

A TASTE OF SET THEORY: EXERCISE NUMBER 8

BOAZ TSABAN

1. Assume that $\lambda < \text{cf}(\kappa)$ and for each $\alpha < \lambda$, $|X_\alpha| < \kappa$. Show that $|\bigcup_{\alpha < \lambda} X_\alpha| < \kappa$ (in particular, $\bigcup_{\alpha < \lambda} X_\alpha \neq \kappa$).

Hint. Define $f : \lambda \rightarrow \kappa$ by $f(\alpha) = |X_\alpha|$. f is bounded.

2. Prove: For each κ , $\text{cf}(2^\kappa) > \kappa$.

Hint. Zermelo-König Lemma.

3. Supply short proofs to each of the following.

(1) Assume that $\lambda < \text{cf}(\kappa)$. Show:

- (a) ${}^\lambda \kappa = \bigcup_{\alpha < \kappa} {}^\lambda \alpha$.
- (b) $\kappa^\lambda \leq \kappa \cdot \sup\{\mu^\lambda : \mu < \kappa\}$ (Use (a)).
- (c) $\kappa^\lambda \leq \kappa \cdot \sup\{2^\mu : \mu < \kappa\}$ (Use (b)).

(2) Assume GCH. Show that for all infinite cardinals κ and λ :

$$\kappa^\lambda = \begin{cases} \lambda^+ & \kappa \leq \lambda \\ \kappa^+ & \text{cf}(\kappa) \leq \lambda < \kappa \\ \kappa & \lambda < \text{cf}(\kappa) \end{cases}$$

(For the third line use (1)(c)).

4. Shortly:

(1) Prove the *Hausdorff formula*:

$$(\kappa^+)^{\lambda} = \max\{\kappa^\lambda, \kappa^+\}.$$

Hint. This is easy if $\kappa^+ \leq \lambda$. So assume $\lambda < \kappa^+$, and put κ^+ instead of κ in (1)(b) of Question 1. (Recall that κ^+ is regular.)

(2) Rewrite the Hausdorff formula in the language of the aleph's \aleph_α .

(3) Show that for each natural number n and each infinite λ , $(\aleph_n)^\lambda = \max\{2^\lambda, \aleph_n\}$.

The following fact (a proof can be found in Jech's book) is useful for Question 5: For each $\lambda \geq \text{cf}(\kappa)$, $\kappa^\lambda = (\sup\{\mu^\lambda : \mu < \kappa\})^{\text{cf}(\kappa)}$.

5.

- (1) Show that if $\aleph_\omega < 2^{\aleph_0}$, then $(\aleph_\omega)^{\aleph_0} = 2^{\aleph_0}$.
- (2) Could it be that $\aleph_\omega = 2^{\aleph_0}$?
- (3) Prove: $(\aleph_\omega)^{\aleph_1} = \max\{(\aleph_\omega)^{\aleph_0}, 2^{\aleph_1}\}$. (Use 4(3).)
- (4) Google "Shelah" and find his beautiful upper-bound on $(\aleph_\omega)^{\aleph_0}$.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>