CERTAIN TYPES OF OPEN COVERS AND SELECTION PRINCIPLES USING IDEALS

PRATULANANDA DAS

1. Background

We start by recalling the definition of natural or asymptotic density as follows: If N denotes the set of natural numbers and $K \subset N$ then K(n)denotes the set $\{k \in K : k \leq n\}$ and |K(n)| stands for the cardinality of the set K(n). The natural or asymptotic density of the subset K is defined by

$$d(K) = \lim_{n \to \infty} \frac{|K(n)|}{n}$$

provided the limit exists.

It can be mentioned in this context that using the idea of asymptotic density, the idea of convergence of a real sequence had been extended to statistical convergence by Fast [6] (see also Schoenberg [22]) as follows: A sequence $\{x_n\}_{n\in N}$ of points in a metric space (X, ρ) is said to be statistically convergent to ℓ if for arbitrary $\epsilon > 0$, the set $K(\epsilon) = \{k \in N : d(x_k, \ell) \ge \epsilon\}$ has natural density zero. A lot of investigations have been done on this convergence and its topological consequences after the initial works by Fridy [7] and Connor [3]. The most prominent being the work of Di Maio and Kočinac [5].

On the other hand, in [16] an interesting generalization of the notion of statistical convergence was proposed. Namely it is easy to check that the family $I_d = \{A \subset N : d(A) = 0\}$ forms a non-trivial admissible ideal of N (recall [17], [18] that if X is a nonempty set then a family I of subsets of X is said to be an *ideal* in X if (i) $\phi \in I$, (ii) $A, B \in I$ implies $A \cup B \in I$ and (iii) $A \in I, B \subset A$ implies $B \in I$. A nonempty family F of subsets of X is called a *filter* on X if (i) $\phi \notin F$, (ii) $A, B \in F$ implies $A \cap B \in F$, (iii) $A \in F$ and $A \subset B$ implies $B \in F$. I is called *non-trivial* if $I \neq \{\phi\}$ and $X \notin I$. If I is a proper nontrivial ideal then the family of sets $F(I) = \{M \subset X :$ there exists

 $A \in I : M = X \setminus A$ is a filter in X. It is called the *dual filter* of the ideal I. A proper ideal I is called *admissible* if $\{x\} \in I$ for each $x \in X$. Such ideals are also called *free* ideals.) Thus one may consider an arbitrary ideal I of N and define I-convergence of a sequence by replacing the sets of density zero by the members of the ideal.

2. Main Results

Throughout (X, τ) stands for a Hausdorff topological space. $\mathbb{F}(X)$ will stand for the class of nonempty finite sets.

We now write down two classical selection principles formulated in general form in [19] (see also [10], [4]). For two nonempty classes of sets **A** and **B** of an infinite set X we define:

 $S_1(\mathbf{A}, \mathbf{B})$: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathbf{A} , there is a sequence $(b_n : n \in \mathbb{N})$ such that $b_n \in A_n$ for each n and $\{b_n : n \in \mathbb{N}\} \in \mathbf{B}$.

 $S_{fin}(\mathbf{A}, \mathbf{B})$: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathbf{A} , there is a sequence $(B_n : n \in \mathbb{N})$ of finite (possibly empty) sets such that $B_n \subset A_n$ for each n and $\bigcup B_n \in \mathbf{B}$.

There are infinitely long games corresponding to these selection principles.

 $G_1(\mathbf{A}, \mathbf{B})$ denotes the game for two players, ONE and TWO, who play a round for each positive integer n. In the *n*th round ONE chooses a set A_n from **A** and TWO responds by choosing an element $b_n \in A_n$. TWO wins the play $(A_1, b_1, \ldots, A_n, b_n, \ldots)$ if $\{b_n : n \in \mathbb{N}\} \in \mathbf{B}$; otherwise ONE wins.

 $G_{fin}(\mathbf{A}, \mathbf{B})$ denotes the game where in the *n*th round ONE chooses a set A_n from \mathbf{A} and TWO responds by choosing a finite (possibly empty) set $B_n \subset A_n$. TWO wins the play $(A_1, B_1, \ldots, A_n, B_n, \ldots)$ if $\bigcup_n B_n \in \mathbf{B}$ otherwise ONE wins.

In [14] following selection principles were introduced and studied (see also [24], [5]).

The symbol $\alpha_i(\mathbf{A}, \mathbf{B})$, i = 1, 2, 3, 4 denotes the selection hypothesis that for each sequence $(A_n : n \in \mathbb{N})$ of infinite elements from **A** there is an element $B \in \mathbf{B}$ such that:

 $\alpha_1(\mathbf{A}, \mathbf{B})$: for each $n \in \mathbb{N}$ the set $A_n \setminus B$ is finite;

 $\alpha_2(\mathbf{A}, \mathbf{B})$: for each $n \in \mathbb{N}$ the set $A_n \cap B$ is infinite;

 $\alpha_3(\mathbf{A}, \mathbf{B})$: for infinitely many $n \in \mathbb{N}$ the set $A_n \cap B$ is infinite;

 $\alpha_4(\mathbf{A}, \mathbf{B})$: for infinitely many $n \in \mathbb{N}$ the set $A_n \cap B$ is nonempty.

We now recall some classes of open covers which we will use throughout the paper. If Δ is a collection of subsets of the topological space X then an open cover \mathcal{U} of X is called a Δ cover if X does not belong to \mathcal{U} and every member of Δ is contained in a member of \mathcal{U} . \mathcal{O}_{Δ} will denote the family of all Δ covers. When Δ is $\mathbb{F}(X)$ the Δ covers are called ω -covers, and we use the symbols Ω to denote the set of ω -covers. A countable Δ -cover \mathcal{U} is called *groupable* (or Δ -groupble) if it can be represented as a countable union of finite families $\mathcal{U}_n, n \in \mathbb{N}$, where $\mathcal{U}_m \cap \mathcal{U}_n = \phi$ whenever $m \neq n$ such that for each $D \in \Delta$, for all but finitely many n there is $U \in \mathcal{U}_n$ such that $D \subset U$. The symbol $\mathcal{O}^{gp}_{\Delta}$ is used to denote the set of Δ -groupable covers. For $\Delta = \mathbb{F}(X)$, groupable Δ -covers are called *goupable* ω -covers, and for Δ the family of singletons we use the term groupability only (see [15]). The sets of groupable and ω -groupable covers will be denoted by \mathcal{O}^{gp} and Ω^{gp} respectively. A Δ -cover \mathcal{U} is called a γ_{Δ} *cover* if for each $D \in \Delta$ the set $\{U \in \mathcal{U} : D \nsubseteq U\}$ is finite. The symbol Γ_{Δ} denotes the set of all γ_{Δ} -covers. $\gamma_{\mathbb{F}(X)}$ -covers are called γ -covers and the set of such covers is denoted by Γ .

Throughout I will stand for a proper ideal of \mathbb{N} .

We now introduce the following definitions.

Let Δ be a family of subsets of a space X. A countable cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of X is said to be:

1. An $I - \gamma$ -cover $(I - \gamma_{\Delta}$ -cover) if for each $x \in X$ (for each $D \in \Delta$) the set $\{n \in \mathbb{N} : x \notin U_n\}$ ($\{n \in \mathbb{N} : D \nsubseteq U_n\}$) belongs to I.

2. An *I*-groupable cover $(I - \Delta$ -groupable cover) if it can be represented as a countable union of finite, pairwise disjoint subfamilies $\mathcal{V}_n, n \in \mathbb{N}$, such that for each $x \in X$ (for each $D \subset \Delta$) the set $\{n \in \mathbb{N} : x \notin \bigcup \mathcal{V}_n\}$ ($\{n \in \mathbb{N} : D \notin V \text{ for every } V \in \mathcal{V}_n\}$) belongs to *I*.

We denote the set of all $I - \gamma$ -covers $(I - \gamma_{\Delta}$ -covers, Igroupable covers, $I - \Delta$ -groupable covers) by $I - \Gamma (I - \Gamma_{\Delta}, I - \mathcal{O}_{\Delta}^{gp}, I - \mathcal{O}_{\Delta}^{gp})$. For the ideal of all finite subsets of $\mathbb{N}, I = I_{fin}$ we get the standard notions of γ -covers (γ_{Δ} covers, groupable covers, Δ -groupable covers etc) and for $I = I_d$, the ideal of zero density sets, we get the statistical variants of these notions [5]. **Lemma 2.1.** An open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a topological space X is an $I - \gamma$ -cover of X if and only if for each finite set $F \subset X$ the set $\{n \in \mathbb{N} : F \nsubseteq U_n\} \in I$.

Evidently every γ -cover of X is also an $I - \gamma$ -cover of X when I is admissible but the converse is not true.

Example 2.1. Let $X = \mathbb{R} \setminus \{0\}$, the set of all nonzero real numbers with the usual topology. Let I be an admissible ideal of \mathbb{N} and $I \neq I_{fin}$ the ideal of all finite subsets of \mathbb{N} . Then I must contain an infinite set $A = \{m_1 < m_2 < m_3, ...\}$ (say). Without any loss of generality take $m_1 > 1$. Put $U_1 = (-\infty, 0)$ and $U_{m_i} = (0, m_i)$ for all $i \geq 1$ and $U_i = X$ for all $i, i \neq m_j$ for any j. Consider the open cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of X. Then \mathcal{U} is an $I - \gamma$ -cover of X. If $x \in (-\infty, 0)$ then $x \notin U_{m_i}$ for all $i \in \mathbb{N}$ but the set $\{m_i : i \in \mathbb{N}\} \in I$. If $x \in [0, \infty)$ then we can always choose a $m_j > x$ and so x does not belong to U_1 and at most finite number of $U_{M_i}s$ and the result follows from the fact that I is admissible. On the other hand \mathcal{U} is clearly not a γ -cover of X since for any $x \in (-\infty, 0)$, x does not belong to infinite number of members of \mathcal{U} .

It is well known that any infinite subset of a γ -cover is also a γ -cover but definitely this is not true for $I - \gamma$ -covers. However we can prove the following.

We call a subset \mathcal{V} of a cover $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ of a space X *I*-dense in \mathcal{U} if the set $M = \{m_1 < m_2 < m_3 < \dots\}$ of indices of elements from \mathcal{V} belongs to F(I) and further if $f : \mathbb{N} \to M$ be the bijection given by $f(i) = m_i$ then $f(A) \in I$ if and only if $A \in I$.

Lemma 2.2. An *I*-dense subset of an $I - \gamma$ -cover of X is also an $I - \gamma$ -cover of X.

Lemma 2.3. Let $(\mathcal{U}_n : n \in \mathbb{N}), \mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$ be a sequence of (countable) $I - \gamma$ -covers of X. Then $(\mathcal{V}_n : n \in \mathbb{N}),$ defined by

 $\mathcal{V}_n = \{ U_{1,m} \cap U_{2,m} \cap \cdots \cap U_{n,m} : m \in \mathbb{N} \} \setminus \{ \phi \}$ is also a sequence of $I - \gamma$ -covers of X.

Recall that a space X is said to have the Hurewicz property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there are finite $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}$ such that each $x \in X$ belongs to all but finitely many sets $\bigcup \mathcal{V}_n$ [9].

We can generalize this concept (and subsequently the notion of s-Hurewicz property [5]) with the help of ideals and say that a space X is said to have the *I*-Hurewicz property if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there are finite $\mathcal{V}_n \subset \mathcal{U}_n, n \in \mathbb{N}$ such that each $x \in X, \{n \in \mathbb{N} : x \notin \bigcup \mathcal{V}_n\} \in I.$

If F is a filter then following the line of [1] X is said to be F-Menger if for any sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X each \mathcal{U}_n contains a finite subfamily \mathcal{V}_n , $\mathcal{V}_n \subset \mathcal{U}_n$ such that $(\bigcup \mathcal{V}_n : n \in \mathbb{N})$ is an F-cover of Xi.e. for every $x \in X$, $\{n \in \mathbb{N} : x \in \bigcup \mathcal{V}_n\} \in F$ (It should be noted that the definition of F-Menger property was actually presented in [1] for F where $F \subset SF$, a family of semifilters). It is easy to observe that I-Hurewicz property and F-Menger property are exactly same (this was pointed out by Prof Boaz Tsaban in a personal communication).

For the next result we further recall that a space X is Δ -Lindeloef if each Δ -cover of X contains a countable Δ -cover where Δ is same as defined before.

Theorem 2.1. If an ω -Lindeloef space X satisfies $S_{fin}(\Omega, I - \mathcal{O}^{gp})$ then X has the I-Hurewicz property provided that I is admissible or free and such that $S_1(F(I), F(I))$ holds.

Open Problem: Though the above result (Theorem 2.1) is true for $I = I_{fin}$ and $I = I_d$ (Note 2.2) without any additional assumption (in fact the assumption trivially holds for $I = I_{fin}$), it is not clear whether it is true for any arbitrary ideal I. In this context it seems a natural question as to whether the above result can be proved for any arbitrary ideal I without any additional assumption or can be proved under some other condition (preferably weaker).

Theorem 2.2. For a space X the following are equivalent:

- (1) X satisfies $\alpha_2(I \Gamma, \Gamma)$;
- (2) X satisfies $\alpha_3(I \Gamma, \Gamma)$;
- (3) X satisfies $\alpha_4(I \Gamma, \Gamma)$;
- (4) X satisfies $S_1(I \Gamma, \Gamma)$;

(5) ONE has no winning strategy in the game $G_1(I - \Gamma, \Gamma)$ on X.

Recall [12] that a uniform space (X, \mathbb{U}) is called *uni*formly Hurewicz (also called Hurewicz bounded [13]) if for each sequence $(U_n : n \in \mathbb{N})$ of elements from \mathbb{U} , there is a sequence $(A_n : n \in \mathbb{N})$ of finite subsets of X such that each $x \in X$ belongs to all but finite number of sets $U_n[A_n]$ (for $U \in \mathbb{U}$ and $A \subset X$ recall that $U[A] = \{x \in X : (x, y) \in U \text{ for some } y \in A\}$).

We shall call a uniform space (X, \mathbb{U}) to be *I*-Hurewicz bounded if for each sequence $(U_n : n \in \mathbb{N})$ of elements from \mathbb{U} , there is a sequence $(A_n : n \in \mathbb{N})$ of finite subsets of X such that for each $x \in X$, the set $\{n \in \mathbb{N} : x \notin$ $U_n[A_n]\} \in I$.

It can be easily verified that uniformly continuous images and finite unions of *I*-Hurewicz bounded spaces are also *I*-Hurewicz bounded.

We now present a characterization of I-Hurewicz boundedness in terms of I-groupability which is modelled after Theorem 3.7 [5].

Theorem 2.3. For a uniform space (X, \mathbb{U}) the following are equivalent.

(1) X is I-Hurewicz bounded.

(2) For each sequence $(U_n : n \in \mathbb{N}) \subset \mathbb{U}$ there is a sequence $(B_n : n \in \mathbb{N})$ of finite subsets of X such that $\{U_n[B_n] : n \in \mathbb{N}\}$ is an I-groupable cover of X.

Theorem 2.4. (cf. Theorem 3.8 [5]) Every subspace of an I-Hurewicz bounded uniform space (X, \mathbb{U}) is also I-Hurewicz bounded.

Theorem 2.5. If an *I*-Hurewicz bounded uniform space (X, \mathbb{U}_X) is dense in a uniform space (Y, \mathbb{U}) then *Y* is also *I*-Hurewicz bounded provided *I* is a free or an admissible ideal.

In line of Corollary 3.10 [5] here we can have

Corollary 2.1. A uniform space (X, \mathbb{U}) is *I*-Hurewicz bounded if and only if its completion \tilde{X} is so.

Theorem 2.6. The product $Z = (X \times Y, \mathbb{U}_X \times \mathbb{U}_Y)$ is *I*-Hurewicz bounded if both (X, \mathbb{U}_X) and (Y, \mathbb{U}_Y) are *I*-Hurewicz bounded.

References

 T. Banakh, D. Repovs, L. Zdomskyy, o-Boundedness of free topological groups, Topology Appl., 157 (2010), 466 - 481.

- F. Cammaroto, Lj.D.R. Kočinac, G. Nordo, F-Hurewicz spaces, Questions and Answers in General Topology 22 (2004), 22 - 32.
- J. Connor, The statistical and strong P-Cesaro convergence of sequences, Analysis, 8, (1988), 47 - 63.
- Pratulananda Das, S. Ghosal, On *I*-Cauchy nets and completeness, Topology Appl., 157 (2010), 1152 - 1156.
- G. Di Maio, Lj.D.R. Kočinak, Statistical convergence in topology, Topology Appl., 156 (2008), 28 - 45.
- 6. H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241 244.
- 7. J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
- 8. C. Kuratowski, Topologie I, PWN Warszawa, 1958.
- W. Hurewicz, Uber die verallgemeinerung des Borelschen Theorems, Math. Z., 24 (1925), 401 - 425.
- W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl., 73 (1996), 241 - 266.
- Lj.D.R. Kočinac, Selection principles in uniform spaces, Note. Mat., 22 (2) (2003/2004), 127 - 139.
- Lj.D.R. Kočinac, Selected results on selection principles, in Proc. Third Seminar on Topology and Geometry, Tabriz, Iran, July 15 -17, 2004, pp. 71 - 104.
- Lj.D.R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Institute Math., 252 (2006), 122 - 137.
- Lj.D.R. Kočinac, Selection principles related to α_i-properties, Taiwanese
 J. Math., 12 (2008), 561 571.
- Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math., 179 (2) (2003), 131 - 155.
- P. Kostyrko, T. Šalat, W. Wilczynski, *I* convergence, Real Anal. Exchange, 26 (2000/2001), 669 - 686.
- B.K. Lahiri, Pratulananda Das, I and I*-convergence in topological spaces, Math. Bohemica, 130 (2005), 153 - 160.

- B.K. Lahiri, Pratulananda Das, I and I*-convergence of nets, Real Anal Exchange, 32 (2008), 431 -442.
- 19. C. Laflamme and M. Scheepers, Combinatorial properties of filters and open covers for sets of real numbers, J. of Symbolic Logic, 64 (1999), 1243 1260.
- M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topology Appl., 69 (1996), 31 - 62.
- M. Scheepers, Selection principles and covering properties in topology, Note. Mat., 22 (2) (2003/2004), 3 -41.
- I.J. Schoenberg, Integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361 - 375.
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73 - 74.
- B. Tsaban, Some new directions in infinite combinatorial topology, in: J. Bagaria, S. Todorcevic (Eds), Set Theory, in Trends Math., Birkhauser, 2006, pp. 225 255.
- 25. B. Tsaban, On the Kocinac α_i-properties, Topology Appl., 155 (2007), 141
 145.
- B. Tsaban, L. Zdomskyy, Scales, fields and a problem of Hurewicz, J. Eur. Math. Soc., 10 (2008), 837 - 866.
- N. Samet, M. Scheepers, B. Tsaban, Partition relations for Hurewicz-type selection hypothesis, Topology Appl. 156 (2009), 616 - 623.

DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA-700032, WEST BENGAL, INDIA *E-mail address:* pratulananda@yahoo.co.in