$S_1(\Gamma,\Gamma) \boldsymbol{vs} S_1(\Gamma_{clopen},\Gamma_{clopen})$

Maddalena Bonanzinga

Università di Messina Dipartimento di Matematica e-mail: mbonanzinga@unime.it

coahutor: M.V.Matveev Mikhail "Misha" Matveev passed away unexpectedly on May 17, 2011

IVth Workshop on Coverings, Selections, and Games in Topology Caserta, Italy June 25-30, 2012

Outline

Example Some consequences References

Outline

2 Example

③ Some consequences

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 Γ : the family of all open point-cofinite covers.

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 Γ : the family of all open point-cofinite covers.

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 Γ : the family of all open point-cofinite covers.

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 $\Gamma :$ the family of all open point-cofinite covers.

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 $\Gamma:$ the family of all open point-cofinite covers.

Preliminaries

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

M. Scheepers:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \omega)$ of elements of \mathcal{A} there is a sequence $(a_n : n \in \omega)$ such that for each $n \in \omega$, $a_n \in A_n$ and $\{a_n : n \in \omega\}$ belongs to \mathcal{B} .

A family \mathcal{U} of subsets of a set X is called a *point-cofinite* cover (even γ -cover) if \mathcal{U} is infinite and every $x \in X$ is contained in all but finitely many elements of \mathcal{U} .

 $\Gamma:$ the family of all open point-cofinite covers.

Preliminaries

- L. Bukovský J. Haleš, QN-space, wQN-space and covering properties, Topol. Appl. 154 (4) (2007) 848–858.
- W. Just, A. W. Miller, M. Scheepers, P. J. Szeptycki, The combinatorics of open covers II, Topol. Appl. 73 (1996) 241–266.
- A. W. Miller, B. Tsaban, Point-cofinite covers in Laver model, Proceedings of the American Mathematical Society, 138 (2010) 3313–3321.
- T. Orenshtein, B. Tsaban, *Linear sigma-additivity and some applications* Transactions of the American Mathematical Society, 363 (2011) 3621–3637.
- D. Repovs, B. Tsaban, L.Zdomskyy, *Hurewicz sets of reals without perfect subsets*, Proceedings of the American Mathematical Society, **136** (2008) 2515–2520.

Preliminaries

- M. Sakai, Special subsets of reals characterizing local properties of function spaces, in: Lj.D.R. Kočinac (Ed.), Selection Principles and Covering Properties in Topology, in: Quaderni di Matematica, 18 (2007) 195-225.
- M. Scheepers, *Combinatorics of open covers I: Ramsey theory*, Topology and its Applications **69** (1996) 31-62.
- M. Scheepers, Sequential convergence in C_p(X) and a covering property, East West J. Math. 1 (2) (1999) 207–214.
- B. Tsaban, Menger's and Hurewicz's problems: Solutions from "The Book" and refinements, Contemporary Mathematics 533 (2010) 211–226.

Preliminaries

Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

 Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

 Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

 Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

 Γ_{cl} = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

 $C_p(X)$ = the space of all real-valued continuous functions on X with the topology of pointwise convergence.

 $\mathbf{0}$ = the constant zero element of $C_p(X)$.

Preliminaries

M. Scheepers $C_p(X)$ and Arhangelskii α_i -spaces, Topol. Appl. 89 (1998) 265-275.

$$X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0).$$

Question [Scheepers1999]

 $S_1(\Gamma_0,\Gamma_0)$ for $C_p(X) \Rightarrow^? S_1(\Gamma,\Gamma)$ for X, for a perfectly normal space X

Preliminaries

M. Scheepers $C_p(X)$ and Arhangelskii α_i -spaces, Topol. Appl. 89 (1998) 265-275.

$$X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0).$$

Question [Scheepers1999]

 $S_1(\Gamma_0,\Gamma_0)$ for $C_p(X) \Rightarrow^? S_1(\Gamma,\Gamma)$ for X, for a perfectly normal space X

Preliminaries

$X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Rightarrow X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}).$

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)] For a normal space X,

 $C_p(X)$ is $S_1(\Gamma_0, \Gamma_0) \Leftrightarrow$

X is $S_1(\Gamma_{cl}, \Gamma_{cl})$

strongly zero-dimensional.

Question 1 [Scheepers]: $S_1(\Gamma_{cl}, \Gamma_{cl}) \Rightarrow^? S_1(\Gamma, \Gamma)$, for perfectly normal spaces

Question 2 [M. Sakai]:

- Is there a Tychonoff space which is $S_1(\Gamma_{cl}, \Gamma_{cl})$ and is not $S_1(\Gamma, \Gamma)$?

Preliminaries

 $X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Rightarrow X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}).$

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)] For a normal space X,

 $\begin{array}{c} X \text{ is } S_1(\Gamma_c, \Gamma_c) \\ C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Leftrightarrow & \text{and} \\ \text{ strongly zero-dimensional.} \end{array}$

Question 1 [Scheepers]: $S_1(\Gamma_{cl}, \Gamma_{cl}) \Rightarrow^? S_1(\Gamma, \Gamma)$, for perfectly normal spaces

Question 2 [M. Sakai]:

- Is there a Tychonoff space which is $S_1(\Gamma_{cl}, \Gamma_{cl})$ and is not $S_1(\Gamma, \Gamma)$?

Preliminaries

 $X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Rightarrow X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}).$

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)] For a normal space X,

 $C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Leftrightarrow \qquad \begin{array}{c} X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}) \\ \text{and} \\ \text{strongly zero-dimensional.} \end{array}$

Question 1 [Scheepers]: $S_1(\Gamma_{cl}, \Gamma_{cl}) \Rightarrow^? S_1(\Gamma, \Gamma)$, for perfectly normal spaces

Question 2 [M. Sakai]:

- Is there a Tychonoff space which is $S_1(\Gamma_{cl}, \Gamma_{cl})$ and is not $S_1(\Gamma, \Gamma)$?

Preliminaries

 $X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Rightarrow X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}).$

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)] For a normal space X,

 $C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Leftrightarrow \qquad \begin{array}{c} X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}) \\ \text{and} \\ \text{strongly zero-dimensional.} \end{array}$

Question 1 [Scheepers]: $S_1(\Gamma_{cl}, \Gamma_{cl}) \Rightarrow^? S_1(\Gamma, \Gamma)$, for perfectly normal spaces

Question 2 [M. Sakai]:

- Is there a Tychonoff space which is $S_1(\Gamma_{cl}, \Gamma_{cl})$ and is not $S_1(\Gamma, \Gamma)$?

Preliminaries

 $X \text{ is } S_1(\Gamma, \Gamma) \Rightarrow C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Rightarrow X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}).$

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)] For a normal space X,

 $C_p(X) \text{ is } S_1(\Gamma_0, \Gamma_0) \Leftrightarrow \qquad \begin{array}{c} X \text{ is } S_1(\Gamma_{cl}, \Gamma_{cl}) \\ \text{and} \\ \text{strongly zero-dimensional.} \end{array}$

Question 1 [Scheepers]: $S_1(\Gamma_{cl}, \Gamma_{cl}) \Rightarrow^? S_1(\Gamma, \Gamma)$, for perfectly normal spaces

Question 2 [M. Sakai]:

- Is there a Tychonoff space which is $S_1(\Gamma_{cl}, \Gamma_{cl})$ and is not $S_1(\Gamma, \Gamma)$?

We answer Question 2 in the negative, under CH.

Our example does not answer Question 1, because it is not perfectly normal (since it contains a copy of ω_1 as a closed subspace).

We answer Question 2 in the negative, under CH.

Our example does not answer Question 1, because it is not perfectly normal (since it contains a copy of ω_1 as a closed subspace).

We answer Question 2 in the negative, under CH.

Our example does not answer Question 1, because it is not perfectly normal (since it contains a copy of ω_1 as a closed subspace).

We answer Question 2 in the negative, under CH.

Our example does not answer Question 1, because it is not perfectly normal (since it contains a copy of ω_1 as a closed subspace).

X is a

- strongly zero-dimensional
- perfect
- <u>nonnormal</u>

space satisfying $S_1(\Gamma_{cl}, \Gamma_{cl})$ but not $S_1(\Gamma, \Gamma)$.

(CH) Our example is a

- zero-dimensional
- <u>normal</u>
- non strongly zero-dimensional

space satisfying $S_1(\Gamma_{cl}, \Gamma_{cl})$ but not $S_1(\Gamma, \Gamma)$.

X is a

- strongly zero-dimensional
- perfect
- <u>nonnormal</u>

space satisfying $S_1(\Gamma_{cl}, \Gamma_{cl})$ but not $S_1(\Gamma, \Gamma)$.

(CH) Our example is a

- zero-dimensional
- <u>normal</u>
- non strongly zero-dimensional

space satisfying $S_1(\Gamma_{cl},\Gamma_{cl})$ but not $S_1(\Gamma,\Gamma)$.

X is a

- strongly zero-dimensional
- perfect
- <u>nonnormal</u>

space satisfying $S_1(\Gamma_{cl},\Gamma_{cl})$ but not $S_1(\Gamma,\Gamma)$.

(CH) Our example is a

- zero-dimensional
- <u>normal</u>
- non strongly zero-dimensional

space satisfying $S_1(\Gamma_{cl},\Gamma_{cl})$ but not $S_1(\Gamma,\Gamma)$.

X is a

- strongly zero-dimensional
- perfect
- <u>nonnormal</u>

space satisfying $S_1(\Gamma_{cl},\Gamma_{cl})$ but not $S_1(\Gamma,\Gamma)$.

(CH) Our example is a

- zero-dimensional
- <u>normal</u>
- non strongly zero-dimensional

space satisfying $S_1(\Gamma_{cl},\Gamma_{cl})$ but not $S_1(\Gamma,\Gamma)$.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then ${\mathcal U}$ contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.
Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

Example (CH) A space having the $S_1(\Gamma_{cl}, \Gamma_{cl})$ property and not having the $S_1(\Gamma, \Gamma)$ property.

Definition A space X is *clopen trivial* if every clopen set in it is countable or co-countable.

Lemma If X is an uncountable set, and \mathcal{U} is a point-cofinite cover of X such that \mathcal{U} consists only of countable and co-countable sets, then there is an infinitely countable subfamily $\mathcal{U}_0 \subset \mathcal{U}$ such that \mathcal{U}_0 is a point-cofinite cover of X and \mathcal{U}_0 consists only of co-countable sets. **Proof:**

- We may assume that \mathcal{U} is a *countable*.
- Then \mathcal{U} contains only finitely many countable elements.
- Thus, removing from \mathcal{U} the finitely many countable elements, we obtain a countable point-cofinite cover consisting of co-countable sets.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

- X is countable \Rightarrow X is $S_1(\Omega, \Gamma) \Rightarrow S_1(\Gamma_{cl}, \Gamma_{cl})$.
- Assume that X is uncountable.
- Let $(\mathcal{U}_n : n \in \omega)$ be a sequence of countable point-cofinite cover consisting of co-countable clopen sets.
- Then the set $S = \bigcup \{X \setminus U : U \in \mathcal{U}_n, n \in \omega\}$ is countable.
- Enumerate $S = \{x_n : n \in \omega\}.$
- For every $n \in \omega$ we may pick an element $U_n \in \mathcal{U}_n$ such that $\{x_m : m \leq n\} \subset U_n$.
- Then $\{U_n : n \in \omega\}$ is a point-cofinite cover of X.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q= the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Y is normal and zero-dimensional, but not strongly zero-dimensional.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q= the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Y is normal and zero-dimensional, but not strongly zero-dimensional.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q= the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Y is normal and zero-dimensional, but not strongly zero-dimensional.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I$.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q= the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}.$
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I$.

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}.$
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}.$
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Example

Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

- Q = the set of all rational numbers in the unit interval I.
- For $x, y \in I$, set $x \approx y$ if $|x y| \in Q$.
- For all $\alpha < \omega_1$, pick distinct classes of equivalence Q_{α} with respect to \approx .
- Then each Q_{α} is a dense countable subspace of I.
- For $\alpha < \omega_1$, put $S_\alpha = I \setminus \bigcup \{Q_\gamma : \gamma \ge \alpha\}$.
- Let $Y = \bigcup \{ \{\gamma\} \times S_{\gamma} : \gamma < \omega_1 \} \subset \omega_1 \times I.$

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

X is not $S_1(\Gamma, \Gamma)$:

Example

We modified the previous construction.

- (CH) I can be partitioned in ω_1 -many countable, dense subsets $Q_{\alpha}, \alpha \in \omega_1$.
- Let $X = \bigcup_{\gamma < \omega_1} (\{\gamma\} \times S_{\gamma})$, where $S_{\gamma} = \bigcup \{Q_{\alpha} : \alpha \leq \gamma\}$.
- X is a subspace of $\omega_1 \times I$.

X has the properties of the original Dowker's example.

Example

X is $S_1(\Gamma_{cl}, \Gamma_{cl})$: We will proof that X is clopen-trivial.

- $T_{\alpha,x} = \{\langle \gamma, x \rangle : \gamma \ge \alpha\} = 1$ -point wide tail
- $(B(x,\epsilon),\alpha) = ([\alpha,\omega_1) \times B(x,\epsilon)) \cap X = B(x,\epsilon)$ -wide tail.

Example

X is $S_1(\Gamma_{cl}, \Gamma_{cl})$: We will proof that X is clopen-trivial.

- $T_{\alpha,x} = \{\langle \gamma, x \rangle : \gamma \ge \alpha\} = 1$ -point wide tail
- $(B(x,\epsilon),\alpha) = ([\alpha,\omega_1) \times B(x,\epsilon)) \cap X = B(x,\epsilon)$ -wide tail.

Example

X is $S_1(\Gamma_{cl}, \Gamma_{cl})$: We will proof that X is clopen-trivial.

- $T_{\alpha,x} = \{\langle \gamma, x \rangle : \gamma \ge \alpha\} = 1$ -point wide tail
- $(B(x,\epsilon),\alpha) = ([\alpha,\omega_1) \times B(x,\epsilon)) \cap X = B(x,\epsilon)$ -wide tail.

Example

X is $S_1(\Gamma_{cl}, \Gamma_{cl})$: We will proof that X is clopen-trivial.

•
$$T_{\alpha,x} = \{\langle \gamma, x \rangle : \gamma \ge \alpha\} = 1$$
-point wide tail

•
$$(B(x,\epsilon),\alpha) = ([\alpha,\omega_1) \times B(x,\epsilon)) \cap X = B(x,\epsilon)$$
-wide tail.

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let \mathcal{B} be a countable base of I and $U \subset X$ be a clopen, but not countable set. <u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains

B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. *Proof:*

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n \to \infty} B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n \to \infty} B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.
Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>*Claim1*</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$.

Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n \to \infty} B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Maddalena Bonanzinga $S_1(\Gamma, \Gamma)$ vs $S_1(\Gamma_{clopen}, \Gamma_{clopen})$

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. *Proof:*

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n \to \infty} B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Maddalena Bonanzinga $S_1(\Gamma, \Gamma)$ vs $S_1(\Gamma_{clopen}, \Gamma_{clopen})$

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n\to\infty}B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n\to\infty}B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.

• Then B_N -wide tail is contained in U.

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n\to\infty}B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Example

• Any two 1-point wide tails can not be separated by clopen sets.

Let $\mathcal B$ be a countable base of I and $U\subset X$ be a clopen, but not countable set.

<u>Claim1</u>: If U contains a 1-point wide tail $T_{\alpha,x}$, then U contains a B-wide tail around $T_{\alpha,x}$, for some $B \in \mathcal{B}$. Proof:

- Fix $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $x \in B_n$, for all $n \in \omega$, $B_{n+1} \subset B_n$ and $diam_{n\to\infty}B_n \to 0$.
- For every $\gamma \ge \alpha$, fix $n(\gamma) = \min\{n : \exists \beta < \gamma \text{ such that } (\beta, \gamma] \times B_n \subset U\}.$
- Then there exists $N \in \omega$ such that $n(\gamma) \leq N$, for every $\gamma < \omega_1$.
- Then B_N -wide tail is contained in U.

Example

<u>Claim2</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_j} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

Example

<u>*Claim2*</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_i} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

Example

<u>*Claim2*</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_i} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

Example

<u>*Claim2*</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_i} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

Example

<u>*Claim2*</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_j} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

Example

<u>*Claim2*</u>: Let $\{C_1, C_2\}$ be a partition of X into clopen sets and $x \in I$. Then only one of the sets $C_1 \cap (\omega_1 \times \{x\}), C_2 \cap (\omega_1 \times \{x\})$ contains a tail.

- Fix $j \in \{1, 2\}$.
- $\forall x \in I \text{ s.t. } C_j \cap (\omega_1 \times \{x\}) \text{ contains a tail } \Rightarrow^{Claim1} \exists \epsilon_x > 0 \text{ s.t. a } B(x, \epsilon_x) \text{-wide tail } \subset C_j.$
- Hence $\bigcup_{x \in I_j} B(x, \epsilon_x) \subset C_j$ and then I_j is open.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

then K contains a I-wide tail.

Proof:

- Let $\tilde{\mathcal{B}} = \{ B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K \}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

- Let $\tilde{\mathcal{B}} = \{B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K\}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

- Let $\tilde{\mathcal{B}} = \{ B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K \}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

- Let $\tilde{\mathcal{B}} = \{B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K\}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

- Let $\tilde{\mathcal{B}} = \{B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K\}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$$\{x \in I : K \cap (\omega_1 \times \{x\}) \text{ contains a tail}\} = I,$$

- Let $\tilde{\mathcal{B}} = \{B \in \mathcal{B} : \exists \alpha_B \in \omega_1 \text{ s.t. } ([\alpha_B, \omega_1) \times B) \cap X \subset K\}.$
- $\tilde{\mathcal{B}}$ covers I.
- Put $\alpha^* = \sup\{\alpha_B : B \in \tilde{\mathcal{B}}\}.$
- Then the (I, α^*) -wide tail is contained in K.

$\underline{Claim5}$: For any partition of X into two clopen sets, one of them is bounded or contains a I-wide tail.

Thus U is co-countable.

 $\underline{Claim5}$: For any partition of X into two clopen sets, one of them is bounded or contains a I-wide tail.

Thus U is co-countable.

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ Proof. of Corollary:

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Maddalena Bonanzinga

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ Proof. of Corollary:

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Maddalena Bonanzinga

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ *Proof. of Corollary:*

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Maddalena Bonanzinga

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ Proof. of Corollary:

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Maddalena Bonanzinga

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ Proof. of Corollary:

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly zero-dimensional space X such that X is $S_1(\Gamma_{cl}, \Gamma_{cl})$, but $C_p(X)$ is not $S_1(\Gamma_0, \Gamma_0)$.

Definition [D. Shakmatov1990, A.V. Arhangelskii1992] X is a α_2 -space if for every $x \in X$ and every sequence $\{S_n : n \in \omega\}$ of non-trivial sequences converging to x, there is a sequence S converging to x such that $S_n \cap S$ is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form $C_p(Y)$ is an α_2 -space $\Leftrightarrow C_p(Y)$ is $S_1(\Gamma_0, \Gamma_0)$ Proof. of Corollary:

- X = the space of Example
- $\pi_2(X) = I \Rightarrow C_p(X)$ contains a closed subspace homeomorphic to $C_p(I)$.
- Since $C_p(I)$ is not an α_2 -space [Sakai2007], then $C_p(X)$ is not an α_2 -space.

Maddalena Bonanzinga $S_1(\Gamma, \Gamma)$ vs $S_1(\Gamma_{clopen}, \Gamma_{clopen})$

Some consequences

Corollary (CH) There exists a zero-dimensional space X such that $C_p(X, 2)$ is an α_2 -space, but $C_p(X)$ is not an α_2 -space.

For zero-dimensional spaces X,

 $C_p(X,2)$ is an α_2 -space $\Leftrightarrow X$ has property $S_1(\Gamma_{cl},\Gamma_{cl})$

(see also [BonanzingaCammarotoMatveev2010])

Some consequences

Corollary (CH) There exists a zero-dimensional space X such that $C_p(X, 2)$ is an α_2 -space, but $C_p(X)$ is not an α_2 -space.

For zero-dimensional spaces X,

 $C_p(X,2)$ is an α_2 -space $\Leftrightarrow X$ has property $S_1(\Gamma_{cl},\Gamma_{cl})$

(see also [BonanzingaCammarotoMatveev2010])

References

- A. V. Arhangelskii, *Topological function spaces*, Kluwer Academic Publishers (1992).
- A.V. Arhangelskii, *The frequency spectrum of a topological space* and classification of spaces, Soviet Math. Doklady, **13** (1992) 1185–1189.
- M. Bonanzinga, F. Cammaroto, M. Matveev, *Projective versions* of selection principles, Topol. Appl. **157** (2010) 874–893.
- L. Bukovský J. Haleš, *QN-space, wQN-space and covering properties*, Topol. Appl. **154 (4)** (2007) 848–858.
- C.H. Dowker, Local dimension of normal spaces, Quart. Journ. of Math. Oxford 6 (1955) 101–120.
- R. Engelking, *General Topology*, Heldermann Verlag, Berlin, 1989.

References

- W. Just, A. W. Miller, M. Scheepers, P. J. Szeptycki, The combinatorics of open covers II, Topol. Appl. 73 (1996) 241–266.
- A. W. Miller, B. Tsaban, Point-cofinite covers in Laver model, Proceedings of the American Mathematical Society, **138** (2010) 3313–3321.
- T. Orenshtein, B. Tsaban, *Linear sigma-additivity and some applications* Transactions of the American Mathematical Society, 363 (2011) 3621–3637.
- D. Repovs, B. Tsaban, L.Zdomskyy, Hurewicz sets of reals without perfect subsets, Proceedings of the American Mathematical Society, 136 (2008) 2515-2520.
 - M. Sakai, Special subsets of reals characterizing local properties of function spaces, in: Lj.D.R. Kočinac (Ed.), Selection Principles and Covering Properties in Topology, in: Quaderni di Matematica, 18 (2007) 195–225. Matdalena Bonanzinga

Final

Grazie!!!

Maddalena Bonanzinga $S_1(\Gamma, \Gamma)$ vs $S_1(\Gamma_{clopen}, \Gamma_{clopen})$