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Indestructible Lindelöf spaces

Definition (Tall 1995)

A Lindelöf space is indestructible if it remains Lindelöf after forcing with
any countably closed partial order.

Theorem (Scheepers-Tall 2010)

A Lindelöf space X is indestructible if and only if player One does not have
a winning strategy in the game Gω11 (OX ,OX ) — in short,
One 6 ↑ Gω11 (OX ,OX ).

Sω11 (OX ,OX ) and Gω11 (OX ,OX ) denote, respectively, the length-ω1
versions of the Rothberger property S1(OX ,OX ) and the Rothberger game
G1(OX ,OX ).
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Sω1
1 (O,O) and Gω1

1 (O,O)

As usual, if One 6 ↑ Gω11 (OX ,OX ) then Sω11 (OX ,OX ) holds.

Theorem (Pawlikowski 1994)

S1(OX ,OX ) is equivalent to One 6 ↑ G1(OX ,OX ).

Question (Scheepers-Tall 2010)

Is Sω11 (OX ,OX ) equivalent to One 6 ↑ Gω11 (OX ,OX )?
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Sω1
1 (O,O) and Gω1

1 (O,O)
A counterexample

Question (Scheepers-Tall 2010)

Is Sω11 (OX ,OX ) equivalent to One 6 ↑ Gω11 (OX ,OX )?

Answer: No, if CH is assumed.

Example
Consider the lexicographical ordering on the set Y = ω12, and regard Y as
a linearly ordered topological space. Then

Y is compact;
One ↑ Gω11 (OY ,OY ) — i.e., Y is destructible;
CH implies Sω11 (OY ,OY ).
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Sω1
1 (O,O) and Gω1

1 (O,O)
A counterexample

Definition

Let κ be an infinite cardinal. A κ-Čech-Pospíšil tree in a topological space X
is an indexed family 〈Fs : s ∈ ≤κ2〉 satisfying:
(i) each Fs is a nonempty closed subset of X ;
(ii) Fs ⊇ Ft whenever s ⊆ t;
(iii) Fsa(0) ∩ Fsa(1) = ∅.

Proposition

If there is an ω1-Čech-Pospíšil tree in X , then One ↑ Gω11 (OX ,OX ).

Since no point of Y is a Gδ, we have:

Corollary
Y is destructible.
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Sω1
1 (O,O) and Gω1

1 (O,O)
A counterexample

Proposition

CH implies Sω11 (OY ,OY ).

Proof.
It suffices to show that there is C ⊆ Y with |C | = ℵ1 satisfying:

For every open U ⊆ Y such that C ⊆ U, we have |Y \ U| ≤ ℵ1.

Let C = {f ∈ Y : f is eventually constant}. Note that |C | = ℵ1 by CH.

Claim. If U ⊆ Y is open and C ⊆ U, then Y \ U is finite.

Suppose not. Since F = Y \ U is compact, any countable infinite A ⊆ F
has an accumulation point p ∈ F . This implies that p must be an element
of C , which is a contradiction since C ∩ F = ∅.
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Indestructibility of dyadic spaces

Lemma

The following conditions are equivalent for an infinite cardinal κ:

(a) 2κ is indestructible;
(b) Sω11 (O2κ ,O2κ);
(c) κ = ω.

Corollary

The following are equivalent for a dyadic space X :

(a) X is indestructible;
(b) Sω11 (OX ,OX );
(c) X does not contain a copy of 2ω1 ;
(d) w(X ) = ℵ0.
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ω1-dyadic systems

Theorem (Šapirovskĭı 1980)

The following conditions are equivalent for a compact T2 space X and an
uncountable cardinal κ:

(a) there is a closed nonempty F ⊆ X such that πχ(x ,F ) ≥ κ for all
x ∈ F ;

(b) there is a κ-dyadic system in X , i.e. an indexed family
〈F i
α : α ∈ κ, i ∈ 2〉 of closed subsets of X such that F 0

α ∩ F 1
α = ∅ for

all α ∈ κ and
⋂
{F p(ξ)

ξ : ξ ∈ dom(p)} 6= ∅ for all p ∈ Fn(κ, 2).

Note that the existence of an ω1-dyadic system in a compact space X is
equivalent to the failure of S1(OX ,OX ) witnessed by a sequence of
2-element open covers of X .
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The big picture
for compact Hausdorff spaces

2ω1 ↪→ X

∃ω1-dyadic
system in X

∃F ⊆ X closed nonempty
s.t. χ(x ,F ) ≥ ℵ1 ∀x ∈ F ¬Sω1

1 (OX ,OX )

∃ω1-Čech-Pospíšil
tree in X X is destructible

??

(Šapirovskĭı)
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(Shapiro 2000)
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�
�
�	

@
@
@R

@
@
@R

-

MA + ¬CH
+ w(X ) < c

(Shapiro 2000)

6

-|
(Y )

�
�
��

\
(Y )

@
@
@I

/
(βω)

?

CH

@
@
@I ?

� ?

Rodrigo Roque Dias (IME–USP) Indestructibility of compact spaces SPMC 2012 9 / 11



The big picture
for compact Hausdorff spaces

2ω1 ↪→ X

∃ω1-dyadic
system in X

∃F ⊆ X closed nonempty
s.t. χ(x ,F ) ≥ ℵ1 ∀x ∈ F ¬Sω1

1 (OX ,OX )

∃ω1-Čech-Pospíšil
tree in X X is destructible

??

(Šapirovskĭı)
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Questions

Question 1
Is there a ZFC example of a destructible space satisfying Sω11 (O,O)?

Question 2
For X compact, is Sω11 (OX ,OX ) equivalent to the nonexistence of an
ω1-dyadic system in X?

Question 3
Is destructibility of a space X equivalent to the existence of an
ω1-Čech-Pospíšil tree in X?

Grazie mille!
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