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1. Introduction and definitions

We define n-relator Menger spaces and investigate their properties

and relations with other covering properties in relator spaces. Some

our earlier results will be extended to n-relator Menger spaces con-

sidering subspaces, products and relator continuous mappings. We

also give several examples which clarify relationships among considered

properties and show that they are different.
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Many authors investigated n-star compact and n-star Lindelöf prop-

erties in topological spaces. Van Douwen,Reed, Roscoe and Tree in

[1] considered starcompact properties and star-Lindelöf properties and

gave characterizations of countable compactness and pseudocompact-

ness in the terms of n-star compactness. They also gave a great

number of examples which show that n-star compactness (n-star Lin-

delöfness) and (n + 1)-star compactness ((n + 1)-star Lindelöfness)

are not equivalent.
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A. Szaz in several papers on relator spaces (see [8], [9], [10]) showed

that many topological structures can be derived from relator spaces.

First we recall some basic facts on relations and relators.

If X and Y are nonempty sets, then every subset R of X ×Y is called

a relation on X to Y . If X = Y , then we say that R is a relation on

X. For every x ∈ X, R(x) = {y ∈ X : (x, y) ∈ R}. If A is a subset

of X, then R(A) =
⋃

x∈A R(x). The inverse R−1 can be defined in

the following way: R−1(y) = {x ∈ X : (x, y) ∈ R} for every y ∈ X.

∆X = {(x, x) : x ∈ X} is called the identity relation on X.
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If R is a relation on X to Y and S is a relation on Y to Z, then the

composition S◦R is defined such that (S◦R)(x) = S(R(x)) for every

x ∈ X. If R is a relation on X to Y and S is a relation on Z to W ,

then the product R×S of relations R and S is defined in the following

way: (R × S)(x, y) = R(x) × S(y) for every x ∈ X and y ∈ Z. By

m(R) we mean R × R × ...︸ ︷︷ ︸
m

A relation R on X is reflexive (symmetric, transitive) if ∆X ⊂ R

(R ⊂ R−1, R ◦ R ⊂ R). We can inductively define Rn for every

n ∈ N in the following way: R1 = R and Rn+1 = R ◦ Rn. We can

also define R∞ by R∞ =
⋃∞

n=0 Rn, where R0 = ∆X .
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Every nonvoid family R of relations on X is called a relator on X. The

ordered pair (X, R) is called a relator space.

We can derive topological structures from relator spaces in the following

way: If R is a relator on X, then for any A ⊂ X we write:

intR(A) = {x ∈ X : ∃R ∈ R : R(x) ⊂ A};

clR(A) = {x ∈ X : ∀R ∈ R : R(x) ∩ A 6= ∅};

TR = {A ⊂ X : A ⊂ intR(A)};

FR = {A ⊂ X : clR(A) ⊂ A}.
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Let (X, R) and (Y, S) be relator spaces. We say that a function

f : X −→ Y is relator continuous if for every S ∈ S there exists

R ∈ R such that f(R(x)) ⊂ S(f(x)) for every x ∈ X.

We say that a relator space (Y, RY ) is the subspace of (X, R) if Y ⊂
X and for every S ∈ RY there exists R ∈ R such that S = Y 2 ∩ R.

We assume that every relation from relator is reflexive. The notation

and terminology are as in [2].
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2. Properties of n-relator Menger spaces

In [4] we introduced the notions of n-relator Menger property and ω-

relator Menger property. In the same way we can define the notions of

n-relator compact, ω-relator compact, n-relator Lindelöf and ω-relator

Lindelöf properties.

Let us recall (see [4]) that a relator space (X, R) is relator compact

(relator Lindelöf) if for every relation R from R there exists a finite

(resp. countable) subset A of X such that R(F ) = X.
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Definition 2.1 Let (X, R) be a relator space. We say that:

• (X, R) is n-relator Menger (ω-relator Menger), where n ∈ N,

if for every sequence (Rk : k ∈ N) of relations from R there

exists a sequence (Fk : k ∈ N) of finite subsets of X such that⋃
k∈N Rn

k(Fk) = X (resp.
⋃

k∈N R∞
k (Fk) = X);

• (X, R) is n-relator compact (n-relator Lindelöf) if for every R ∈ R
there exists a finite (resp. countable) subset A of X such that

Rn(A) = X;

• (X, R) is ω-relator compact (ω-relator Lindelöf) if for every R ∈ R
there exists a finite (resp. countable) subset A of X such that

R∞(A) = X.
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In the next diagram we present some obvious implications.

RC
↑ ↓

↑ ↓

↑ ↓

↑ ↓

→ RL ← RM

?
2-RC

?
→2-RL

?

?

←2-RM

? ?

...
...

...

...
...

...

? ? ?

n-RC n-RL→ n-RM←

ω-RC→ω-RL←ω-RM
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In the next section we will give examples which show that these implica-

tions can not be reversed. On the other hand, in [4] it was shown that

if every relation from relator is transitive, then the notions of ω-relator

Menger and n-relator Menger are equivalent for every n ∈ N. Notice

that if a relator has only one element, then the notions of n-relator

Menger and n-relator Lindelöf properties are equivalent.

We present now some results concerning the operations of subsets,

relator continuous functions and products.
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The next three theorems extend statements of Theorem 2.2, Theorem

2.3 and Theorem 2.11 respectively from [4].

Theorem 2.1 Let (Y, RY ) be a subspace of an n-relator Menger space

(X, R). If for every T ∈ R there exists R ∈ R such that Rn◦Rn−1 ⊂
T n, then (Y, RY ) is the n-relator Menger space.

Theorem 2.2 Let (X, R) and (Y, S) be relator spaces. If (X, R) is

n-relator Menger and f : X −→ Y is a relator continuous surjection,

then (Y, S) is also n-relator Menger.

Let us recall that a cover U of a space X is an ω-cover [3] if X does

not belong to U and for every finite subset F of X there exists U ∈ U
such that F ⊂ U .
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Theorem 2.3 If (Xm, Rm) is n-relator Menger space for every m ∈ N,

then for every sequence (Rk : k ∈ N) of relations from R there exists

a sequence (Fk : k ∈ N) of finite subsets of X such that {Rk
n(Fk) :

k ∈ N} is an ω-cover for X.

The next theorem is the generalization of the Theorem 2.10 from [4].

We say that a relator space (X, R) is σ-n-relator compact if it is a

countable union of n-relator compact subspaces.

Theorem 2.4 If (X, R) is σ-n-relator compact and (Y, S) is n-relator

Menger, then the product (X × Y, R × S) is n-relator Menger.
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In [5] we considered some properties weaker than the relator Menger

property. We now study the relations between these properties and

2-relator Menger property.

Recall that a relator space (X, R) is neighborhood relator Menger ([5])

if for every sequence (Rn : n ∈ N) of relations from R there exists

a sequence (Fn : n ∈ N) of finite subsets of X such that for every

On ∈ TR, Fn ⊂ On, n ∈ N,
⋃

n∈N Rn(On) = X.

Theorem 2.5 If a relator space (X, R) is neighborhood relator Menger

and R(x) ∈ TR for every R ∈ R and every x ∈ X, then (X, R) is

2-relator Menger.
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We say that a relator space (X, R) is almost relator Menger ([5]) if

for every sequence (Rn : n ∈ N) of relations from R there exists a

sequence (Fn : n ∈ N) such that
⋃

n∈N clR(Rn(Fn)) = X.

Theorem 2.6 If a relator space (X, R) is almost relator Menger and

every relation R ∈ R is symmetric, then (X, R) is 2-relator Menger.

In [4], we introduced the notion of k-relator Menger property in the

following way: A relator space (X, R) is k-relator Menger if for every

sequence (Rn : n ∈ N) of elements of R, there exists a sequence (Kn :

n ∈ N) of relator compact subspaces of X such that
⋃

n∈N Rn(Kn) =

X.

Theorem 2.7 If a relator space (X, R) is k-relator Menger, then

(X, R) is 2-relator Menger.
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Let R be the set of real numbers, and let D be a relator on R defined

by D = {Dε : ε ∈ R, ε >0}, where Dε(x) = (x − ε, x + ε) for every

x ∈ R (see [4], Example 1). The following theorem is analogous to the

Theorem 2.1.6. from [1] in topological spaces.

Theorem 2.8 If a relator space (X, R) is ω-relator compact, then every

relator continuous function f : X −→ (R, D) is bounded.
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3. Examples

In [1], Example 2.2.5, was given an example which shows that there

exists a topological space which is strongly 2-starcompact and not 1-

starcompact. Using this example, we show that there exists a relator

space which is 2-relator compact, but not relator compact.

Example 3.1 Let A = {Ns : s ∈ S} be an infinite family of infinite

subsets of N such that for every distinct s and s′ from S, Ns ∩ Ns′

is finite, every n ∈ N is an element of only finitely many members

of family A and A is a maximal family with this property. Suppose

N ∩ S = ∅ and let X = N ∪ S. Fix a finite subset F of X and

define a relation RF on X in the following way: for every n ∈ N,

RF (n) = {n} ∪ {s : {n} ∈ Ns\F}, and for every s ∈ S, RF (s) =

{s} ∪ (Ns\F ). Let R = {RF } be a relator on X.
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The following example shows that there exists a relator space which has

ω-relator compact property and has not n-relator compact property for

any n ∈ N.

Example 3.2 Let R be the set of real numbers and let ε ∈ R such

that ε > 0. We define a relation Dε on R in the following way:

Dε(x) = (x − ε, x + ε) for every x ∈ R. Let D = Dε be a relator on

R. A relator space (R, D) is ω-relator compact since for every x, y ∈ R
there exists n ∈ N such that x ∈ (y − nε, y + nε), so for every finite

F ⊂ R we have Dε
∞(F ) = R.

Now we show that (R, D) is not n-relator compact for any n ∈ N. Let

F ⊂ R be any finite subset of R. It is obvious that
⋃

x∈F (x − nε, x +

nε) 6= R. ¤
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The next example shows that there exists 2-relator Menger (2-relator

Lindelöf) space which is not relator Menger (relator Lindelöf).

Example 3.3 Let S be an uncountable set such that S∩ω1 = ∅ and let

A = {Ns : s ∈ S} be a maximal family of uncountable subsets of ω1

such that Ns ∩ Ns′ is countable for every distinct s, s′ ∈ S and every

α ∈ ω1 belongs to Ns for only countably many s ∈ S. Put X = ω1∪S

and fix countable subset A of ω1. We define a relation DA on X in the

following way: DA(α) = {α} ∪ {s ∈ S : α ∈ Ns} for every α ∈ ω1

and DA(s) = {s} ∪ {Ns\A} for every s ∈ S. Let D = {DA} be a

relator on X. The relator space (X, D) is 2-relator Menger (2-relator

Lindelöf) but not relator Menger (relator Lindelöf) (since the relator

D has only one element, the notions of relator Menger and relator

Lindelöf property are equivalent, so it is enough to prove only one of

these claims).
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The following example shows that there exists an ω-relator Menger

space which is not n-relator Menger space for any n ∈ N.

Example 3.4 Let Rω be the set of all sequences of real numbers and let

d be a usual metric on R. Denote by Dε,k = Bε × Bε × ... × Bε︸ ︷︷ ︸
k

×R2×

R2 × ...,, where ε ∈ R, k ∈ N, and for every x ∈ R, Bε(x) = {y ∈
R : d(x, y) < ε}. If we put D = {Dε,k : ε ∈ R, k ∈ N}, then D is a

relator on Rω (see [4]).

Problem 3.1. Does for every n ∈ N exist a relator space which has

the (n + 1)-relator Menger property and does not have the n-relator

Menger property?
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