When is a Pixley-Roy hyperspace SS⁺? University of Catania, Italy

Angelo Bella

For a given space X, the Pixley-Roy hyperspace PR(X) is the space of all non-empty finite subsets of X equipped with the topology generated by sets of the form $[A, U] = \{B \in PR(X) : A \subseteq B \subseteq U, A \in PR(X) \text{ and } U \text{ open in } X\}.$

Proposition 1. Let X be a space.

a) PR(X) is a T_2 zero-dimensional space;

b) PR(X) is separable if and only if X is countable (and hence in and only if PR(X) is countable);

c) PR(X) has countable π -weight if and only if X is countable and first countable.

A space X is selectively separable (briefly SS) if the selection principle $S_{fin}(\mathcal{D}, \mathcal{D})$ hols, i.e. for every sequence $(D_n : n < \omega)$ of dense subspaces of X one can pick finite $F_n \subset D_n$, $n < \omega$, in such a way that $\bigcup \{F_n : n < \omega\}$ is dense in X.

A space X is strategic selectively separable, briefly SS⁺, if player II has a winning strategy in the game $G_{fin}(\mathcal{D}, \mathcal{D})$ played as follows: at the n-th inning player I choose a dense set D_n and player II responds by selecting a finite set $F_n \subseteq D_n$. Player II wins if the set $\bigcup \{F_n : n < \omega\}$ is dense in x.

Countable π - weight $\rightarrow SS^+ \rightarrow$ selectively separable

 $\beta\omega$ and 2^{ω} are obviously SS⁺.

 $C_p(2^{\omega},2)$ is a SS⁺ countable topological group of uncountable π -weight.

 2^{ω_1} is a compact separable space which is not selectively separable.

Fact 1. Every SS^+ space is resolvable, i. e. it contains two disjoint dense sets.

Fact 2. $[\mathfrak{d} = \mathfrak{c}]$ There exists a selectively separable irresolvable space.

A space X has strategic fan tightness at a point $x \in X$ if player II has a winning strategy in the following game:

at the n-th inning player I playes a set $A_n \subseteq X$ with $x \in A_n$ and player II responds by selecting a finite set $F_n \subseteq A_n$. Player II wins if and only if $x \in \bigcup \{F_n : n < \omega\}$.

By restricting the moves of player I in the above game to dense sets only, we get the weaker notion of strategic dense fan tightness.

Proposition 2. A space is SS^+ if and only if it is a separable space of strategic dense fan tightness.

Recall that a collection \mathcal{P} of non-empty subsets of the space X is a π -network at a point $x \in X$ provided that every neighbourhood of x contains some element of \mathcal{P} .

A space X has strategic fan tightness for finite sets at $x \in X$ if player II has a winning strategy in the following game:

at the n-th inning player I choose a collection $\mathcal{P}_n \subseteq [X]^{<\omega}$ which is a π -network at x and player II responds by selectin a finite set $\mathcal{Q}_n \subseteq \mathcal{P}_n$. Player II wins if and only if the set $\bigcup \{\mathcal{Q}_n : n < \omega\}$ is a π -network at x. **Theorem 1.** For a space X the following assertions are equivalent:

a) PR(X) has strategic fan tightness;

b) PR(X) has strategic dense fan tightness;

c) X^k has strategic fan tightness for finite sets for each integer k.

Corollary 1. PR(X) is SS^+ if and only if X is countable and X^k has strategic fan tightness for finite sets for each integer k.

Theorem 2. If X is σ -compact, then $C_p(X)$ has strategic fan tightness for finite sets.

Corollary 2. Let X be a σ -compact space and k an integer. If Y is a subspace of $C_p(X)$, then Y^k has strategic fan tightness for finite sets.

Corollary 3. If X is a σ -compact space and Y is a countable subspace of $C_p(x)$, then PR(Y) is SS^+ .

Corollary 4. $PR(C_p(2^{\omega}, 2))$ is a SS⁺ Pixley-Roy hyperspace of uncountable π -weight.

Theorem 3. There is a selectively separable Pixley-Roy hyperspace with is not SS^+ .

Proof. Barman and Dow have shown that there is a space X such that the function space $C_p(X)$ has countable fan tightness, but there is a countable subspace $Y \subseteq C_p(X)$ which is not SS⁺. By a theorem of Sakai,

PR(Y) is selectively separable. However, the space PR(Y) cannot be SS⁺ because by Proposition 2 Y does not have strategic fan tightness and so, a fortiori, it does not have strategic fan tightness for finite sets in each finite power. \Box