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1. Background

We start by recalling the definition of natural or asymptotic density as

follows: If N denotes the set of natural numbers and K ⊂ N then K(n)

denotes the set {k ∈ K : k ≤ n} and |K(n)| stands for the cardinality of the

set K(n). The natural or asymptotic density of the subset K is defined by

d(K) = lim
n→∞

|K(n)|
n

provided the limit exists.

It can be mentioned in this context that using the idea of asymptotic density,

the idea of convergence of a real sequence had been extended to statistical

convergence by Fast [6] ( see also Schoenberg [22] ) as follows: A sequence

{xn}n∈N of points in a metric space (X, ρ) is said to be statistically convergent

to ` if for arbitrary ε > 0, the set K(ε) = {k ∈ N : d(xk, `) ≥ ε} has natural

density zero. A lot of investigations have been done on this convergence and

its topological consequences after the initial works by Fridy [7] and Connor

[3]. The most prominent being the work of Di Maio and Kočinac [5].

On the other hand, in [16] an interesting generalization of the notion of

statistical convergence was proposed. Namely it is easy to check that the

family Id = {A ⊂ N : d(A) = 0} forms a non-trivial admissible ideal of N

(recall [17], [18] that if X is a nonempty set then a family I of subsets of X is

said to be an ideal in X if (i) φ ∈ I, (ii) A, B ∈ I implies A ∪ B ∈ I and (iii)

A ∈ I, B ⊂ A implies B ∈ I. A nonempty family F of subsets of X is called

a filter on X if (i) φ /∈ F , (ii) A, B ∈ F implies A ∩ B ∈ F , (iii) A ∈ F and

A ⊂ B implies B ∈ F . I is called non-trivial if I 6= {φ} and X /∈ I. If I is a

proper nontrivial ideal then the family of sets F (I) = {M ⊂ X : there exists
0
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A ∈ I : M = X \A} is a filter in X. It is called the dual filter of the ideal I. A

proper ideal I is called admissible if {x} ∈ I for each x ∈ X. Such ideals are

also called free ideals.) Thus one may consider an arbitrary ideal I of N and

define I-convergence of a sequence by replacing the sets of density zero by the

members of the ideal.

2. Main Results

Throughout (X, τ ) stands for a Hausdorff topological

space. F(X) will stand for the class of nonempty finite

sets.

We now write down two classical selection principles for-

mulated in general form in [19] (see also [10], [4]). For two

nonempty classes of sets A and B of an infinite set X we

define:

S1(A,B): For each sequence (An : n ∈ N) of elements

of A, there is a sequence (bn : n ∈ N) such that bn ∈ An

for each n and {bn : n ∈ N} ∈ B.

Sfin(A,B): For each sequence (An : n ∈ N) of elements

of A, there is a sequence (Bn : n ∈ N) of finite (possibly

empty) sets such that Bn ⊂ An for each n and
⋃
n

Bn ∈ B.

There are infinitely long games corresponding to these

selection principles.

G1(A,B) denotes the game for two players, ONE and

TWO, who play a round for each positive integer n. In
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the nth round ONE chooses a set An from A and TWO

responds by choosing an element bn ∈ An. TWO wins

the play (A1, b1, . . . , An, bn, . . . ) if {bn : n ∈ N} ∈ B;

otherwise ONE wins.

Gfin(A,B) denotes the game where in the nth round

ONE chooses a set An from A and TWO responds by

choosing a finite (possibly empty) set Bn ⊂ An. TWO

wins the play (A1, B1, . . . , An, Bn, . . . ) if
⋃
n

Bn ∈ B oth-

erwise ONE wins.

In [14] following selection principles were introduced and

studied (see also [24], [5]).

The symbol αi(A,B), i = 1, 2, 3, 4denotes the selection

hypothesis that for each sequence (An : n ∈ N) of infinite

elements from A there is an element B ∈ B such that:

α1(A,B) : for each n ∈ N the set An\B is finite;

α2(A,B): for each n ∈ N the set An ∩B is infinite;

α3(A,B): for infinitely many n ∈ N the set An ∩ B is

infinite;

α4(A,B): for infinitely many n ∈ N the set An ∩ B is

nonempty.

We now recall some classes of open covers which we will

use throughout the paper. If ∆ is a collection of subsets
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of the topological space X then an open cover U of X is

called a ∆ cover if X does not belong to U and every

member of ∆ is contained in a member of U . O∆ will

denote the family of all ∆ covers. When ∆ is F(X) the

∆ covers are called ω-covers, and we use the symbols Ω

to denote the set of ω-covers. A countable ∆-cover U is

called groupable (or ∆-groupble) if it can be represented

as a countable union of finite families Un, n ∈ N, where

Um ∩Un = φ whenever m 6= n such that for each D ∈ ∆,

for all but finitely many n there is U ∈ Un such that

D ⊂ U . The symbol Ogp
∆ is used to denote the set of

∆-groupable covers. For ∆ = F(X), groupable ∆-covers

are called goupable ω-covers, and for ∆ the family of sin-

gletons we use the term groupability only (see [15]). The

sets of groupable and ω-groupable covers will be denoted

by Ogp and Ωgp respectively. A ∆-cover U is called a γ∆-

cover if for each D ∈ ∆ the set {U ∈ U : D * U} is

finite. The symbol Γ∆ denotes the set of all γ∆-covers.

γF(X)-covers are called γ-covers and the set of such covers

is denoted by Γ.
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Throughout I will stand for a proper ideal of N.

We now introduce the following definitions.

Let ∆ be a family of subsets of a space X . A countable

cover U = {Un : n ∈ N} of X is said to be:

1. An I − γ-cover (I − γ∆-cover) if for each x ∈ X (for

each D ∈ ∆) the set {n ∈ N : x /∈ Un} ({n ∈ N : D *

Un}) belongs to I .

2. An I-groupable cover (I −∆-groupable cover ) if it

can be represented as a countable union of finite, pairwise

disjoint subfamilies Vn, n ∈ N, such that for each x ∈ X

(for each D ⊂ ∆) the set {n ∈ N : x /∈
⋃
Vn} ({n ∈ N :

D * V for every V ∈ Vn}) belongs to I .

We denote the set of all I − γ-covers (I − γ∆-covers, I-

groupable covers, I−∆-groupable covers) by I−Γ (I−Γ∆,

I − Ogp, I − Ogp
∆ ). For the ideal of all finite subsets of

N, I = Ifin we get the standard notions of γ-covers (γ∆-

covers, groupable covers, ∆-groupable covers etc) and for

I = Id, the ideal of zero density sets, we get the statistical

variants of these notions [5].
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Lemma 2.1. An open cover U = {Un : n ∈ N} of a

topological space X is an I − γ-cover of X if and only

if for each finite set F ⊂ X the set {n ∈ N : F *

Un} ∈ I.

Evidently every γ-cover of X is also an I − γ-cover of

X when I is admissible but the converse is not true.

Example 2.1. Let X = R\{0}, the set of all nonzero

real numbers with the usual topology. Let I be an ad-

missible ideal of N and I 6= Ifin the ideal of all fi-

nite subsets of N. Then I must contain an infinite

set A = {m1 < m2 < m3, . . . } (say). Without any

loss of generality take m1 > 1. Put U1 = (−∞, 0) and

Umi
= (0, mi) for all i ≥ 1 and Ui = X for all i, i 6= mj

for any j. Consider the open cover U = {Un : n ∈ N}

of X. Then U is an I − γ-cover of X. If x ∈ (−∞, 0)

then x /∈ Umi
for all i ∈ N but the set {mi : i ∈ N} ∈ I.

If x ∈ [0,∞) then we can always choose a mj > x and

so x does not belong to U1 and at most finite number

of UMi
s and the result follows from the fact that I is

admissible.
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On the other hand U is clearly not a γ-cover of X since

for any x ∈ (−∞, 0), x does not belong to infinite number

of members of U .

It is well known that any infinite subset of a γ-cover is

also a γ-cover but definitely this is not true for I−γ-covers.

However we can prove the following.

We call a subset V of a cover U = {Un : n ∈ N} of a

space X I-dense in U if the set M = {m1 < m2 < m3 <

. . . } of indices of elements from V belongs to F (I) and

further if f : N → M be the bijection given by f (i) = mi

then f (A) ∈ I if and only if A ∈ I .

Lemma 2.2. An I-dense subset of an I − γ-cover of

X is also an I − γ-cover of X.

Lemma 2.3. Let (Un : n ∈ N), Un = {Un,m : m ∈ N}

be a sequence of (countable) I − γ-covers of X. Then

(Vn : n ∈ N), defined by

Vn = {U1,m ∩ U2,m ∩ · · · ∩ Un,m : m ∈ N}\{φ}

is also a sequence of I − γ-covers of X.

Recall that a space X is said to have the Hurewicz prop-

erty if for each sequence (Un : n ∈ N) of open covers of
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X there are finite Vn ⊂ Un, n ∈ N such that each x ∈ X

belongs to all but finitely many sets
⋃
Vn [9].

We can generalize this concept (and subsequently the

notion of s-Hurewicz property [5]) with the help of ideals

and say that a space X is said to have the I-Hurewicz

property if for each sequence (Un : n ∈ N) of open covers

of X there are finite Vn ⊂ Un, n ∈ N such that each

x ∈ X , {n ∈ N : x /∈
⋃
Vn} ∈ I.

If F is a filter then following the line of [1] X is said

to be F -Menger if for any sequence (Un : n ∈ N) of

open covers of X each Un contains a finite subfamily Vn,

Vn ⊂ Un such that (
⋃
Vn : n ∈ N) is an F -cover of X

i.e. for every x ∈ X , {n ∈ N : x ∈
⋃
Vn} ∈ F (It should

be noted that the definition of F -Menger property was

actually presented in [1] for F where F ⊂ SF , a family of

semifilters). It is easy to observe that I-Hurewicz property

and F -Menger property are exactly same (this was pointed

out by Prof Boaz Tsaban in a personal communication).

For the next result we further recall that a space X is

∆-Lindeloef if each ∆-cover of X contains a countable

∆-cover where ∆ is same as defined before.
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Theorem 2.1. If an ω-Lindeloef space X satisfies Sfin(Ω, I−

Ogp) then X has the I-Hurewicz property provided that

I is admissible or free and such that S1(F (I), F (I))

holds.

Open Problem: Though the above result (Theorem

2.1) is true for I = Ifin and I = Id (Note 2.2) without

any additional assumption (in fact the assumption trivially

holds for I = Ifin), it is not clear whether it is true for any

arbitrary ideal I . In this context it seems a natural ques-

tion as to whether the above result can be proved for any

arbitrary ideal I without any additional assumption or can

be proved under some other condition (preferably weaker).

Theorem 2.2. For a space X the following are equiv-

alent:

(1) X satisfies α2(I − Γ, Γ);

(2) X satisfies α3(I − Γ, Γ);

(3) X satisfies α4(I − Γ, Γ);

(4) X satisfies S1(I − Γ, Γ);

(5) ONE has no winning strategy in the game G1(I−

Γ, Γ) on X.
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Recall [12] that a uniform space (X, U) is called uni-

formly Hurewicz (also called Hurewicz bounded [13]) if

for each sequence (Un : n ∈ N) of elements from U,

there is a sequence (An : n ∈ N) of finite subsets of

X such that each x ∈ X belongs to all but finite num-

ber of sets Un[An] (for U ∈ U and A ⊂ X recall that

U [A] = {x ∈ X : (x, y) ∈ U for some y ∈ A}).

We shall call a uniform space (X, U) to be I-Hurewicz

bounded if for each sequence (Un : n ∈ N) of elements

from U, there is a sequence (An : n ∈ N) of finite subsets

of X such that for each x ∈ X , the set {n ∈ N : x /∈

Un[An]} ∈ I .

It can be easily verified that uniformly continuous images

and finite unions of I-Hurewicz bounded spaces are also

I-Hurewicz bounded.

We now present a characterization of I-Hurewicz bound-

edness in terms of I-groupability which is modelled after

Theorem 3.7 [5].

Theorem 2.3. For a uniform space (X, U) the follow-

ing are equivalent.

(1) X is I-Hurewicz bounded.
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(2) For each sequence (Un : n ∈ N) ⊂ U there is a

sequence (Bn : n ∈ N) of finite subsets of X such that

{Un[Bn] : n ∈ N} is an I-groupable cover of X.

Theorem 2.4. (cf. Theorem 3.8 [5]) Every subspace

of an I-Hurewicz bounded uniform space (X, U) is also

I-Hurewicz bounded.

Theorem 2.5. If an I-Hurewicz bounded uniform space

(X, UX) is dense in a uniform space (Y, U) then Y is

also I-Hurewicz bounded provided I is a free or an ad-

missible ideal.

In line of Corollary 3.10 [5] here we can have

Corollary 2.1. A uniform space (X, U) is I-Hurewicz

bounded if and only if its completion X̃ is so.

Theorem 2.6. The product Z = (X × Y, UX × UY )

is I-Hurewicz bounded if both (X, UX) and (Y, UY ) are

I-Hurewicz bounded.
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