Selections, games and metrisability of manifolds

David Gauld

The University of Auckland

Supported by

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN M^m a manifold (=T₂, connected, locally euclidean). Spot the odd one out!

- M embeds properly in some euclidean space;
- M is completely metrisable;
- M is metrisable;
- M is second countable;
- M is separable;
- M is Lindelöf;
- M is paracompact;
- M is nearly linearly ω_1 -metaLindelöf;
- M has a k-network which is point-countable on a dense subset;
- the tangent microbundle on M is equivalent to a fibre bundle;
- M has a regular G_{δ} -diagonal;
- there is a surjective immersion $f : \mathbb{R}^m \to M;$
- M satisfies the selection principle $S_1(\mathcal{K}, \Gamma)$;
- Player K has a winning strategy in Gruenhage's game $G^o_{K,L}(M)$;
- $C_k(M; \mathbb{R})$ is Volterra;
- $\mathcal{H}(M)$ is metrisable.

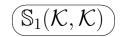
 M^m a manifold (=T₂, connected, locally euclidean). Spot the odd one out!

- M embeds properly in some euclidean space;
- M is completely metrisable;
- M is metrisable;
- M is second countable;
- *M* is separable;
- M is Lindelöf;
- M is paracompact;
- M is nearly linearly ω_1 -metaLindelöf;
- M has a k-network which is point-countable on a dense subset;
- the tangent microbundle on M is equivalent to a fibre bundle;
- M has a regular G_{δ} -diagonal;
- there is a surjective immersion $f : \mathbb{R}^m \to M;$
- M satisfies the selection principle $S_1(\mathcal{K}, \Gamma)$;
- Player K has a winning strategy in Gruenhage's game $G^o_{K,L}(M)$;
- $C_k(M; \mathbb{R})$ is Volterra;
- $\mathcal{H}(M)$ is metrisable.

 $\mathbb{S}_1(\mathcal{K},\mathcal{K})$

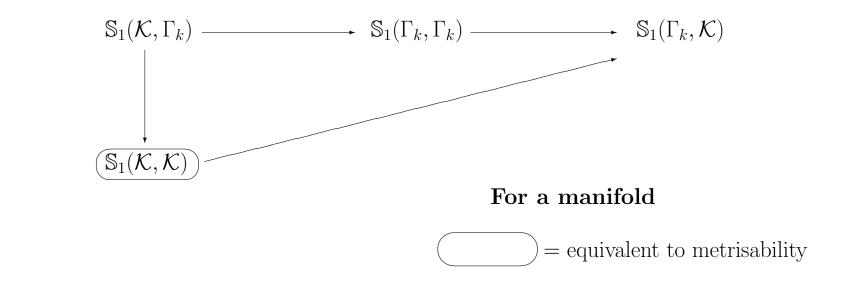
 $\mathcal{K} =$ all k-covers of X: open covers \mathcal{U} with $X \notin \mathcal{U}$ and every compactum of X is in some member of \mathcal{U}

 $\mathcal{K} =$ all k-covers of X: open covers \mathcal{U} with $X \notin \mathcal{U}$ and every compactum of X is in some member of \mathcal{U}

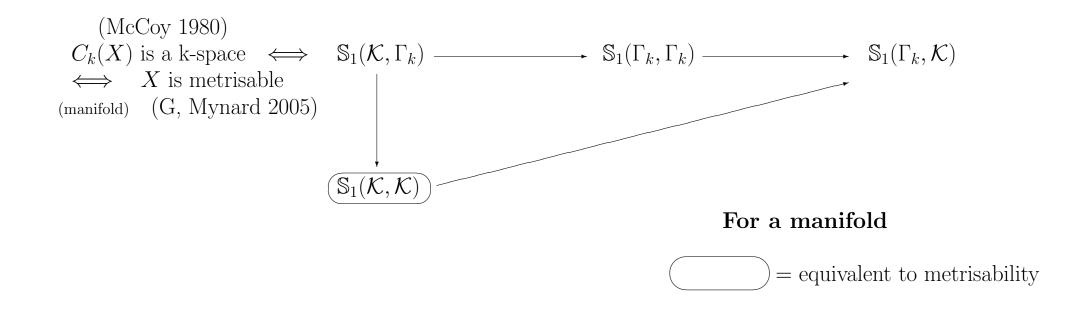


For a manifold

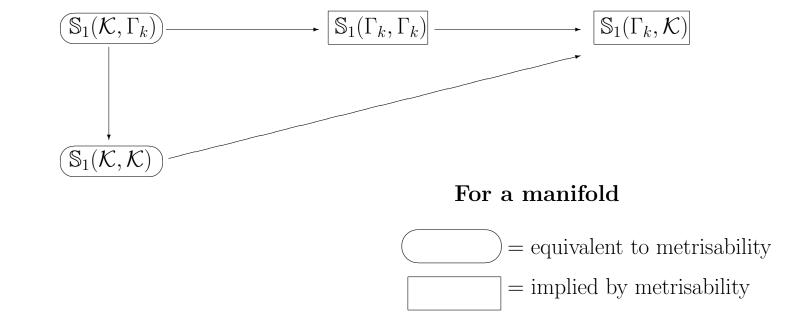
 $\mathcal{K} =$ all k-covers of X: open covers \mathcal{U} with $X \notin \mathcal{U}$ and every compactum of X is in some member of \mathcal{U}



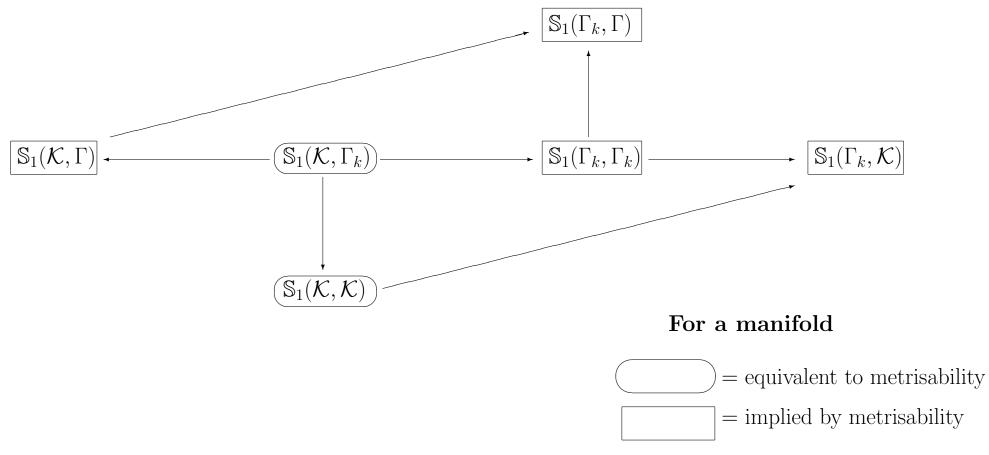
 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$



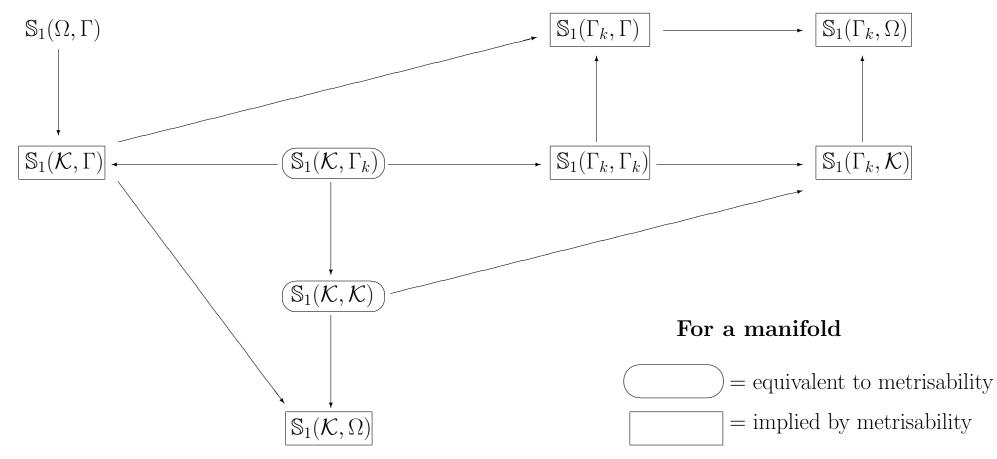
 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$



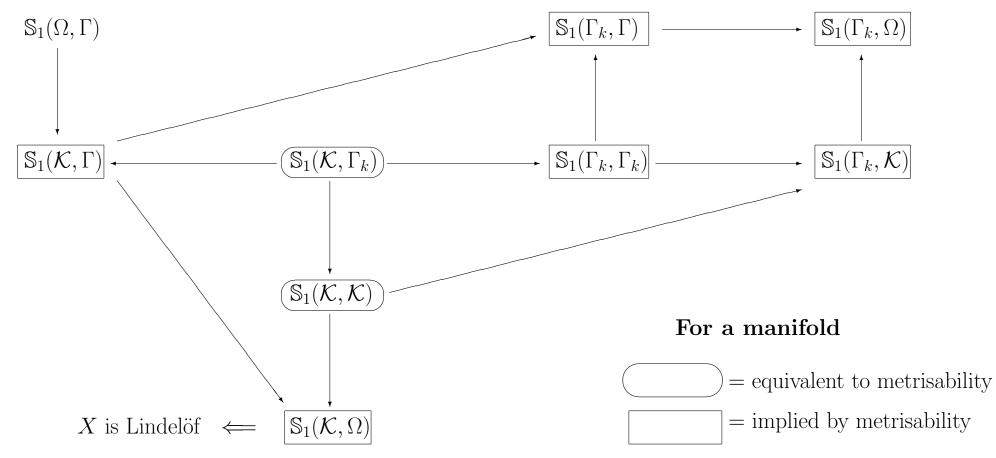
 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$



 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Gamma = \text{all } \gamma\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each point of } X \text{ is in all but finitely many members of } \mathcal{U}$

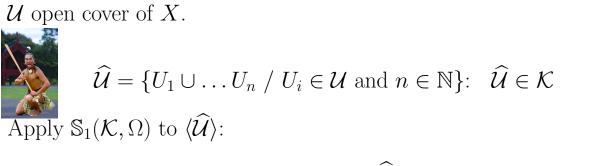


 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Gamma = \text{all } \gamma\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each point of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Omega = \text{all } \omega\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every finite subset of } X \text{ is in some member of } \mathcal{U}$



 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Gamma = \text{all } \gamma\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each point of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Omega = \text{all } \omega\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every finite subset of } X \text{ is in some member of } \mathcal{U}$

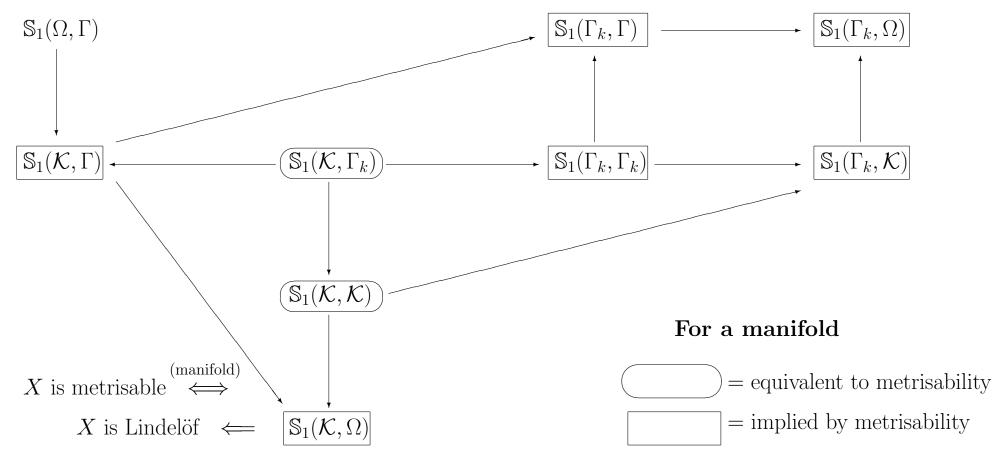
X satisfies $\mathbb{S}_1(\mathcal{K}, \Omega) \Longrightarrow X$ Lindelöf.



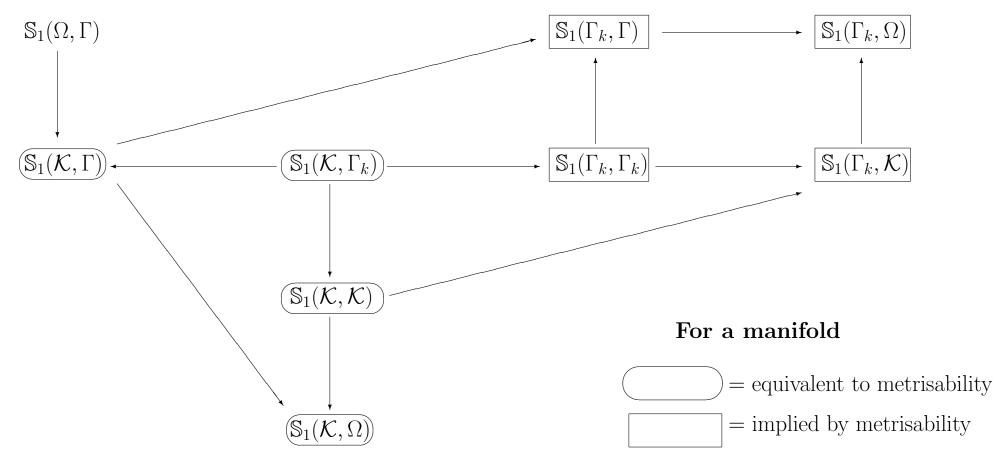
$$\rightsquigarrow \langle V_n \rangle, V_n \in \widehat{\mathcal{U}}: \{V_n \mid n \in \mathbb{N}\} \in \Omega.$$

Each V_n a finite union of members of \mathcal{U} : collect together

 \rightsquigarrow countable subcover of \mathcal{U} .



 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Gamma = \text{all } \gamma\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each point of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Omega = \text{all } \omega\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every finite subset of } X \text{ is in some member of } \mathcal{U}$



 $\mathcal{K} = \text{all } k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every compactum of } X \text{ is in some member of } \mathcal{U}$ $\Gamma_k = \text{all } \gamma_k\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each compactum of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Gamma = \text{all } \gamma\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and each point of } X \text{ is in all but finitely many members of } \mathcal{U}$ $\Omega = \text{all } \omega\text{-covers of } X\text{: open covers } \mathcal{U} \text{ with } X \notin \mathcal{U} \text{ and every finite subset of } X \text{ is in some member of } \mathcal{U}$

Two players, K and L play on topological space X.

Two players, K and L play on topological space X.

At the n^{th} stage, player K chooses a compactum $K_n \subset X$.

Two players, K and L play on topological space X.

At the n^{th} stage, player K chooses a compactum $K_n \subset X$.

Player L chooses another compactum $L_n \subset X$ with $L_n \cap K_i = \emptyset$ for each $i \leq n$.

Two players, K and L play on topological space X.

At the n^{th} stage, player K chooses a compactum $K_n \subset X$.

Player L chooses another compactum $L_n \subset X$ with $L_n \cap K_i = \emptyset$ for each $i \leq n$.

K wins iff $\langle L_n \rangle_{n \in \omega}$ has a discrete open expansion:

 \exists sequence $\langle U_n \rangle_{n \in \omega}$ open sets such that

$$L_n \subset U_n$$

 $\forall x \in X, \exists U \subset X \text{ open such that } x \in U \text{ and } U \text{ meets at most one of the sets } U_n.$

Two players, K and L play on topological space X.

At the n^{th} stage, player K chooses a compactum $K_n \subset X$.

Player L chooses another compactum $L_n \subset X$ with $L_n \cap K_i = \emptyset$ for each $i \leq n$.

- K wins iff $\langle L_n \rangle_{n \in \omega}$ has a discrete open expansion: \exists sequence $\langle U_n \rangle_{n \in \omega}$ open sets such that $L_n \subset U_n$ $\forall x \in X, \exists U \subset X$ open such that $x \in U$ and U meets at most one of the sets U_n .
- (G, Mynard 2006) Manifold M metrisable $\Longrightarrow C_k(M)$ Polish. (Kechris 1995) $C_k(M)$ Polish $\Longrightarrow C_k(M)$ weakly α -favourable. (Gruenhage 2006) $C_k(M)$ weakly α -favourable \Longrightarrow K has a winning strategy in $G^o_{K,L}(M)$. (Gruenhage 2006) K has a winning strategy in $G^o_{K,L}(X) \Longrightarrow X$ is paracompact. (Смирнов 1951) M is paracompact $\Longrightarrow M$ is metrisable.

 $\mathsf{G}^{lpha}_{c}(\mathbb{A},\mathbb{B})$:

 $\mathsf{G}^{lpha}_{c}(\mathbb{A},\mathbb{B})$:

 α ordinal, \mathbb{A}, \mathbb{B} collections of families of subsets of X.

 $\mathsf{G}^{lpha}_{c}(\mathbb{A},\mathbb{B})$:

 α ordinal, \mathbb{A}, \mathbb{B} collections of families of subsets of X.

For ordinal $\beta < \alpha$

- Player One chooses $\mathcal{A}_{\beta} \in \mathbb{A}$;
- Player Two chooses pairwise disjoint family \mathcal{T}_{β} which refines \mathcal{A}_{β} .

 $\mathsf{G}^{\alpha}_{c}(\mathbb{A},\mathbb{B})$:

 α ordinal, \mathbb{A}, \mathbb{B} collections of families of subsets of X.

For ordinal $\beta < \alpha$

- Player One chooses $\mathcal{A}_{\beta} \in \mathbb{A}$;
- Player Two chooses pairwise disjoint family \mathcal{T}_{β} which refines \mathcal{A}_{β} .

Player Two wins play $\mathcal{A}_0, \mathcal{T}_0, \ldots, \mathcal{A}_\beta, \mathcal{T}_\beta, \ldots$ iff $\bigcup_{\beta < \alpha} \mathcal{T}_\beta \in \mathbb{B}$.

(Babinkostova 2005) showed that if metrisable X has covering dimension at most n then Player Two has a winning strategy in $G_c^{n+1}(\mathbb{O}, \mathbb{O})$. An n-manifold has covering dimension n.

 $\mathsf{G}^{\alpha}_{c}(\mathbb{A},\mathbb{B})$:

 α ordinal, \mathbb{A}, \mathbb{B} collections of families of subsets of X.

For ordinal $\beta < \alpha$

- Player One chooses $\mathcal{A}_{\beta} \in \mathbb{A}$;
- Player Two chooses pairwise disjoint family \mathcal{T}_{β} which refines \mathcal{A}_{β} .

Player Two wins play $\mathcal{A}_0, \mathcal{T}_0, \ldots, \mathcal{A}_\beta, \mathcal{T}_\beta, \ldots$ iff $\bigcup_{\beta < \alpha} \mathcal{T}_\beta \in \mathbb{B}$.

(Babinkostova 2005) showed that if metrisable X has covering dimension at most n then Player Two has a winning strategy in $G_c^{n+1}(\mathbb{O}, \mathbb{O})$. An n-manifold has covering dimension n.

Player Two has a winning strategy in $G_c^{n+1}(\mathbb{O}, \mathbb{O})$

- \implies Player Two has a winning strategy in $\mathsf{G}^{\omega}_{c}(\mathbb{O},\mathbb{O})$
- $\implies X$ is metaLindelöf
- \implies X is metrisable provided also that X is connected and locally second countable.