

A TASTE OF SET THEORY: EXERCISE NUMBER 6

BOAZ TSABAN

1. Prove the following assertions:

- (a) Assume that $f : \alpha \rightarrow ON$ is an increasing function (that is, for all $\beta < \gamma < \alpha$, $f(\beta) < f(\gamma)$). Then for each $\beta < \alpha$, $f(\beta) \geq \beta$.
- (b) Let α be an ordinal and $F \subseteq \alpha$. Then the order type of F is $\leq \alpha$.

Hint for (b): Let β be the order type of F , and $f : \beta \rightarrow F$ be an order isomorphism. Then f is increasing.

2. Prove that the following are equivalent:

- (1) $|A| \leq |B|$.
- (2) There is a function $g : B \rightarrow A$ which is onto.

3. Prove, by defining a bijection between the relevant sets, that the cardinal arithmetic operations satisfy:

$$\kappa^{\lambda+\mu} = \kappa^\lambda \cdot \kappa^\mu$$

for all cardinals κ, λ, μ .

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100,
ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>