

A TASTE OF SET THEORY: EXERCISE NUMBER 5

BOAZ TSABAN

Recall that every natural number N has a unique representation in base 10, in the form

$$N = 10^{m_1}k_1 + 10^{m_2}k_2 + \cdots + 10^{m_n}k_n,$$

where $n \geq 1$, $m_1 > m_2 > \cdots > m_n$, and $k_1, \dots, k_n < 10$. Similarly, N has a unique representation in base q for any natural $q > 1$. Following is a beautiful transfinite analogue: Representation in base ω .

1. Using the results seen in class, prove the *Cantor Normal Form Theorem*:

Every ordinal $\alpha > 0$ has a unique representation in the form

$$\alpha = \omega^{\beta_1} \cdot k_1 + \omega^{\beta_2} \cdot k_2 + \cdots + \omega^{\beta_n} \cdot k_n,$$

where $n \geq 1$, $\alpha \geq \beta_1 > \beta_2 > \cdots > \beta_n$, and $k_1, \dots, k_n < \omega$ (i.e., are finite).

Hint: Prove the existence by induction on α , as follows:

- (1) Check the case $\alpha = 1$.
- (2) For $\alpha > 1$ let $\beta = \sup\{\gamma : \omega^\gamma \leq \alpha\}$. Then $\omega^\beta \leq \alpha$, too.
- (3) There is $\rho < \omega^\beta$ such that $\alpha = \omega^\beta \cdot \delta + \rho$ for some δ . Show that δ is finite.

Prove the uniqueness of the representation by induction on α .

2. Define inductively $\alpha_0 = \omega$, and $\alpha_{n+1} = \omega^{\alpha_n}$ for $n \in \omega$, and $\epsilon_0 = \lim_{n \rightarrow \omega} \alpha_n$. Show that:

- (1) $\omega^{\epsilon_0} = \epsilon_0$,
- (2) ϵ_0 is the least ordinal α such that $\omega^\alpha = \alpha$.
- (3) Find the Cantor normal form of ϵ_0 (see **Question 1**).

Zorn's Lemma is the following statement: Let A be a nonempty set, and $<$ be a partial ordering of A , such that each linearly ordered subset B of A is bounded in A .¹ Then there is a maximal element in A .²

Date: 14 Mar 05 CE.

¹I.e., there is $a \in A$ such that for each $b \in B$, $b \leq a$.

²I.e., there is $a \in A$ such that there is no $a' \in A$ satisfying $a < a'$.

It is not difficult to see that Zorn's Lemma implies AC (see booklet, Page 61).

3. Prove that AC implies Zorn's Lemma.

Hint: Assume that there is *no* maximal element in A . Since AC implies the Well-Ordering Principle, there is a well-ordering \prec of A . Show that we can define $\mathbf{G} : \mathbf{ON} \rightarrow A$ such that:

- (1) $\mathbf{G}(0)$ is the first element of A (with respect to \prec);
- (2) For each successor ordinal $\alpha = \beta + 1$, $\mathbf{G}(\beta + 1)$ is the first element $a \in A$ (with respect to \prec) such that $\mathbf{G}(\beta) \prec a$; and
- (3) For each limit ordinal α , $\mathbf{G}(\alpha)$ is an upper-bound (with respect to \prec) of $\{\mathbf{G}(\beta) : \beta < \alpha\}$.

Show that \mathbf{G} is one-to-one.

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE,
REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>