d_p(x, y) = |x - y|$. (X, p) is R_p -bounded. Indeed: $(\varepsilon_n : n \in \mathbb{N})$ is a sequence of positive reals, then for $(x_n : n \in \mathbb{N}), x_n = n - 1$, we have $X = \bigcup_{n \in \mathbb{N}} B_p(x_n, \varepsilon_n)$ since $B_p(x_n, \varepsilon_n) = [0, n - 1 + \varepsilon_n)$. On the other hand, X is not R_{d_p} -bounded.

Let (X, p_X) and (Y, p_Y) be partial metric spaces and let $Z = X \times Y$. For $z_1 = (x_1, y_1), z_2 =$ $(x_2, y_2) \in Z$ define

$$p_Z(z_1, z_2) = p_X(x_1, x_2) + p_Y(y_1, y_2).$$

It is not hard to check that p_Z is a partial metric on Z. The pair (Z, p_Z) is called the *product* partial metric space of X and Y.

Theorem. The product (Z, p_Z) of two H_pbounded partial metric spaces (X, p_X) and (Y, p_Y) is also H_p-bounded.

References

- L. Babinkostova, *Metrizable groups and strict oboundedness*, Matem. Vesnik 58 (2006), 131-138.
- L. Babinkostova, Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (XI): Menger- and Rothberger-bounded groups, Topology Appl. 154 (2007), 1269-1280.
- P.A. Borodin, *The Banach-Mazur theorem for spaces* with an asymmetric norm and its applications in convex analysis, Mat. Zametki 69:3 (2001), 329-337.
- M. Bukatin, R. Kopperman, S. Matthews, H. Paajoohesh, *Partial metric spaces*, Amer. Math. Monthly 116 (2009), 708–718.
- P. Fletcher, W.F. Lindgren, *Quasi-Uniform Spaces*, Lecture Notes Pure Appl. Math. 77, Marcel-Dekker, 1982.
- C. Hernandez, Topological groups close to being σ -compact, Topology Appl. 102 (2000), 101–111.
- C. Hernandez, D. Robbie, M. Tkachenko, *Some properties of o-bounded and strictly o-bounded groups*, Applied General Topology 1 (2000), 29–43.

- Lj.D.R. Kočinac, Selection principles in uniform spaces, Note Mat. 22:2 (2003/2004), 127–139.
- H.-P.A. Künzi, *An introduction to quasi-uniform spaces*, Contemp. Math. 486 (2009), 239–304.
- H.-P.A. Künzi, M. Mršević, I.L. Reilly, M.K. Vamanamurthy, *Pre-Lindelöf quasi-pseudo-metric and quasi-uniform spaces*, Mat. Vesnik 46 (1994), 81– 87.
- A. Krawczyk, H. Michalewski, An example of a topological group, Topology Appl. 127 (2003), 325-330.
- P.Th. Lambrinos, *On precompact* (*quasi-*) *uniform structures*, Proc. Amer. Math. Soc. 62:2 (1977), 365–366.
- M. Machura, S. Shelah, B. Tsaban, Squares of Menger-bounded groups, Proc. Amer. Math. Soc. 362 (2010), 1751–1764.
- M. Machura, B. Tsaban, *The combinatorics of the Baer-Specker group*, Israel J. Math. 168 (2008), 125-151.
- S.G. Matthews, *Partial metric topology*, Annals New York Acad. Sci. 728 (1994), 183–197.

- H. Mildenberger, *Cardinal characteristics for Menger-bounded subgroups*, Topology Appl. 156 (2008), 130-137.
- M. Scheepers, *Rothberger bounded groups and Ramsey theory*, Topology Appl. 158 (2011), 1575– 1583.
- B. Tsaban, *o-bounded groups and other topological groups with strong combinatorial properties*, Proc. Amer. Math. Soc. 134 (2006), 881-891.
- T. Weiss, A note on unbounded strongly measure zero subgroups of the Baer-Specker group, Topology Appl. 156 (2008), 138-141.
- L. Zdomskyy, *o-Boundedness of free objects over a Tychonoff space*, Matem. Studii 25 (2006), 10-28.

THANK YOU!