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Mm a manifold (=T2, connected, locally euclidean). Spot the odd one out!

• M embeds properly in some euclidean space;

• M is completely metrisable;

• M is metrisable;

• M is second countable;

• M is separable;

• M is Lindelöf;

• M is paracompact;

• M is nearly linearly ω1-metaLindelöf;

• M has a k-network which is point-countable on a dense subset;

• the tangent microbundle on M is equivalent to a fibre bundle;

• M has a regular Gδ-diagonal;

• there is a surjective immersion f : Rm →M ;

• M satisfies the selection principle S1(K,Γ);

• Player K has a winning strategy in Gruenhage’s game Go
K,L(M);

• Ck(M ; R) is Volterra;

• H(M) is metrisable.
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S1(A,B): (∀An ∈ A) (∃〈bn〉) bn ∈ An and {bn / n ∈ ω} ∈ B
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S1(A,B): (∀An ∈ A) (∃〈bn〉) bn ∈ An and {bn / n ∈ ω} ∈ B

S1(K,K)

K = all k-covers of X: open covers U with X /∈ U and every compactum of X is in some member of U
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S1(A,B): (∀An ∈ A) (∃〈bn〉) bn ∈ An and {bn / n ∈ ω} ∈ B

S1(K,K) ⇐⇒ X is hemicompact
(1st countable) (Caserta, Di Maio, Kocinac, Meccariello 2006)

⇐⇒ X is metrisable (G, Mynard 2005)
(manifold)

K = all k-covers of X: open covers U with X /∈ U and every compactum of X is in some member of U
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For a manifold

= equivalent to metrisability

K = all k-covers of X: open covers U with X /∈ U and every compactum of X is in some member of U
Γk = all γk-covers of X: open covers U with X /∈ U and each compactum of X is in all but finitely many members of U

viii



S1(A,B): (∀An ∈ A) (∃〈bn〉) bn ∈ An and {bn / n ∈ ω} ∈ B

S1(K,Γk) S1(Γk,Γk) S1(Γk,K)

S1(K,K)

- -

?

���
���

���
���

���
���

���
���

���
���

�:

(McCoy 1980)
Ck(X) is a k-space ⇐⇒
⇐⇒ X is metrisable

(manifold) (G, Mynard 2005)
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X satisfies S1(K,Ω) =⇒ X Lindelöf.

U open cover of X .

Û = {U1 ∪ . . . Un / Ui ∈ U and n ∈ N}: Û ∈ K

Apply S1(K,Ω) to 〈Û〉:

 〈Vn〉, Vn ∈ Û : {Vn / n ∈ N} ∈ Ω.

Each Vn a finite union of members of U : collect together

 countable subcover of U .
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Two players, K and L play on topological space X .
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At the nth stage, player K chooses a compactum Kn ⊂ X .
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Player L chooses another compactum Ln ⊂ X with Ln ∩Ki = ∅ for each i ≤ n.
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Two players, K and L play on topological space X .

At the nth stage, player K chooses a compactum Kn ⊂ X .

Player L chooses another compactum Ln ⊂ X with Ln ∩Ki = ∅ for each i ≤ n.

K wins iff 〈Ln〉n∈ω has a discrete open expansion:

∃ sequence 〈Un〉n∈ω open sets such that

Ln ⊂ Un
∀x ∈ X, ∃U ⊂ X open such that x ∈ U and U meets at most one of the sets Un.
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K wins iff 〈Ln〉n∈ω has a discrete open expansion:

∃ sequence 〈Un〉n∈ω open sets such that

Ln ⊂ Un
∀x ∈ X, ∃U ⊂ X open such that x ∈ U and U meets at most one of the sets Un.

(G, Mynard 2006) Manifold M metrisable =⇒ Ck(M) Polish.

(Kechris 1995) Ck(M) Polish =⇒ Ck(M) weakly α-favourable.

(Gruenhage 2006) Ck(M) weakly α-favourable =⇒ K has a winning strategy in Go
K,L(M).

(Gruenhage 2006) K has a winning strategy in Go
K,L(X) =⇒ X is paracompact.

(Smirnov 1951) M is paracompact =⇒M is metrisable.
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α ordinal, A,B collections of families of subsets of X .
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α ordinal, A,B collections of families of subsets of X .

For ordinal β < α

• Player One chooses Aβ ∈ A;

• Player Two chooses pairwise disjoint family Tβ which refines Aβ.
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α ordinal, A,B collections of families of subsets of X .

For ordinal β < α

• Player One chooses Aβ ∈ A;

• Player Two chooses pairwise disjoint family Tβ which refines Aβ.

Player Two wins play A0, T0, . . . ,Aβ, Tβ, . . . iff ∪β<αTβ ∈ B.

(Babinkostova 2005) showed that if metrisable X has covering dimension at most n then Player Two

has a winning strategy in Gn+1
c (O,O). An n-manifold has covering dimension n.
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Gαc (A,B):

α ordinal, A,B collections of families of subsets of X .

For ordinal β < α

• Player One chooses Aβ ∈ A;

• Player Two chooses pairwise disjoint family Tβ which refines Aβ.

Player Two wins play A0, T0, . . . ,Aβ, Tβ, . . . iff ∪β<αTβ ∈ B.

(Babinkostova 2005) showed that if metrisable X has covering dimension at most n then Player Two

has a winning strategy in Gn+1
c (O,O). An n-manifold has covering dimension n.

Player Two has a winning strategy in Gn+1
c (O,O)

=⇒ Player Two has a winning strategy in Gωc (O,O)

=⇒ X is metaLindelöf

=⇒ X is metrisable provided also that X is connected and locally second countable.
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