Eventually Colorings of closed maps of metric spaces

Hisao Kato University of Tsukuba, (This is a joint work with G. Ikegami, H. Kato and A. Ueda)

イタリア/ガゼルタ June 2012

Abstract. For each natural number p we define eventual colorings of maps which are generalized notions of colorings of fixed-point free maps of metric spaces. We investigate the eventual coloring number C(f,p) of a fixed-point free closed maps $f: X \to X$ with zerodimensional set of periodic points. In particular, we show that if $\operatorname{ord}(f) = \sup\{|f^{-1}(x)| \ x \in X\} < \infty$ and $\dim X < \infty$, then there is a natural number p, which depends on $\dim X$, and X can be devided into two closed regions C_1 and C_2 such that for each point $x \in X$, the orbit $\{f^k(x)\}_{k=0}^{\infty}$ of x goes back and forth between C_1 and C_2 within time p. Let $f: X \to X$ be a fixed-point free closed map of a metric space X, i.e., $f(x) \neq x$ for each $x \in X$. A subset C of X is called a *color* of f if $f(C) \cap C = \phi$. Note that $f(C) \cap C = \phi$ if and only if $C \cap f^{-1}(C) = \phi$. We say that a cover C of X is a *coloring* of f if each element C of C is a color of f. The minimal cardinality C(f) of closed (or open) colorings of f is called the *coloring number* of f. The coloring number C(f) has been investigated by many mathematicians. **Theorem 1.** (Lusternik and Schnirelman) Let $f : S^n \to S^n$ be the antipodal map of the *n*-dimensional sphere S^n . Then C(f) = n + 2. **Theorem 2.** (Aarts, Fokkink and Vermeer) Let $f : X \to X$ be a fixedpoint free involution of a metric space X with dim $X = n < \infty$. Then $C(f) \le n + 2$. **Theorem 3.** (Aarts, Fokkink and Vermeer) Let $f : X \to X$ be a fixedpoint free homeomorphism of a metric space X with dim $X = n < \infty$. Then C(f) < n + 3. Let $f: X \to X$ be a fixed-point free map of a space X and $p \in \mathbb{N}$. A subset C of X is *eventually colored within* p of f if

$$\bigcap_{i=0}^{p} f^{-i}(C) = \phi.$$

Note that C is a color of f if and only if C is eventually colored within 1.

Proposition 4. Let $f : X \to X$ be a fixed-point free map of a metric space X and $p \in \mathbb{N}$. Then a subset C of X is eventually colored within p of f if and only if each point $x \in C$ wanders off C within p, i.e., for each $x \in C$, $f^i(x) \notin C$ with some $i \leq p$.

We define the eventual coloring number C(f,p) as follows. A cover C of X is called an *eventual coloring within* p if each element C of C is eventually colored within p. The minimal cardinality C(f,p) of all closed (or open) eventual colorings within p is called the *eventual coloring number* of f within p. Note that C(f,1) = C(f). If there is some $p \in \mathbb{N}$ with $C(f,p) < \infty$, we say that f is eventually colored.

For evaluating the eventual coloring numbers of maps, we define the following index $\psi_n(k)$. Let $n \in \mathbb{N} \cup \{0\}$ and $0 \leq k \leq n + 1$. Put $R(n,k) = n - (n+2-k)[\frac{n}{n+2-k}]$, where $[x] = \max\{m \in \mathbb{N} \cup \{0\} | m \leq x\}$ for $x \in [0,\infty)$. Note that R(n,k) means the remainder of n divided by (n+2-k). First, we put $\psi_n(0) = 1$ (k = 0). Next we consider the following two cases (i) and (ii):

(i) R(n,k) < n+1-k.

(ii) R(n,k) = n + 1 - k.

For each $1 \le k \le n+1$, we define the index $\psi_n(k)$ by

$$\psi_n(k) = \begin{cases} k(2[\frac{n}{n+2-k}] - 1) + 2 & \text{(if } R(n,k) < n+1-k), \\ k(2[\frac{n}{n+2-k}] + 1) + 1 & \text{(if } R(n,k) = n+1-k). \end{cases}$$

7

For any map $f: X \to X$, P(f) denotes the set of all periodic points of f. The following result is the main theorem of my talk.

Theorem 5. Let $f : X \to X$ be a fixed-point free closed map of a metric space X with $ord(f) = \sup\{|f^{-1}(x)| \ x \in X\} < \infty$ and $\dim X = n < \infty$. If $\dim P(f) \le 0$, then

$$C(f,\psi_n(k)) \le n+3-k$$

for each k = 0, 1, 2, ..., n + 1. In particular, if f is a homeomorphism, then

$$C(f,\psi_n(k)) \le n+3-k$$

for each k = 0, 1, 2, ..., n + 1.

For the compact case, we do not need the condition " $\operatorname{ord}(f) < \infty$ ". In fact, we have the following.

Theorem 6. Let $f : X \to X$ be any fixed-point free map of a compact metric space X with dim $X = n < \infty$. If dim $P(f) \le 0$, then

$$C(f,\psi_n(k)) \le n+3-k$$

for each k = 0, 1, 2, ..., n + 1.

Corollary 7. Let $f : X \to X$ be a fixed-point free closed map of a metric space X such that $ord(f) < \infty$, $\dim X = n < \infty$ and $\dim P(f) \le 0$. Then there is some p such that C(f, p) = 2.

In other words, X can be divided into two closed subsets C_1, C_2 (i.e., $X = C_1 \cup C_2$) and there is some $p \in \mathbb{N}$ such that if $x \in C_i$ $(i \in \{1, 2\})$, there is a strictly increasing sequence $\{n_x(k)\}_{k=1}^{\infty}$ of natural numbers such that $1 \leq n_x(1) \leq p$, $n_x(k+1) - n_x(k) \leq p$ and if $j \in \{1, 2\}$ with $j \neq i$, then

$$f^{n_x(k)}(x) \in C_j - C_i$$
 (k:odd), $f^{n_x(k)}(x) \in C_i - C_j$ (k:even).

Corollary 8. Let $f : X \to X$ be a fixed-point free closed map of a metric space X such that $ord(f) < \infty$, $\dim X = n < \infty$ and $\dim P(f) \le 0$. Then the followings hold.

(1) If dim X = 0, then C(f, 2) = 2.

(2) If dim X = 1, then C(f, 7) = 2.

(3) If dim X = 2, then C(f, 16) = 2.

(4) If dim X = 3, then C(f, 29) = 2.

(5) If dim X = 4, then C(f, 46) = 2.

(6) If dim X = 5, then C(f, 67) = 2.

Remark. If we do not assume dim $P(f) \leq 0$, the above theorems are not true. Let $f: S^n \to S^n$ be the antipodal map of the *n*-dimensional sphere S^n . Note that $P(f) = S^n$ and C(f,p) = C(f,1) = n + 2 for any $p \in \mathbb{N}$. In the above resulst for noncompact case, we need the condition; $\operatorname{ord}(f) < \infty$.

Example. There are a (zero-dimensional) separable metric space X and a fixed-point free map $f: X \to X$ such that dim $P(f) \leq 0$ and (1) f is closed,

(2) f is finite-to-one, and

(3) f cannot be eventually colored within any $p \in \mathbb{N}$.

In fact, let $f: X \to X$ be the map as in [7, Theorem 3.12.7]. Then we see that $P(f) = \phi$ and f cannot be colored and satisfies the conditions (1), (2) (see [7, Theorem 3.12.7]). Let \mathcal{U} be any finite open cover of X. Then there exist some $U \in \mathcal{U}$ and a point $x \in U$ such that $f^p(x) \in U$ for any $p \in \mathbb{N}$. This implies that \mathcal{U} is not an eventual coloring within any $p \in \mathbb{N}$.

Now we have the following general problem for eventual coloring numbers.

Problem 9. For each $n \ge 0$ and each $1 \le k \le n + 1$, determine the minimal number $m_n(k)$ of natural numbers p satisfying the condition; if $f: X \to X$ is any fixed-point free homeomorphism of a separable metric space X such that dim X = n and dim $P(f) \le 0$, then $C(f, p) \le n + 3 - k$.

To prove the above results, we need the followings.

Lemma 10. Let $C = \{C_i | 1 \le i \le m\}$ be an open cover of a metric space X with dim $X = n < \infty$ and let $\mathcal{B} = \{B_i | 1 \le i \le m\}$ be a closed shrinking of C. Suppose that O is an open set in X and Z is a zero-dimensional subset of O. Then there is an open shrinking $C' = \{C'_i | 1 \le i \le m\}$ of C such that for each $i \le m$, (0) $B_i \subset C'_i$, (1) $C'_i = C_i$ if $bd(C_i) \cap O = \phi$, (2) $C'_i \cap (X - O) = C_i \cap (X - O)$,

- (3) $bd(C'_i) \cap (X O) \subset bd(C_i) \cap (X O),$
- (4) $bd(C'_i) \cap Z = \phi$, and
- (5) $\{bd(C') \cap O | C' \in C'\}$ is in general position.

Lemma 11. Suppose that $f : X \to X$ is a fixed-point free homeomorphism of a metric space X such that dim $X = n < \infty$ and dim $P(f) \leq 0$. Let $C = \{C_i | 1 \leq i \leq m\}$ be an open cover of X and let $\mathcal{B} = \{B_i | 1 \leq i \leq m\}$ be a closed shrinking of C. Then for any $k \in \mathbb{N}$, there is an open shrinking $C' = \{C'_i | 1 \leq i \leq m\}$ of C such that (0) $B_i \subset C'_i$, (1) $\{f^j(bd(C')) | C' \in C', -k \leq j \leq k\}$ is in general position,

(2) $bd(C') \cap P(f) = \phi$ for each $C' \in \mathcal{C}'$.

Theorem 12. Let X be a finite-dimensional separable metric space and let $f : X \to X$ be a closed map with ord $(f) < \infty$. Then there exist a (metric) compactification αX of X and an extension $\alpha f : \alpha X \to \alpha X$ of f such that dim $\alpha X = \dim X$ and dim $P_i(f) = \dim P_i(\alpha f)$ for each $i \in \mathbb{N}$, where

$$P_i(f) = \{ x \in X | f^j(X) = x \text{ for some } j \ (1 \le j \le i) \}.$$

Corollary 13. Let X be a finite-dimensional separable metric space and let $f: X \to X$ be a closed map with ord $(f) < \infty$. If $P(f) = \phi$, then there exist a (metric) compactification αX of X and an extension $\alpha f: \alpha X \to \alpha X$ of f such that dim $\alpha X = \dim X$ and $P(\alpha f) = \phi$. **Remark 14.** Let X be a finite-dimensional metric space and let f: $X \to X$ be a closed map with ord $(f) < \infty$. Then the extension $\beta f: \beta X \to \beta X$ of f over the Cech-Stone compactification βX satisfies the condition $Cl_{\beta X}(P_i(f)) = P_i(\beta f)$ for each $i \in \mathbb{N}$.

References

- 1. J. M. Aarts, R. J. Fokkink and H. Vermeer, Variations on a theorem of Lusternik and Schnirelmann, *Topology*, 35 (1996), 1051-1056.
- 2. E. K. van Douwen, βX and fixed-point free map, *Top. Appl.* 51 (1993), 191-195.
- 3. Y. Ikegami, H. Kato and A. Ueda, Eventual colorings of homeomorphisms, *J. Math. Soc. Japan*, to appear.
- 4. Y. Ikegami, H. Kato and A. Ueda, On eventual coloring numbers,

preprint.

- 5. Y. Ikegami, H. Kato and A. Ueda, Dynamical systems of finitedimensional metric spaces and zero-dimensional covers, preprint.
- 6. H. Kato, Eventual colorings of finite-to-one closed maps of separable metric spaces and Wallman compactifications, in preparation.
- 7. L. Lusternik and L. Schnirelman, Topological methods in variational calculus (Russian), *Moscow*, 1930.
- 8. J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland publishing Co., Amsterdam, 2001.