Variations on selective separability

Agata Caserta

joint work with G. Di Maio and L. D.R.Kočinac

IVth Workshop on Coverings Selections and Games in Topology

Selective separability

・ロッ ・雪 ・ ・ 神 ・

Selective separability

Let A and B be sets whose elements are collections of subsets of an infinite set X.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each n, $B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

Selective separability

Let A and B be sets whose elements are collections of subsets of an infinite set X.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each n, $B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

Let \mathcal{D} denote the family of dense subspaces of a topological space X, the selection principles $S_{fin}(\mathcal{D}, \mathcal{D})$ is called selective separability = M-separability $S_1(\mathcal{D}, \mathcal{D}) = R$ -separability

θ -density Velichko 1966

Let $x \in X$ and $A \subset X$

- x is a θ-cluster point of A if the closure of each neighbourhood U of x meets A. Cl_θ(A) is the set of all θ-cluster points of A,
- A is θ -closed if $Cl_{\theta}(A) = A$,
- A is θ -dense in X if $Cl_{\theta}(A) = X$,

θ -density Velichko 1966

Let $x \in X$ and $A \subset X$

- x is a θ-cluster point of A if the closure of each neighbourhood U of x meets A. Cl_θ(A) is the set of all θ-cluster points of A,
- A is θ -closed if $Cl_{\theta}(A) = A$,
- A is θ -dense in X if $Cl_{\theta}(A) = X$,

If X contains a countable θ -dense subset, the X is said to be θ -separable. \mathcal{D}_{θ} denote the family of all θ -dense sets in a space X. A space X is said to be:

- selectively θ-separable or M_θ-separable if X satisfies S_{fin}(D_θ, D_θ);
- strongly selectively θ-separable or R_θ-separable if X satisfies S₁(D_θ, D_θ);
- GN_{θ} -separable if X satisfies $\mathrm{S}_1(\mathcal{D}_{\theta}, \mathcal{D}_{\theta}^{gp})$, where $A \in \mathcal{D}_{\theta}$ is in $\mathcal{D}_{\theta}^{gp}$ if it can be written as a union of finite sets B_n , $n \in \mathbb{N}$, such that $\forall U$ open , $\overline{U} \cap B_n \neq \emptyset$ for all but finitely many n.

Since $\mathcal{D} \subset \mathcal{D}_{\theta}$, we have

æ

《口》《聞》《臣》《臣》

Since $\mathcal{D} \subset \mathcal{D}_{\theta}$, we have

$$\begin{split} \mathsf{S}_{\mathit{fin}}(\mathcal{D}_{\theta},\mathcal{D}) &\Rightarrow \mathsf{S}_{\mathit{fin}}(\mathcal{D},\mathcal{D}) \\ & \Downarrow & \Downarrow \\ \mathsf{S}_{\mathit{fin}}(\mathcal{D}_{\theta},\mathcal{D}_{\theta}) &\Rightarrow \mathsf{S}_{\mathit{fin}}(\mathcal{D},\mathcal{D}_{\theta}) \end{split}$$

Examples

 Let ℝ endowed with the open-minus-countable topology ϑ: U ∈ ϑ if U = V \ C, where V is open in the usual topology on ℝ, and C is a countable subset of ℝ. It satisfies S_{fin}(D_θ, D_θ) and does not satisfy neither S_{fin}(D_θ, D) nor S_{fin}(D, D).
 Since $\mathcal{D} \subset \mathcal{D}_{\theta}$, we have

$$\begin{split} \mathsf{S}_{\mathit{fin}}(\mathcal{D}_{\theta},\mathcal{D}) &\Rightarrow \mathsf{S}_{\mathit{fin}}(\mathcal{D},\mathcal{D}) \\ & \Downarrow & \Downarrow \\ \mathsf{S}_{\mathit{fin}}(\mathcal{D}_{\theta},\mathcal{D}_{\theta}) &\Rightarrow \mathsf{S}_{\mathit{fin}}(\mathcal{D},\mathcal{D}_{\theta}) \end{split}$$

Examples

- Let ℝ endowed with the open-minus-countable topology ϑ: U ∈ ϑ if U = V \ C, where V is open in the usual topology on ℝ, and C is a countable subset of ℝ. It satisfies S_{fin}(D_θ, D_θ) and does not satisfy neither S_{fin}(D_θ, D) nor S_{fin}(D, D).
- Let $X = \mathbb{R} \cup \{p\}$, where $p \notin \mathbb{R}$ endowed with topology \mathcal{T} : a set $U \in \mathcal{T}$ if either $U = V \setminus C$ with V open in the usual topology on \mathbb{R} and C countable in \mathbb{R} , or $p \in U$ and $X \setminus U$ is countable. It satisfies $S_{fin}(\mathcal{D}, \mathcal{D}_{\theta})$ but not neither $S_{fin}(\mathcal{D}, \mathcal{D})$ nor $S_{fin}(\mathcal{D}_{\theta}, \mathcal{D})$.

A family \mathcal{V} of open sets of space X

Agata Caserta Caserta 25-30 June, 2012

э

э

▲□ ▶ ▲ 三 ▶ ▲

A family \mathcal{V} of open sets of space X

- V is called a π̄-base for X if for any open set U ⊂ X there is V ∈ V such that V ⊂ U
- \mathcal{V} is called a π_{θ} -base for X if for any open set $U \subset X$ there is $V \in \mathcal{V}$ such that $V \subset \overline{U}$

A family \mathcal{V} of open sets of space X

- \mathcal{V} is called a $\overline{\pi}$ -base for X if for any open set $U \subset X$ there is $V \in \mathcal{V}$ such that $\overline{V} \subset U$
- \mathcal{V} is called a π_{θ} -base for X if for any open set $U \subset X$ there is $V \in \mathcal{V}$ such that $V \subset \overline{U}$

Proposition

- If a space X has a countable π_{θ} -base, then it satisfies $S_1(\mathcal{D}_{\theta}, \mathcal{D}_{\theta})$.
- If a space X has a countable $\overline{\pi}$ -base, then it satisfies $S_1(\mathcal{D}_{\theta}, \mathcal{D})$.
- The product X × Y of a space X satisfying S_{fin}(D, D_θ) and a space Y having a countable π_θ-base satisfies also S_{fin}(D, D_θ).

X has countable θ -fan tightness if for each $x \in X$ and each sequence $(A_n : n \in \omega)$ of subsets of X such that $x \in Cl_{\theta}(A_n)$ for all $n \in \omega$, there are finite sets $F_n \subset A_n$, $n \in \omega$, such that $x \in Cl_{\theta}(\bigcup_{n \in \omega} F_n)$. X has countable θ -fan tightness if for each $x \in X$ and each sequence $(A_n : n \in \omega)$ of subsets of X such that $x \in Cl_{\theta}(A_n)$ for all $n \in \omega$, there are finite sets $F_n \subset A_n$, $n \in \omega$, such that $x \in Cl_{\theta}(\bigcup_{n \in \omega} F_n)$.

Proposition

If a θ -separable space X has countable θ -fan tightness, then X is selectively M_{θ} -separable.

The Alexandroff Duplicate

Let $f : X \to Y$ is said to be θ -continuous if for each $x \in X$ and each open set V containing f(x) there is an open set U containing x such that $f(\overline{U}) \subset \overline{V}$.

- If $f : X \to Y$ is a closed irreducible mapping and U is an open subset of X, then $f(\overline{U}) = \overline{f^{\#}(U)}$.
- If f : X → Y is closed irreducible, and D is θ-dense subset of Y, then f[←](D) is θ-dense in X.

The Alexandroff Duplicate

Let $f : X \to Y$ is said to be θ -continuous if for each $x \in X$ and each open set V containing f(x) there is an open set U containing x such that $f(\overline{U}) \subset \overline{V}$.

- If $f : X \to Y$ is a closed irreducible mapping and U is an open subset of X, then $f(\overline{U}) = \overline{f^{\#}(U)}$.
- If f : X → Y is closed irreducible, and D is θ-dense subset of Y, then f[←](D) is θ-dense in X.

Proposition

The M_{θ} -separability is preserved by closed irreducible θ -continuous mappings.

The Alexandroff Duplicate

Let $f : X \to Y$ is said to be θ -continuous if for each $x \in X$ and each open set V containing f(x) there is an open set U containing x such that $f(\overline{U}) \subset \overline{V}$.

- If $f : X \to Y$ is a closed irreducible mapping and U is an open subset of X, then $f(\overline{U}) = \overline{f^{\#}(U)}$.
- If f : X → Y is closed irreducible, and D is θ-dense subset of Y, then f[←](D) is θ-dense in X.

Proposition

The M_{θ} -separability is preserved by closed irreducible θ -continuous mappings.

Corollary

The Alexandroff duplicate AD(X) of a space X is M_{θ} -separable if and only if X is M_{θ} -separable

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The unexpected result that separable Fréchet-Urysohn spaces are M-separable was shown in Barman-Dow.

X is θ -Fréchet-Urysohn if for each $A \subset X$ and each $x \in Cl_{\theta}(A)$ there is a sequence $(a_n)_{n \in \omega}$ in A which θ -converges to x, i.e. for each open set U containing x there is $n_0 \in \omega$ such that $a_n \in \overline{U}$ for all $n \ge n_0$. The unexpected result that separable Fréchet-Urysohn spaces are M-separable was shown in Barman-Dow.

X is θ -Fréchet-Urysohn if for each $A \subset X$ and each $x \in \operatorname{Cl}_{\theta}(A)$ there is a sequence $(a_n)_{n \in \omega}$ in A which θ -converges to x, i.e. for each open set U containing x there is $n_0 \in \omega$ such that $a_n \in \overline{U}$ for all $n \ge n_0$.

Proposition

Let X be a Urysohn space such that for each $A \subset X$ and each $x \in X$, $x \in \operatorname{Cl}_{\theta}(A \setminus \{x\})$. If X is θ -separable and θ -Fréchet-Urysohn, then X is M_{θ} -separable.

Game G_{pp} (resp. G_{pp}^{gp})

Two players, ONE and TWO, play a countably infinite game on a space X. In the *n*-th round ONE chooses a nonempty open set U_n and TWO responds by choosing a point $x_n \in \overline{U_n}$. ONE wins a play $(U_1, x_1; U_2, x_2; \dots; U_n, x_n; \dots)$ if the set $\{x_n : n \in \omega\}$ is θ -dense (resp. θ -groupable dense) in X; otherwise TWO wins.

Game G_{pp} (resp. G_{pp}^{gp})

Two players, ONE and TWO, play a countably infinite game on a space X. In the *n*-th round ONE chooses a nonempty open set U_n and TWO responds by choosing a point $x_n \in \overline{U_n}$. ONE wins a play $(U_1, x_1; U_2, x_2; \dots; U_n, x_n; \dots)$ if the set $\{x_n : n \in \omega\}$ is θ -dense (resp. θ -groupable dense) in X; otherwise TWO wins.

Game $G_1(\mathcal{A}; \mathcal{B})$

Two players, ONE and TWO, play an inning per positive integer. In the *n*-th inning ONE chooses a set O_n from \mathcal{A} , and TWO responds by choosing an element $T_n \in O_n$. The play $(O_1; T_1; ...; O_n; T_n; ...)$ is won by TWO if $\{T_n : n \in \omega\}$ is a member of \mathcal{B} ; otherwise, ONE wins.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

The following are equivalent for a space X:

(1) ONE has a winning strategy in the game $\mathcal{G}_1(\mathcal{D}_\theta, \mathcal{D}_\theta)$ on X;

(2) TWO has a winning strategy in the game G_{pp} on X.

The following are equivalent for a space X:

(1) ONE has a winning strategy in the game $\mathcal{G}_1(\mathcal{D}_\theta, \mathcal{D}_\theta)$ on X;

(2) TWO has a winning strategy in the game G_{pp} on X.

The following are equivalent for a space X:

- (1) ONE has a winning strategy in the game $\mathcal{G}_1(\mathcal{D}_\theta, \mathcal{D}_\theta)$ on X;
- (2) TWO has a winning strategy in the game G_{pp} on X.

Proposition

If ONE has a winning strategy in the game G_{pp} on a space X, then TWO has a winning strategy in $\mathcal{G}_1(\mathcal{D}_{\theta}, \mathcal{D}_{\theta})$.

The following are equivalent for a space X:

(1) ONE has a winning strategy in the game $\mathcal{G}_1(\mathcal{D}_\theta, \mathcal{D}_\theta)$ on X;

(2) TWO has a winning strategy in the game $G_{\rho\rho}$ on X.

Proposition

If ONE has a winning strategy in the game G_{pp} on a space X, then TWO has a winning strategy in $\mathcal{G}_1(\mathcal{D}_{\theta}, \mathcal{D}_{\theta})$.

Theorem

For a space X the following assertions are equivalent:

- (1) ONE has a winning strategy in the game $\mathcal{G}_1(\mathcal{D}_\theta, \mathcal{D}_\theta^{gp})$ on X;
- (2) TWO has a winning strategy in the game $G_{\rho\rho}^{g\rho}$ on X.

- D. Barman, A. Dow, *Selective separability and SS*⁺, Topology Proc. 37 (2011), 181-204.
- A. Bella, M. Bonanzinga, M. Matveev, *Variations of selective separability*, Topology Appl. 156 (2009), 1241-1252.
- A. Bella, M. Bonanzinga, M. Matveev, V. Tkachuk, Selective separability: general facts and behavior in countable spaces, Topology Proc. 32 (2008), 15-30.
- A. Bella, M. Matveev, S. Spadaro, *Variations of selective separability* II: *discrete sets and the influence of convergence and maximality*, Topology and its Applications, in press.
- G. Gruenhage, M. Sakai, *Selective separability and its variations*, Topology Appl. 158 (2011), 1352-1359.
- Lj.D.R. Kočinac, S. Özçağ, Versions of separability in bitopological spaces, Topology Appl. 158 (2011), 1471–1477.

- 4 同 6 4 日 6 4 日 6

- J.R. Porter, R.G. Woods, *Extensions and Absolutes of Hausdorff Spaces*, Springer Verlag, 1988.
- D. Repovš, L. Zdomskyy, On M-separability of countable spaces and function spaces, Topology Appl. 157 (2010) 2538–2541.
- M. Scheepers, *Combinatorics of open covers* (VI): *Selectors for sequences of dense sets*, Quaest. Math. 22 (1999), 109-130.
- N. Velichko, *H-closed topological spaces*, Mat. Sb. (N.S.) 70(112) (1966), 98–112.