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1. Introduction

In 2002 (I Workshop on Coverings, Selections

and games in Topology, Lecce, June 26–30), I

introduced selection principles in uniform spaces

(and proved that these selection principles are

different from selection principles in topologi-

cal spaces).

Goal: Selection properties in generalizations

of metric spaces (quasi-metric spaces and par-

tial metric spaces) and uniform spaces (quasi-

uniform spaces).

Differences between selection properties of these

generalizations and selection properties of met-

ric and uniform spaces.



1.1. Quasi-metric

A mapping q : X2 → [0,∞) is called a quasi-

metric on X if for all x, y, z ∈ X the following

hold:

(QM1) x = y ⇔ q(x, y) = q(y, x) = 0;

(QM2) q(x, y) ≤ q(x, y) + q(y, z).

(X, q) is a quasi-metric space.

If (QM1) is replaced by (QPM1): q(x, x) =

0 for each x ∈ X, then q is called a quasi-

pseudometric on X.



If (X, q) is a quasi-(psedo)metric space, then

the collection

Sq(x, ε) = {y ∈ X : q(x, y) < ε}, x ∈ X, ε > 0

is a base for the topology τq on X.

The collection

Vε = {(x, y) ∈ X2 : d(x, y) < ε}, ε > 0,

is a base for the quasi-uniformity Uq on X.



1.2. Quasi-uniformity

A quasi-uniformity on a set X is a filter U on

X ×X satisfying the following two conditions:

(QU1) ∆X ⊂ U for each U ∈ U;

(QU2) For each U ∈ U there is V ∈ U such that

V ◦ V ⊂ U ,

where ∆X = {(x, x) : x ∈ X} is the diagonal

of X, and V ◦ V = {(x, y) ∈ X × X : ∃z ∈
X with (x, z) ∈ V, (z, y) ∈ V }.

The pair (X,U) is called a quasi-uniform space.



A quasi-uniformity U is a uniformity on X, and

(X,U) is a uniform space, if U satisfies also

the condition implies U−1 ∈ U, where U−1 =

{(x, y) ∈ X ×X : (y, x) ∈ U}.

If (X,U) is a quasi-uniform space, then (X,U−1)

is also a quasi-uniform space. Here

U−1 = {U−1 : U ∈ U}

is called the conjugate of U.

sup{U,U−1} = Us is a uniformity (symmetriza-

tion of U)



For U ∈ U, x ∈ X and A ⊂ X we put

U [x] = {y ∈ X : (x, y) ∈ U}, U [A] =
⋃

a∈A U [a].

If U is a quasi-uniformity on X, then U gen-

erates a topology τU on X such that for each

x ∈ X the family {U [x] : U ∈ U} is a local base

at x.

For each of these three topologies we consider

the following three classical (topological) se-

lection properties.



A topological space Z has the Menger property

if for each sequence (Un : n ∈ N) of open covers

of Z there are finite sets Vn ⊂ Un, n ∈ N, such

that
⋃

n∈N Vn is an open cover of Z.

Z has the Rothberger property if for each se-

quence (Un : n ∈ N) of open covers of Z there

are Un ∈ Un, n ∈ N, such that {Un : n ∈ N} is

an open cover of Z.

Z has the Hurewicz property if for each se-

quence (Un : n ∈ N) of open covers of Z there

are finite sets Vn ⊂ Un, n ∈ N, such that each

z ∈ Z belongs to ∪Vn for all but finitely many

n.



2. Q-U spaces and selections

A quasi-uniform space (X,U) is:

(1) precompact (resp. pre-Lindelöf ) if for each

U ∈ U there is a finite (resp. countable) set

F ⊂ X such that U [F ] = X;

(2) totally bounded if for each U ∈ U there is

a finite cover C of X such that C × C ⊂ U

for each C ∈ C.

In uniform spaces these two notions coincide.

Selective versions:



Definition. A quasi-uniform space (X,U) is:

(pre-M) pre-Menger if ∀ (Un : n ∈ N) of elements

of U ∃ (Fn : n ∈ N) of finite subsets of X

such that X =
⋃

n∈NUn[Fn];

(pre-ωM) pre-ω-Menger if ∀ (Un : n ∈ N) in U ∃ (Fn :

n ∈ N) of finite subsets of X such that each

finite subset A ⊂ X is contained in Un[Fn]

for some n ∈ N;

(pre-H) pre-Hurewicz if ∀ (Un : n ∈ N) of elements

of U ∃ (Fn : n ∈ N) of finite subsets of X

such that each x ∈ X belongs to all but

finitely many sets Un[Fn];



(pre-R) pre-Rothberger if ∀ sequence (Un : n ∈ N)

of elements of U ∃ (xn : n ∈ N) of elements

of X such that X =
⋃

n∈NUn[xn];

(pre-GN) pre-Gerlits-Nagy if for each sequence (Un :

n ∈ N) of elements of U there is a sequence

(xn : n ∈ N) of elements of X such that

each x ∈ X belongs to all but finitely many

Un[xn].

Definition. Let (X,U) be a quasi-uniform space

and let P ∈ {M, ωM, H, R, GN}. X is said to be

P-bounded if the uniform space (X,Us) is P-

bounded.



Remark. A quasi-uniform space (X,U) is Menger-

bounded if and only if for each sequence (Un :

n ∈ N) there is a sequence (Cn : n ∈ N) of finite

subsets of X such that
⋃

n∈N Cn covers X and

for each n ∈ N, C × C ⊂ Un for each C ∈ Cn.

Proposition. Each Menger-bounded quasi-

uniform space (X,U) is (hereditarily) pre-Menger.

Evidently, we have

comp ⇒ Hur ⇒ Menger ⇐ Roth

⇓ ⇓ ⇓ ⇓
pre−com ⇒ pre−Hur ⇒ pre−Menger ⇐ pre−Roth

⇑ ⇑ ⇑ ⇑
tot bound ⇒ H−bound ⇒ M−bound ⇐ R−bound



Example. There is a (hereditarily) pre-Menger

quasi-metric space which is not precompact.

Let X = Q ∪ {∞} with the usual order ≤, and

let q : X2 → [0,∞) be the quasi-metric on X

defined by

q(x, y) =





0 if x = y,
1
n if x = n, x < y,

1 otherwise.

Any subspace of X is pre-Menger. X is not

precompact. Let ε ∈ (0,1), F = {x1 < x2 <

· · · < xk} ⊂ X finite. If F does not contain a

natural number or contains only natural num-

bers n with n < 1/ε, then {Bq(xi, ε) : i ≤ k}
cannot cover X. So, let F ∩ N 6= ∅; sup-

pose x1 ∈ F is the least natural number with

x1 > 1/ε. {Bq(xi, ε) : i ≤ k} covers [x1,∞] 6= X.



Example.There is a hereditarily pre-Hurewicz

quasi-pseudo-metric space which is not hered-

itarily precompact.

Let X = N and let q : X2 → [0,∞) be the

quasi-pseudo-metric on X defined by

q(m, n) =





0 if m = n,
1
n if m = 1, n > 1,

1 otherwise.

(X, q) is Hurewicz, so pre-Hurewicz. Also hered-

itarily pre-Hurewicz. Let Y ⊂ X, (εn : n ∈ N)

in in (0,1). If 1 ∈ Y , then Y is pre-Hurewicz.

If 1 /∈ Y and Y = {m1 < m2 < · · · < mn <

· · ·}, then for each k ∈ Y and each n ∈ N,

the ball Bq(k, εn) = {k}. For each n ∈ N let

Fn = {m1, · · · , mn}. (Fn : n ∈ N) witnesses:Y is

pre-Hurewicz. Easy: Y is not precompact.



Example. Let (X, τcoc) be an uncountable

set with the cocountable topology, and let U
be the Pervin quasi-uniformity compatible with

τcoc.

[(X, τ) topological space, G ⊂ X. SG = [(X \
G) × [X × G]. The Pervin quasi-uniformity is

generated by {SG : G ∈ τ} (as a subbase)]

The spaces (X,U) and (X,U−1) are both hered-

itarily precompact (since the space (X,U) is to-

tally bounded), hence hereditarily pre-Hurewicz.

But τU−1 is discrete, so (X,U−1) is not Hurewicz.



The supremum of two precompact quasi-unifor-

mities need not be precompact (which is true

for totally bounded case).

Theorem (KMRV, 1993; Künzi, 2009) The

supremum of two hereditarily precompact quasi-

uniformities is also hereditarily precompact.

However, the supremum of two pre-Hurewicz

quasi-uniformities need not be pre-Hurewicz.

Example: Let X = R. The collection of all

Va,b = {(x, y) : x = y or a < x < b}, a, b ∈ R, a <

b, is a base for a pre-Hurewicz quasi-uniformity

Ua,b. But, U0,1 ∨ U1,2 is the discrete uniformity

on X which cannot be pre-Hurewicz.



2.1. Subspaces

Known:

Theorem. ([K], 2004) Every subspace of a

M-bounded uniform space (X,U) is also M-

bounded.

Theorem. A subspace of a Menger-bounded

quasi-uniform space is also Menger-bounded.

Theorem. For a QU-space (X,U) TFAE:

(1) X is hereditarily (relatively) pre-Menger;

(2) Each Gδ subset of (X, τU) is pre-Menger.



Theorem. If a quasi-uniform space (X,U) is

pre-Menger and Y is a dense subset of (X,U−1),

then (Y,UY ) is pre-Menger.

Theorem. If a quasi-uniform space (X,U) is

pre-Menger and Y is a dense subset of (X,U−1),

then (Y,UY ) is pre-Menger.



Theorem. ([K], 2004) If a uniform space (X,U)

contains a dense Hurewicz-bounded subspace

Y , then X is also Hurewicz-bounded.

Example. There is a quasi-metric space (X, q)

containing a dense pre-Menger subspace Y ,

but (X, qs) is not pre-Menger.

X =



x = (xk)k∈N ∈ `∞ :

∞∑

k=1

xk

2k
= 0





endowed with the quasi-metric q defined by

q(x, y) = sup
k∈N

(yk − xk), x, y ∈ X.

Observe that qs(x, y) = supk∈N |yk − xk|, and

(X, qs) is not separable. By a result of Künzi

et al. (MV, 1994), (X, qs) is not pre-Lindelöf

and thus it cannot be pre-Menger.



On the other hand, the countable set

Y = {x ∈ X : xk ∈ Q∀k ∈ N, and ∃n0 = n0(x) ∈ N

with xn0 = xm∀m > n0}
is dense in X, and pre-Menger being countable.



2.2. Products

Theorem. ([K], 2004) The product of two

Hurewicz-bounded uniform spaces is also Hurewicz-

bounded.

Theorem. The product of two pre-Hurewicz

quasi-uniform spaces is also pre-Hurewicz.

Theorem. ([BKS], 2007) G is ω-Menger bounded

⇔ Gn is M-bounded ∀ n ∈ N.

Theorem. ([BKS]) Gn, n ∈ N, is Menger-

bounded ⇔ ∀ (Ui : i ∈ N) in Ne e ∈ G ∃ (Ai :

i ∈ N) finite in G s.t.: ∀ F ⊂ G with |F | = n, ∃
i such that F ⊂ Ai · Ui.



Theorem. (Machura+Shelah+Tsaban, 2010)

Under CH there is a Menger-bounded group

G ≤ ZN whose square is not Menger-bounded.

Theorem. (Machura+Shelah+Tsaban, 2010)

Under some additional assumptions (weaker than

CH) there is for each k ∈ N a metrizable group

G such that Gk is Menger-bounded but Gk+1

is not.

Note. [Banakh+Zdomskyy (2006) and (inde-

pendently) Mildenberger+Shelah] Consistently,

every topological group G such that G2 is Menger-

bounded has Menger-bounded all finite powers.



3. Partial metric spaces

Let X be a nonempty set. p : X×X → [0,∞) is

a partial metric on X if ∀ x, y, z ∈ X p satisfies:

(PM1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(PM2) p(x, x) ≤ p(x, y);

(PM3) p(x, y) = p(y, x);

(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

(X, p) is a partial metric space.



In difference of metric spaces in partial metric

spaces the distance p(x, x) need not be 0.

An open ball in a partial metric space X with

center x ∈ X and radius ε > 0 is the set

Bp(x, ε) := {y ∈ X : p(x, y) < ε + p(x, x)}.
The collection {Bp(x, ε) : x ∈ X, ε > 0} is the

base of a T0 topology τp on X.

Each partial metric p on X generates the quasi-

metric qp and the metric dp on X:

qp(x, y) = p(x, y)− p(x, x), (x, y ∈ X),

dp(x, y) = 2p(x, y)−p(x, x)−p(y, y), (x, y ∈ X).

Associated topologies τqp, τdp. [Matthews, 1994]

τqp = τp and τp ≤ τdp.



Similar to (quasi-)uniform selection principles.

Definition. A partial metric space (X, p) is:

(1) p-Menger-bounded (or Mp-bounded) if for

each sequence (εn : n ∈ N) there is a se-

quence (Fn : n ∈ N) of finite subsets of X

such that X =
⋃

n∈N
⋃

x∈Fn Bp(x, εn);

(2) p-Rothberger-bounded (or Rp-bounded) if

for each sequence (εn : n ∈ N) there is a

sequence (xn : n ∈ N) of elements of X

such that X =
⋃

n∈NBp(xn, εn);



(3) p-Hurewicz-bounded (or Hp-bounded) if for

each sequence (εn : n ∈ N) there is a se-

quence (Fn : n ∈ N) of finite subsets of X

such that each x ∈ X belongs to
⋃

a∈ Fn Bp(a, εn)

for all but finitely many n.

Example. A partial metric space which is Rp-

bounded, but not Rdp-bounded.

Let X = [0,∞) and p(x, y) = max{x, y}, x, y ∈
X. Then dp(x, y) = |x − y|. (X, p) is Rp-

bounded. Indeed: (εn : n ∈ N) is a sequence of

positive reals, then for (xn : n ∈ N), xn = n−1,

we have X =
⋃

n∈NBp(xn, εn) since Bp(xn, εn) =

[0, n − 1 + εn). On the other hand, X is not

Rdp-bounded.



Let (X, pX) and (Y, pY ) be partial metric spaces

and let Z = X × Y . For z1 = (x1, y1), z2 =

(x2, y2) ∈ Z define

pZ(z1, z2) = pX(x1, x2) + pY (y1, y2).

It is not hard to check that pZ is a partial met-

ric on Z. The pair (Z, pZ) is called the product

partial metric space of X and Y .

Theorem. The product (Z, pZ) of two Hp-

bounded partial metric spaces (X, pX) and (Y, pY )

is also Hp-bounded.
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