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1. Introduction

In 2002 (I Workshop on Coverings, Selections
and games in Topology, Lecce, June 26—-30), I
introduced selection principles in uniform spaces
(and proved that these selection principles are
different from selection principles in topologi-
cal spaces).

Goal: Selection properties in generalizations
of metric spaces (quasi-metric spaces and par-
tial metric spaces) and uniform spaces (quasi-
uniform spaces).

Differences between selection properties of these
generalizations and selection properties of met-
ric and uniform spaces.



1.1. Quasi-metric
A mapping ¢ : X2 — [0,00) is called a quasi-

metric on X if for all z,y,z € X the following
hold:

(QM1) z =y & q(z,y) = q(y,z) = 0,

(QM2) ¢q(x,y) < q(x,y) + q(y, 2).

(X,q) is a quasi-metric space.

If (QM1) is replaced by (QPM1): ¢g(xz,z) =
O for each x € X, then ¢ is called a quasi-
pseudometric on X.



If (X,q) is a quasi-(psedo)metric space, then
the collection

Sqg(z,e) ={ye X 1 q(z,y) <e}, z€ X, e>0
is a base for the topology 74 on X.
The collection
Ve={(z,y) € X2 :d(z,y) <&}, £>0

is a base for the quasi-uniformity U; on X.



1.2. Quasi-uniformity

A quasi-uniformity on a set X is a filter U on
X x X satisfying the following two conditions:

(QU1) Ax C U for each U € T;

(QU?2) For each U € U there is V € U such that
VoV CU,

where Ax = {(x,z) : * € X} is the diagonal
of X, and VoV = {(x,y) € X x X : Jz €
X with (x,2) € V,(z,y) € V'}.

The pair (X,0U) is called a quasi-uniform space.



A quasi-uniformity U is a uniformity on X, and
(X,0) is a uniform space, if U satisfies also
the condition implies U~! € U, where U~ =
{(z,y) e X x X : (y,x) € U}.

If (X,U) is a quasi-uniform space, then (X,U~1)
IS also a quasi-uniform space. Here

Ul={v-1l:vet}
is called the conjugate of U.

sup{U,U~1} = U% is a uniformity (symmetriza-
tion of U)



For U €U, x € X and A C X we put
Ulz] ={y € X : (z,y) € U}, U[A] = UqgeaUlal.

If U is a quasi-uniformity on X, then U gen-
erates a topology my on X such that for each
x € X the family {Ul[z] : U € U} is a local base
at x.

For each of these three topologies we consider
the following three classical (topological) se-
lection properties.



A topological space Z has the Menger property
if for each sequence (U, : n € N) of open covers
of Z there are finite sets V,, C Up, n € N, such
that U,,en Vn is an open cover of Z.

Z has the Rothberger property if for each se-
quence (Up : n € N) of open covers of Z there
are Up € Up, n € N, such that {U, : n € N} is
an open cover of Z.

Z has the Hurewicz property if for each se-
quence (Up : n € N) of open covers of Z there
are finite sets V,, C U, n € N, such that each
z € Z belongs to Uy, for all but finitely many

n.



2. Q-U spaces and selections

A quasi-uniform space (X, U) is:

(1) precompact (resp. pre-Lindeldf) if for each
U € U there is a finite (resp. countable) set
F C X such that U[F] = X;

(2) totally bounded if for each U € U there is
a finite cover C of X such that C x C C U
for each C € C.

In uniform spaces these two notions coincide.

Selective versions:



Definition. A quasi-uniform space (X,U) is:

(pre-M)

(pre-wM)

(pre-H)

pre-Menger if V (U, : n € N) of elements
of U 3 (F, : n € N) of finite subsets of X
such that X = U, ey Un[Fnl;

pre-w-Menger if V (Up :n eN) in U 3 (Fy:
n € N) of finite subsets of X such that each
finite subset A C X is contained in Uy[F)]
for some n € N,

pre-Hurewicz if V (Uy : n € N) of elements
of U 3 (F, : n € N) of finite subsets of X
such that each =z € X belongs to all but
finitely many sets Uy [Fh];



(pre-R) pre-Rothberger if V sequence (U, : n € N)
of elements of U 3 (z, : n € N) of elements
of X such that X = U,enUnlzn];

(pre-GN) pre-Gerlits-Nagy if for each sequence (Uy, :
n € N) of elements of U there is a sequence
(zn, : n € N) of elements of X such that
each z € X belongs to all but finitely many
Unlxn].

Definition. Let (X,U) be a quasi-uniform space
and let P e {M,wM,H,R,GN}. X is said to be
P-bounded if the uniform space (X,U%) is P-
bounded.



Remark. A quasi-uniform space (X, U) is Menger-
bounded if and only if for each sequence (U, :

n € N) there is a sequence (Cp : n € N) of finite
subsets of X such that (J,,enCrn covers X and
for eachne N, C x C C U, for each C € Cy,.

Proposition. Each Menger-bounded quasi-
uniform space (X, U) is (hereditarily) pre-Menger.

Evidently, we have

comp = Hur = Menger <« Roth

U 4 U U
pre—com => pre—Hur =- pre—Menger < pre—Roth
f fr fr f

tot bound = H—bound = M—bound <« R-—bound



Example. Thereis a (hereditarily) pre-Menger
quasi-metric space which is not precompact.

Let X = QU {oco} with the usual order <, and
let ¢ : X2 — [0,00) be the quasi-metric on X
defined by

if £ =y,

if x=n,x <y,
otherwise.

Any subspace of X is pre-Menger. X is not
precompact. Let € € (0,1), F = {21 < o <
oo < xR} C X finite. If F does not contain a
natural number or contains only natural num-
bers n with n < 1/e, then {By(z;,¢) : i < k}
cannot cover X. So, let FNN % 0; sup-
pose xq1 € F' is the least natural number with
x1 > 1/e. {By(z;,¢e) i < k} covers [x1, 0] #= X.

q(z,y) =

= 3= 0O



Example. There is a hereditarily pre-Hurewicz
quasi-pseudo-metric space which is not hered-
itarily precompact.

Let X = N and let ¢ : X2 — [0,00) be the
quasi-pseudo-metric on X defined by

0 if m = n,
g(m,n) =<1 ifm=1n>1,

1 otherwise.
(X, q) is Hurewicz, so pre-Hurewicz. Also hered
itarily pre-Hurewicz. Let Y C X, (e, 1 n € N)
inin (0,1). If 1 €Y, then Y is pre-Hurewicz.
IfF1 €Y and Y = {m1 < mo < -+ < mp <
.--}, then for each £ € Y and each n € N,
the ball By(k,en) = {k}. For each n € N let
Fn={mq,---,mn}. (Fn:n € N) witnesses:Y is
pre-Hurewicz. Easy: Y is not precompact.



Example. Let (X,7ecc) be an uncountable
set with the cocountable topology, and let U
be the Pervin quasi-uniformity compatible with

Tcoc-

[(X,7) topological space, G C X. Sg = [(X \
G) x [X x GG]. The Pervin quasi-uniformity is
generated by {Si : G € 7} (as a subbase)]

The spaces (X,U) and (X,U~1) are both hered-
itarily precompact (since the space (X,0U) is to-
tally bounded), hence hereditarily pre-Hurewicz.
But y—1 is discrete, so (X, U™1) is not Hurewicz.



The supremum of two precompact quasi-unifor-
mities need not be precompact (which is true
for totally bounded case).

Theorem (KMRV, 1993; Kiinzi, 2009) The
supremum of two hereditarily precompact quasi-
uniformities is also hereditarily precompact.

However, the supremum of two pre-Hurewicz
quasi-uniformities need not be pre-Hurewicz.

Example: Let X = R. The collection of all
Vapy=1{(z,y) iz =yora<z<b}, abeR, a<
b, is a base for a pre-Hurewicz quasi-uniformity
Uy p- But, Uy 1 V Uy 5 is the discrete uniformity
on X which cannot be pre-Hurewicz.



2.1. Subspaces
Known:

Theorem. ([K], 2004) Every subspace of a
M-bounded uniform space (X,U) is also M-
bounded.

Theorem. A subspace of a Menger-bounded
quasi-uniform space is also Menger-bounded.

Theorem. For a QU-space (X,U) TFAE:

(1) X is hereditarily (relatively) pre-Menger;

(2) Each G subset of (X, ) is pre-Menger.



Theorem. If a quasi-uniform space (X,0U) is
pre-Menger and Y is a dense subset of (X,U~1),
then (Y,Uy ) is pre-Menger.

Theorem. If a quasi-uniform space (X,U) is
pre-Menger and Y is a dense subset of (X,U~1),
then (Y,Uy ) is pre-Menger.



Theorem. ([K], 2004) If a uniform space (X, U)
contains a dense Hurewicz-bounded subspace
Y, then X is also Hurewicz-bounded.

Example. There is a quasi-metric space (X, q)
containing a dense pre-Menger subspace Y,
but (X, ¢%) is not pre-Menger.

00 . — L

k=1
endowed with the quasi-metric g defined by
q(z,y) = sup(yr — ), =,y € X.
keN

Observe that ¢°(z,y) = SuPren |ye — x|, and
(X, q¢°) is not separable. By a result of Kiinzi
et al. (MV, 1994), (X,q%) is not pre-Lindelof
and thus it cannot be pre-Menger.



On the other hand, the countable set

Y={reX: :z,e€QVkeN, and Ing =ng(z) € N

With zny = zmVm > ng}

Is dense in X, and pre-Menger being countable.



2.2. Products

Theorem. ([K], 2004) The product of two
Hurewicz-bounded uniform spaces is also Hurewicz-
bounded.

Theorem. The product of two pre-Hurewicz
quasi-uniform spaces is also pre-Hurewicz.

Theorem. ([BKS], 2007) G is w-Menger bounded
< G"is M-bounded V n € N.

Theorem. ([BKS]) G", n € N, is Menger-
bounded & V (U; :i € N) in Ne e € G 3 (A4; :
i € N) finite in G s.t.: V F C G with |F| =n, 3
¢ such that FF C A; - U,.



Theorem. (Machura4Shelah+Tsaban, 2010)
Under CH there is a Menger-bounded group
G < 7N whose square is not Menger-bounded.

Theorem. (Machura4Shelah4+Tsaban, 2010)
Under some additional assumptions (weaker than
CH) there is for each kK € N a metrizable group
G such that GF is Menger-bounded but Gkt1
IS not.

Note. [Banakh+Zdomskyy (2006) and (inde-
pendently) Mildenberger+4Shelah] Consistently,
every topological group G such that G2 is Menger-
bounded has Menger-bounded all finite powers.



3. Partial metric spaces

Let X be a nonempty set. p: X xX — [0,00) is
a partial metric on X ifV x,y,z € X p satisfies:

(PM1) z =y & p(z,z) = p(z,y) = p(y,y),

(PM2) p(z,z) < p(z,y),

(PM3) p(z,y) = p(y, ),

(PM4) p(xay) S p($,2) _I_p(zay) —p(Z,Z).

(X,p) is a partial metric space.



In difference of metric spaces in partial metric
spaces the distance p(x,x) need not be 0.

An open ball in a partial metric space X with
center x € X and radius € > 0 is the set

Bp(z,e) ' ={y € X : p(x,y) < e+ p(x,x)}.

The collection {Bp(z,e) : z € X,e > 0} is the
base of a Ty topology m on X.

Each partial metric p on X generates the quasi-
metric gp and the metric dp on X:

QP(xay) — p(x,y) _p(x7$)7 (x7y S X)a

dp(x,y) = 2p(x,y) —p(z, ) —p(y,y), (x,y € X).

Associated topologies Tapr Td,- [Matthews, 1994]



Similar to (quasi-)uniform selection principles.

Definition. A partial metric space (X, p) is:

(1) p-Menger-bounded (or Mp-bounded) if for
each sequence (en : n € N) there is a se-
quence (Fy : n € N) of finite subsets of X

such that X = U,enUzer, Bp(x,en);

(2) p-Rothberger-bounded (or Ry-bounded) if
for each sequence (en, : n € N) there is a
sequence (xp : n € N) of elements of X
such that X = U,,en Bp(n,en);



(3) p-Hurewicz-bounded (or Hp-bounded) if for
each sequence (e, : n € N) there is a se-
quence (Fp : n € N) of finite subsets of X
such that each = € X belongs to U,c r, Bp(a,en)
for all but finitely many n.

Example. A partial metric space which is Ry-
bounded, but not de-bounded.

Let X = [0,00) and p(z,y) = max{z,y}, =,y €
X. Then dp(z,y) = | —y|. (X,p) is Rp-
bounded. Indeed: (e : n € N) is a sequence of
positive reals, then for (z, :n €N), xp =n—1,
we have X = U,en Bp(@n, en) since By(zn,en) =
[0O,n — 1+ ¢,). On the other hand, X is not
Rg4 -bounded.



Let (X,pyx) and (Y, py) be partial metric spaces
and let 7 = X xY. For z1 = (x1,y1),20 =
(zo,y>) € Z define

pz(21,22) = px(z1,22) + py(y1,y2).

It is not hard to check that py is a partial met-
ricon Z. The pair (Z,py) is called the product
partial metric space of X and Y.

Theorem. The product (Z,pyz) of two Hp-
bounded partial metric spaces (X, px) and (Y, py)
is also Hy-bounded.
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