Indestructibility of compact spaces

Rodrigo Roque Dias coauthor: Franklin D. Tall

Instituto de Matemática e Estatística Universidade de São Paulo

roque@ime.usp.br

IVth SPMC, Caserta, 2012

Indestructible Lindelöf spaces

Definition (Tall 1995)

A Lindelöf space is *indestructible* if it remains Lindelöf after forcing with any countably closed partial order.

Theorem (Scheepers-Tall 2010)

A Lindelöf space X is indestructible if and only if player One does not have a winning strategy in the game $G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ — in short, One $\mathcal{J} G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$.

 $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ and $G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ denote, respectively, the length- ω_1 versions of the Rothberger property $S_1(\mathcal{O}_X, \mathcal{O}_X)$ and the Rothberger game $G_1(\mathcal{O}_X, \mathcal{O}_X)$.

Indestructible Lindelöf spaces

Definition (Tall 1995)

A Lindelöf space is *indestructible* if it remains Lindelöf after forcing with any countably closed partial order.

Theorem (Scheepers-Tall 2010)

A Lindelöf space X is indestructible if and only if player One does not have a winning strategy in the game $G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ — in short, One $\bigstar G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$.

 $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ and $G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ denote, respectively, the length- ω_1 versions of the Rothberger property $S_1(\mathcal{O}_X, \mathcal{O}_X)$ and the Rothberger game $G_1(\mathcal{O}_X, \mathcal{O}_X)$.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$

As usual, if One $\text{A } G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ then $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ holds.

Theorem (Pawlikowski 1994)

 $S_1(\mathcal{O}_X, \mathcal{O}_X)$ is equivalent to One \slash $G_1(\mathcal{O}_X, \mathcal{O}_X)$.

Question (Scheepers-Tall 2010) Is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to One $\star{T} G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$?

Rodrigo Roque Dias (IME–USP) Indestructibility of compact spaces

As usual, if One $\text{A} G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ then $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ holds.

Theorem (Pawlikowski 1994)

 $S_1(\mathcal{O}_X, \mathcal{O}_X)$ is equivalent to One $\nexists G_1(\mathcal{O}_X, \mathcal{O}_X)$.

Question (Scheepers-Tall 2010) Is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to One $\slash G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$? As usual, if One $\bigstar G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ then $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ holds.

Theorem (Pawlikowski 1994)

 $S_1(\mathcal{O}_X, \mathcal{O}_X)$ is equivalent to One $\text{\r G}_1(\mathcal{O}_X, \mathcal{O}_X)$.

Question (Scheepers-Tall 2010)

Is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to One $\Upsilon G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$?

Question (Scheepers-Tall 2010)

Is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to One $\nexists G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$?

Answer: No, if CH is assumed.

Example

Consider the lexicographical ordering on the set $Y = \omega_1 2$, and regard Y as a linearly ordered topological space. Then

- Y is compact;
- One $\uparrow \mathsf{G}_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y) i.e., Y$ is destructible;
- CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Question (Scheepers-Tall 2010)

Is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to One $\nexists G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$?

Answer: No, if CH is assumed.

Example

Consider the lexicographical ordering on the set $Y = {}^{\omega_1}2$, and regard Y as a linearly ordered topological space. Then

• Y is compact;

• One
$$\uparrow \mathsf{G}_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$$
 — *i.e.*, Y is destructible;

• CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Definition

Let κ be an infinite cardinal. A κ -*Čech-Pospíšil tree* in a topological space X is an indexed family $\langle F_s : s \in {}^{\leq \kappa}2 \rangle$ satisfying:

(*i*) each F_s is a nonempty closed subset of X; (*ii*) $F_s \supseteq F_t$ whenever $s \subseteq t$; (*iii*) $F_{s^{\frown}(0)} \cap F_{s^{\frown}(1)} = \emptyset$.

Proposition

If there is an ω_1 -Čech-Pospíšil tree in X, then One $\uparrow G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$.

Since no point of Y is a G_{δ} , we have:

Corollary

```
Y is destructible.
```

Definition

Let κ be an infinite cardinal. A κ -*Čech-Pospíšil tree* in a topological space X is an indexed family $\langle F_s : s \in {}^{\leq \kappa}2 \rangle$ satisfying:

(*i*) each F_s is a nonempty closed subset of X; (*ii*) $F_s \supseteq F_t$ whenever $s \subseteq t$; (*iii*) $F_{s^{\frown}(0)} \cap F_{s^{\frown}(1)} = \emptyset$.

Proposition

If there is an ω_1 -Čech-Pospíšil tree in X, then One $\uparrow G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$.

Since no point of Y is a G_{δ} , we have:

Corollary

Y is destructible.

Definition

Let κ be an infinite cardinal. A κ -*Čech-Pospíšil tree* in a topological space X is an indexed family $\langle F_s : s \in {}^{\leq \kappa}2 \rangle$ satisfying:

(*i*) each F_s is a nonempty closed subset of X; (*ii*) $F_s \supseteq F_t$ whenever $s \subseteq t$; (*iii*) $F_{s^{\frown}(0)} \cap F_{s^{\frown}(1)} = \emptyset$.

Proposition

If there is an ω_1 -Čech-Pospíšil tree in X, then One $\uparrow G_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$.

Since no point of Y is a G_{δ} , we have:

Corollary

Y is destructible.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$ A counterexample

CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Proof.

It suffices to show that there is $C \subseteq Y$ with $|C| = \aleph_1$ satisfying:

For every open $U \subseteq Y$ such that $C \subseteq U$, we have $|Y \setminus U| \leq \aleph_1$.

Let $C = \{f \in Y : f \text{ is eventually constant}\}$. Note that $|C| = \aleph_1$ by CH.

Claim. If $U \subseteq Y$ is open and $C \subseteq U$, then $Y \setminus U$ is finite.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$ A counterexample

CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Proof.

It suffices to show that there is $C \subseteq Y$ with $|C| = \aleph_1$ satisfying: For every open $U \subseteq Y$ such that $C \subseteq U$, we have $|Y \setminus U| \leq \aleph_1$.

Let $C = \{f \in Y : f \text{ is eventually constant}\}$. Note that $|C| = \aleph_1$ by CH.

Claim. If $U \subseteq Y$ is open and $C \subseteq U$, then $Y \setminus U$ is finite.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$ A counterexample

CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Proof.

It suffices to show that there is $C \subseteq Y$ with $|C| = \aleph_1$ satisfying:

For every open $U \subseteq Y$ such that $C \subseteq U$, we have $|Y \setminus U| \leq \aleph_1$.

Let $C = \{f \in Y : f \text{ is eventually constant}\}$. Note that $|C| = \aleph_1$ by CH.

Claim. If $U \subseteq Y$ is open and $C \subseteq U$, then $Y \setminus U$ is finite.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$ A counterexample

CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Proof.

It suffices to show that there is $C \subseteq Y$ with $|C| = \aleph_1$ satisfying:

For every open $U \subseteq Y$ such that $C \subseteq U$, we have $|Y \setminus U| \leq \aleph_1$.

Let $C = \{f \in Y : f \text{ is eventually constant}\}$. Note that $|C| = \aleph_1$ by CH.

Claim. If $U \subseteq Y$ is open and $C \subseteq U$, then $Y \setminus U$ is finite.

 $S_1^{\omega_1}(\mathcal{O},\mathcal{O})$ and $G_1^{\omega_1}(\mathcal{O},\mathcal{O})$ A counterexample

CH implies $S_1^{\omega_1}(\mathcal{O}_Y, \mathcal{O}_Y)$.

Proof.

It suffices to show that there is $C \subseteq Y$ with $|C| = \aleph_1$ satisfying:

For every open $U \subseteq Y$ such that $C \subseteq U$, we have $|Y \setminus U| \leq \aleph_1$.

Let $C = \{f \in Y : f \text{ is eventually constant}\}$. Note that $|C| = \aleph_1$ by CH.

Claim. If $U \subseteq Y$ is open and $C \subseteq U$, then $Y \setminus U$ is finite.

Indestructibility of dyadic spaces

Lemma

The following conditions are equivalent for an infinite cardinal κ :

(a) 2^{κ} is indestructible; (b) $S_1^{\omega_1}(\mathcal{O}_{2^{\kappa}}, \mathcal{O}_{2^{\kappa}})$; (c) $\kappa = \omega$.

Corollary

The following are equivalent for a dyadic space X:

(a) X is indestructible;

(b)
$$S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X);$$

(c) X does not contain a copy of 2^{ω_1} ;

(d) $w(X) = \aleph_0$.

Indestructibility of dyadic spaces

Lemma

The following conditions are equivalent for an infinite cardinal κ :

(a) 2^{κ} is indestructible; (b) $S_1^{\omega_1}(\mathcal{O}_{2^{\kappa}}, \mathcal{O}_{2^{\kappa}})$; (c) $\kappa = \omega$.

Corollary

The following are equivalent for a dyadic space X:

- (a) X is indestructible;
- (b) $\mathsf{S}_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X);$
- (c) X does not contain a copy of 2^{ω_1} ;

$$(d) w(X) = \aleph_0.$$

Indestructibility of dyadic spaces

Lemma

The following conditions are equivalent for an infinite cardinal κ :

- (a) 2^{κ} is indestructible (b) $S_1^{\omega_1}(\mathcal{O}_{2^{\kappa}}, \mathcal{O}_{2^{\kappa}})$;
- (c) $\kappa = \omega$.

Corollary

The following are equivalent for a dyadic space X:

(a) X is indestructible;

(b) $\mathsf{S}_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X);$

(c) X does not contain a copy of 2^{ω_1} ;

 $(d) w(X) = \aleph_0.$

Theorem (Šapirovskiĭ 1980)

The following conditions are equivalent for a compact T_2 space X and an uncountable cardinal κ :

(a) there is a closed nonempty $F \subseteq X$ such that $\pi \chi(x, F) \ge \kappa$ for all $x \in F$;

(b) there is a κ -dyadic system in X, *i.e.* an indexed family $\langle F_{\alpha}^{i} : \alpha \in \kappa, i \in 2 \rangle$ of closed subsets of X such that $F_{\alpha}^{0} \cap F_{\alpha}^{1} = \emptyset$ for all $\alpha \in \kappa$ and $\bigcap \{F_{\xi}^{p(\xi)} : \xi \in \operatorname{dom}(p)\} \neq \emptyset$ for all $p \in \operatorname{Fn}(\kappa, 2)$.

Note that the existence of an ω_1 -dyadic system in a compact space X is equivalent to the failure of $S_1(\mathcal{O}_X, \mathcal{O}_X)$ witnessed by a sequence of 2-element open covers of X.

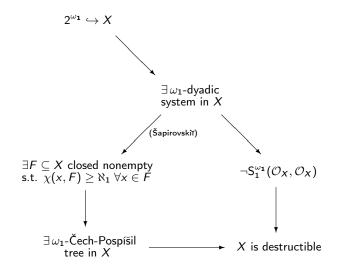
Theorem (Šapirovskiĭ 1980)

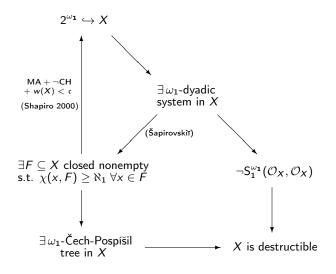
The following conditions are equivalent for a compact T_2 space X and an uncountable cardinal κ :

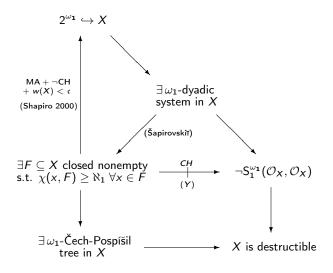
(a) there is a closed nonempty $F \subseteq X$ such that $\pi \chi(x, F) \ge \kappa$ for all $x \in F$;

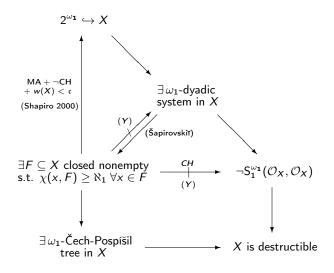
(b) there is a κ -dyadic system in X, *i.e.* an indexed family $\langle F_{\alpha}^{i} : \alpha \in \kappa, i \in 2 \rangle$ of closed subsets of X such that $F_{\alpha}^{0} \cap F_{\alpha}^{1} = \emptyset$ for all $\alpha \in \kappa$ and $\bigcap \{F_{\xi}^{p(\xi)} : \xi \in \operatorname{dom}(p)\} \neq \emptyset$ for all $p \in Fn(\kappa, 2)$.

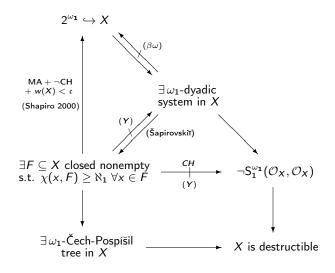
Note that the existence of an ω_1 -dyadic system in a compact space X is equivalent to the failure of $S_1(\mathcal{O}_X, \mathcal{O}_X)$ witnessed by a sequence of 2-element open covers of X.

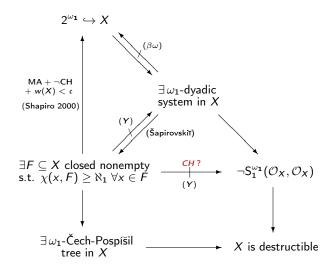


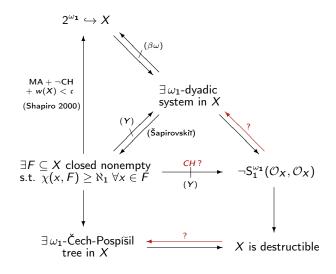












Questions

Question 1

Is there a ZFC example of a destructible space satisfying $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$?

Question 2

For X compact, is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to the nonexistence of an ω_1 -dyadic system in X?

Question 3

Is destructibility of a space X equivalent to the existence of an ω_1 -Čech-Pospíšil tree in X?

Questions

Question 1

Is there a ZFC example of a destructible space satisfying $S_1^{\omega_1}(\mathcal{O}, \mathcal{O})$?

Question 2

For X compact, is $S_1^{\omega_1}(\mathcal{O}_X, \mathcal{O}_X)$ equivalent to the nonexistence of an ω_1 -dyadic system in X?

Question 3

Is destructibility of a space X equivalent to the existence of an ω_1 -Čech-Pospíšil tree in X?

Grazie mille!

- J. Pawlikowski, *Undetermined sets of point-open games*, Fundamenta Mathematicae **144** (1994), 279–285.
- L. B. Shapiro, On Šapirovskii's theorem, Topology and its Applications 107 (2000), 161–167.
- B. E. Shapirovskii, *Maps onto Tikhonov cubes*, Uspekhi Matematicheskikh Nauk 35:3 (1980), 122–130 (Russian Mathematical Surveys 35:3 (1980), 145–156).
- M. Scheepers e F. D. Tall, *Lindelöf indestructibility, topological games* and selection principles, Fundamenta Mathematicae **210** (2010), 1–46.