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Preliminaries

Let A and B be collections of subsets of an infinite set.

M. Scheepers:

S1(A,B): for each sequence (An : n ∈ ω) of elements of A there is a
sequence (an : n ∈ ω) such that for each n ∈ ω, an ∈ An and
{an : n ∈ ω} belongs to B.

A family U of subsets of a set X is called a point-cofinite cover (even
γ-cover) if U is infinite and every x ∈ X is contained in all but finitely
many elements of U .

Γ: the family of all open point-cofinite covers.
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Preliminaries

Γcl = the familiy of all point-cofinite covers by clopen sets.

All spaces considered are Tychonoff.

Cp(X)= the space of all real-valued continuous functions on X with
the topology of pointwise convergence.

0 = the constant zero element of Cp(X).

Γ0= the set of all non-trivial sequences that converge to 0.
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Preliminaries

M. Scheepers Cp(X) and Arhangelskii αi-spaces, Topol. Appl. 89
(1998) 265-275.

X is S1(Γ,Γ)⇒ Cp(X) is S1(Γ0,Γ0).

Question [Scheepers1999]

S1(Γ0,Γ0) for Cp(X)⇒? S1(Γ,Γ) for X, for a perfectly normal space
X
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Preliminaries

X is S1(Γ,Γ)⇒ Cp(X) is S1(Γ0,Γ0)⇒ X is S1(Γcl,Γcl).

Theorem [Sakai2007, (see also Bukovský- J.Haleš 2007)]
For a normal space X,

Cp(X) is S1(Γ0,Γ0)⇔
X is S1(Γcl,Γcl)

and
strongly zero-dimensional.

Question 1 [Scheepers]:
S1(Γcl,Γcl)⇒? S1(Γ,Γ), for perfectly normal spaces

Question 2 [M. Sakai]:
- Is there a Tychonoff space which is S1(Γcl,Γcl) and is not S1(Γ,Γ)?
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T. Orenshtein: R is a S1(Γcl,Γcl) (because Γcl = ∅) not S1(Γ,Γ) space.
Thus, the questions make sense only in zero-dimensional setting.

We answer Question 2 in the negative, under CH.

Our example does not answer Question 1, because it is not perfectly
normal (since it contains a copy of ω1 as a closed subspace).

It also distinguishes the property S1(Γcl,Γcl) for X from the property
S1(Γ0,Γ0) for Cp(X) in the class of normal zero-dimensional non
strongly zero-dimensional spaces.
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Example: [Sakai2010]
Isbell-Mrówka space X = Ψ(E), where E is an infinite maximal almost
disjoint family consisting of infinite subsets of ω.

X is a
- strongly zero-dimensional
- perfect
- nonnormal
space satisfying S1(Γcl,Γcl) but not S1(Γ,Γ).

(CH) Our example is a
- zero-dimensional
- normal
- non strongly zero-dimensional
space satisfying S1(Γcl,Γcl) but not S1(Γ,Γ).
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Example

Example (CH) A space having the S1(Γcl,Γcl) property and not
having the S1(Γ,Γ) property.

Definition A space X is clopen trivial if every clopen set in it is
countable or co-countable.

Lemma If X is an uncountable set, and U is a point-cofinite cover of
X such that U consists only of countable and co-countable sets, then
there is an infinitely countable subfamily U0 ⊂ U such that U0 is a
point-cofinite cover of X and U0 consists only of co-countable sets.
Proof:

• We may assume that U is a countable.

• Then U contains only finitely many countable elements.

• Thus, removing from U the finitely many countable elements, we
obtain a countable point-cofinite cover consisting of co-countable
sets.
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Proposition 1 Every clopen-trivial space X is S1(Γcl,Γcl).
Proof:

• X is countable ⇒ X is S1(Ω,Γ) ⇒ S1(Γcl,Γcl).

• Assume that X is uncountable.

• Let (Un : n ∈ ω) be a sequence of countable point-cofinite cover
consisting of co-countable clopen sets.

• Then the set S =
⋃
{X \ U : U ∈ Un, n ∈ ω} is countable.

• Enumerate S = {xn : n ∈ ω}.
• For every n ∈ ω we may pick an element Un ∈ Un such that
{xm : m ≤ n} ⊂ Un.

• Then {Un : n ∈ ω} is a point-cofinite cover of X.
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Dowker example: [C.H. Dowker(1955), Engelking 6.2.20]

• Q= the set of all rational numbers in the unit interval I.

• For x, y ∈ I, set x ≈ y if |x− y| ∈ Q.

• For all α < ω1, pick distinct classes of equivalence Qα with
respect to ≈.

• Then each Qα is a dense countable subspace of I.

• For α < ω1, put Sα = I \
⋃
{Qγ : γ ≥ α}.

• Let Y =
⋃
{{γ} × Sγ : γ < ω1} ⊂ ω1 × I.

Y is normal and zero-dimensional, but not strongly zero-dimensional.
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We modified the previous construction.

• (CH) I can be partitioned in ω1-many countable, dense subsets
Qα, α ∈ ω1.

• Let X =
⋃
γ<ω1

({γ} × Sγ), where Sγ =
⋃
{Qα : α ≤ γ}.

• X is a subspace of ω1 × I.

X has the properties of the original Dowker’s example.

X is not S1(Γ,Γ):
because the restricion π2|X to X of the projection π2 of the product
ω1 × I to the second factor, is a continuous mapping onto I, which
does not satisfy the property S1(Γ,Γ).
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X is S1(Γcl,Γcl): We will proof that X is clopen-trivial.

∀x ∈ I, ∀ε ∈ R, ∀α < ω1,

• Tα,x = {〈γ, x〉 : γ ≥ α}= 1-point wide tail

• (B(x, ε), α) = ([α, ω1)×B(x, ε)) ∩X = B(x, ε)-wide tail.
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• Any two 1-point wide tails can not be separated by clopen sets.

Let B be a countable base of I and U ⊂ X be a clopen, but not
countable set.
Claim1 : If U contains a 1-point wide tail Tα,x, then U contains a
B-wide tail around Tα,x, for some B ∈ B.
Proof:

• Fix {Bn : n ∈ ω} ⊂ B such that x ∈ Bn, for all n ∈ ω, Bn+1 ⊂ Bn
and diamn→∞Bn → 0.

• For every γ ≥ α, fix
n(γ) = min{n : ∃β < γ such that (β, γ]×Bn ⊂ U}.

• Then there exists N ∈ ω such that n(γ) ≤ N , for every γ < ω1.

• Then BN -wide tail is contained in U .
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B-wide tail around Tα,x, for some B ∈ B.
Proof:

• Fix {Bn : n ∈ ω} ⊂ B such that x ∈ Bn, for all n ∈ ω, Bn+1 ⊂ Bn
and diamn→∞Bn → 0.

• For every γ ≥ α, fix
n(γ) = min{n : ∃β < γ such that (β, γ]×Bn ⊂ U}.

• Then there exists N ∈ ω such that n(γ) ≤ N , for every γ < ω1.
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Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Example

Claim2 : Let {C1, C2} be a partition of X into clopen sets and x ∈ I.
Then only one of the sets C1 ∩ (ω1 × {x}), C2 ∩ (ω1 × {x}) contains a
tail.
Claim3 : Let {C1, C2} be a partition of X into clopen sets. If
Ij = {x ∈ I : Cj ∩ (ω1 × {x}) contains a tail}, where j ∈ {1, 2}, then
{I1, I2} is a partition of I into open sets. In particular, since I is
connected, one of Ij is empty and then the other concides with I.
Proof:

• Fix j ∈ {1, 2}.
• ∀ x ∈ I s.t. Cj ∩ (ω1 × {x}) contains a tail ⇒Claim1

∃ εx > 0 s.t. a B(x, εx)-wide tail ⊂ Cj .
• Hence

⋃
x∈Ij B(x, εx) ⊂ Cj and then Ij is open.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Claim4 : If K ⊂ X is a clopen set such that

{x ∈ I : K ∩ (ω1 × {x}) contains a tail} = I,

then K contains a I-wide tail.
Proof:

• Let B̃ = {B ∈ B : ∃αB ∈ ω1 s.t. ([αB , ω1)×B) ∩X ⊂ K}.
• B̃ covers I.

• Put α∗ = sup{αB : B ∈ B̃}.
• Then the (I, α∗)-wide tail is contained in K.
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Claim5 : For any partition of X into two clopen sets, one of them is
bounded or contains a I-wide tail.

Thus U is co-countable.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Claim5 : For any partition of X into two clopen sets, one of them is
bounded or contains a I-wide tail.

Thus U is co-countable.

Maddalena Bonanzinga S1(Γ, Γ) vs S1(Γclopen, Γclopen)



Outline
Preliminaries

Example
Some consequences

References
Final

Some consequences

Corollary (CH) There exists a zero-dimensional normal non strongly
zero-dimensional space X such that X is S1(Γcl,Γcl), but Cp(X) is
not S1(Γ0,Γ0).

Definition [D. Shakmatov1990, A.V. Arhangelskii1992]
X is a α2-space if for every x ∈ X and every sequence {Sn : n ∈ ω} of
non-trivial sequences converging to x, there is a sequence S
converging to x such that Sn ∩ S is infinite for all n.

[Scheepers1998, Saka2007]: A space of the form
Cp(Y ) is an α2-space ⇔ Cp(Y ) is S1(Γ0,Γ0)
Proof. of Corollary:

• X= the space of Example
• π2(X) = I ⇒ Cp(X) contains a closed subspace homeomorphic to
Cp(I).

• Since Cp(I) is not an α2-space [Sakai2007], then Cp(X) is not an
α2-space.
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Some consequences

Corollary (CH) There exists a zero-dimensional space X such that
Cp(X, 2) is an α2-space, but Cp(X) is not an α2-space.

For zero-dimensional spaces X,

Cp(X, 2) is an α2-space ⇔ X has property S1(Γcl,Γcl)

(see also [BonanzingaCammarotoMatveev2010])
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