A selective version of c.c.c.

Leandro F. Aurichi ¹

ICMC-USP

¹Sponsored by FAPESP

Leandro F. Aurichi (ICMC-USP)

(日) (四) (王) (王) (王)

An *R*-separable space is a space where, for every sequence $(D_n)_{n \in \omega}$ of dense subsets, one can find $(d_n)_{n \in \omega}$ such that $\{d_n : n \in \omega\}$ is dense and each $d_n \in D_n$.

æ

イロン イ団と イヨン イヨン

An *R*-separable space is a space where, for every sequence $(D_n)_{n \in \omega}$ of dense subsets, one can find $(d_n)_{n \in \omega}$ such that $\{d_n : n \in \omega\}$ is dense and each $d_n \in D_n$. As we can go from separability to c.c.c., we can do the same with the selective versions:

æ

An *R*-separable space is a space where, for every sequence $(D_n)_{n \in \omega}$ of dense subsets, one can find $(d_n)_{n \in \omega}$ such that $\{d_n : n \in \omega\}$ is dense and each $d_n \in D_n$. As we can go from separability to c.c.c., we can do the same with the selective versions:

Definition

We say that a topological space X is a **selectively c.c.c.** space if, for every sequence $(A_n)_{n \in \omega}$ of maximal pairwise disjoint open families, one can find a sequence $(A_n)_{n \in \omega}$ such that $\bigcup_{n \in \omega} A_n$ is dense in X and each $A_n \in A_n$.

It is easy to see that every R-separable space is selectively c.c.c.. But these properties have some different behavior as we will show:

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

It is easy to see that every *R*-separable space is selectively c.c.c.. But these properties have some different behavior as we will show:

Proposition

Let X be a topological space and let Y be a dense subset of it. Then X is selectively c.c.c. if, and only if, Y is selectively c.c.c.

< ロ > < 同 > < 回 > < 回 > < 回 > <

It is easy to see that every *R*-separable space is selectively c.c.c.. But these properties have some different behavior as we will show:

Proposition

Let X be a topological space and let Y be a dense subset of it. Then X is selectively c.c.c. if, and only if, Y is selectively c.c.c.

Proposition

Let κ be a cardinal. Then every dense subspace of 2^{κ} is selectively c.c.c.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is easy to see that every *R*-separable space is selectively c.c.c.. But these properties have some different behavior as we will show:

Proposition

Let X be a topological space and let Y be a dense subset of it. Then X is selectively c.c.c. if, and only if, Y is selectively c.c.c.

Proposition

Let κ be a cardinal. Then every dense subspace of 2^{κ} is selectively c.c.c.

Proposition

There is a countable selectively c.c.c. space that is not R-separable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is easy to see that every *R*-separable space is selectively c.c.c.. But these properties have some different behavior as we will show:

Proposition

Let X be a topological space and let Y be a dense subset of it. Then X is selectively c.c.c. if, and only if, Y is selectively c.c.c.

Proposition

Let κ be a cardinal. Then every dense subspace of 2^{κ} is selectively c.c.c.

Proposition

There is a countable selectively c.c.c. space that is not R-separable.

Proof.

In [1], Bella, Bonanzinga and Matveev shown that there is a countable dense subspace of $2^{cov(\mathcal{M})}$ that is not *R*-separable. By the previous result such a space is selectively c.c.c.

A countable example

◆□> ◆□> ◆臣> ◆臣> ○臣

There is a countable, zero-dimensional, Hausdorff space that is not selectively c.c.c..

2

There is a countable, zero-dimensional, Hausdorff space that is not selectively c.c.c..

Proof.

For every $s \in \omega^{<\omega}$, let $V_s = \{t \in \omega^{<\omega} : s \subset t\}$.

There is a countable, zero-dimensional, Hausdorff space that is not selectively c.c.c..

Proof.

For every $s \in \omega^{<\omega}$, let $V_s = \{t \in \omega^{<\omega} : s \subset t\}$. Then, consider the topology over $\omega^{<\omega}$ where, for each $s \in \omega^{<\omega}$, an basic open neighborhood for it is of the form

$$V_s \smallsetminus \bigcup_{t \in \mathcal{F}} V_t$$

where $\mathcal{F} \subset V_s$ and for every $n \in \omega$, $\{t \in \mathcal{F} : domt = n\}$ is finite.

There is a countable, zero-dimensional, Hausdorff space that is not selectively c.c.c..

Proof.

For every $s \in \omega^{<\omega}$, let $V_s = \{t \in \omega^{<\omega} : s \subset t\}$. Then, consider the topology over $\omega^{<\omega}$ where, for each $s \in \omega^{<\omega}$, an basic open neighborhood for it is of the form

$$V_s \smallsetminus \bigcup_{t \in \mathcal{F}} V_t$$

where $\mathcal{F} \subset V_s$ and for every $n \in \omega$, $\{t \in \mathcal{F} : domt = n\}$ is finite. For each $n \in \omega$, let $\mathcal{C}_n = \{V_t : t \in \omega^{<\omega}, domt = n\}$. Then $(\mathcal{C}_n)_{n \in \omega}$ witnesses that such a space is not selectively c.c.c.

Suppose that there is a Suslin tree. Then there is a selectively c.c.c. space whose square is not c.c.c..

æ

メロト メポト メヨト メヨト

Suppose that there is a Suslin tree. Then there is a selectively c.c.c. space whose square is not c.c.c..

Question

Is there a game version strong enough to preserve the c.c.c. in products?

Suppose that there is a Suslin tree. Then there is a selectively c.c.c. space whose square is not c.c.c..

Question

Is there a game version strong enough to preserve the c.c.c. in products?

This question is more interesting when one see the results of Bonanzinga, Cammaroto, Pansera and Tsaban in [2].

イロト イ団ト イヨト イヨト

M. Bonanzinga, F. Cammaroto, B. A. Pansera, and B. Tsaban. Diagonalizations of dense families.

Preprint, pages 1–13, 2012.

(日) (同) (三) (三)

August, 2013, São Paulo - Brazil. In honor of the (20th + something) anniversary of Ofelia Alas. stw2013saopaulo@gmail.com

æ

・ロト ・回ト ・ヨト ・ヨト